
Four Years Experience: Making Sensibility Testbed
Work for SAS

Yanyan Zhuang Albert Rafetseder Richard Weiss Justin Cappos
University of Colorado, Colorado Springs New York University Evergreen College New York University

Abstract—Sensibility Testbed is a framework for developing
sensor-based applications that can run on user-provided smart-
phones, and is easy to program. Over the past four years, we
have been organizing hackathons at SAS in order to perform
semi-controlled experiments with this platform. Any smartphone
user can install Sensibility Testbed and develop a simple sensor
application in less than a day. One of the problems with
developing and testing such a framework is that there are
many possible hardware platforms and system configurations.
Hackathons provide an effective venue for observing the devel-
opment of applications on a range of devices by users with no
previous knowledge of the framework.

In this paper, we describe our experiences with hosting
hackathons in a variety of venues, including the challenges of
working in unfamiliar environments and with researchers who
had no prior knowledge of the testbed. The feedback from
participants has been very useful in identifying usability issues,
hardware issues, and the types of sensor applications that users
want to create.

I. INTRODUCTION

End-user mobile devices, such as smartphones and tablets,
have become indispensable gadgets in people’s everyday lives.
Research has shown that nearly two-thirds of Americans own
a smartphone, and 19% of them use the phone as their only
means of staying connected. For many people, these devices
have become the dominant way they interact with others, and
with the physical world.

Given the sheer number of these devices and the increasing
sophistication of their sensors1, the value of smart devices
as data collection vehicles for government, university, or
corporate studies continues to grow. Since these devices have
GPS, accelerometers, cameras, and microphones, they can
generate valuable data for such studies as determining noise
levels within an urban neighborhood [1], detecting approach-
ing earthquakes [2], or studying traffic patterns at intersections
that could be critical in an emergency [3], [4]. Accessing
devices in a home network can help providers improve the
quality of service [5]. Testing applications on remote devices
also allows developers to better understand how applications
perform in diverse environments, thus enabling improvements
in performance [6]. For instance, some platform APIs change
their behavior depending on the battery level of the device [7].
Without remote access to battery life, these APIs can not
guarantee basic function efficiency. As a result, a number of
initiatives have been launched within the network community

1In this work, we broadly define sensors as the hardware components that can record
phenomena about the physical world, such as the WiFi/cellular network, GPS location,
movement acceleration, etc.

to study mobile devices (e.g., Mobilyzer [8]), and in the
systems community to deploy new services and test research
prototypes (e.g., Phonelab [9]).

In this work, we introduce Sensibility Testbed [10], [11],
a mobile testbed that that runs on user-provided smartphones
and is easy to program. First, it has a secure sandbox that
provides a programming language interface equipped with
system calls for networking, file system, threading, locking,
logging, and most importantly, sensors. Every system call is
strictly sanitized to preserve consistent behavior across dif-
ferent OSes, and to avoid exploitable vulnerabilities. Second,
it provides infrastructure and services that makes it easy for
researchers to conduct an experiment. For example, a lookup
service lets a researcher look for a device using a unique ID,
even if the device changes its IP address. Additionally, our
programming interface hides all the unnecessary details in
mobile programming, thus a researcher only needs to write
as little as one line of code per sensor to collect data.

In this paper, we will first introduce the design of Sensibility
Testbed. In the past four years, we used Sensibility Testbed to
host Sensor Application Development Workshop, co-located
with Sensors Applications Symposium (SAS). Overall, we
hosted four hackathon-styled workshops, and one localization
challenge. We will thus describe our experiences hosting these
events using Sensibility Testbed, what worked, and what did
not work for us.

The rest of the paper is organized as follows. In Section II
we present the design and implementation of Sensibility
Testbed and its components. Section III describes the four
workshops and a challenge we have hosted in the past four
years. In Section IV we discuss our experience, what have
worked and what have not. Section V gives an overview
of related work, and Section VI provides our concluding
remarks.

II. SENSIBILITY TESTBED DESIGN AND IMPLEMENTATION

This section describes the implementation of the techniques
in Sensibility Testbed. Our testbed benefitted from the design
and implementation of our prior experimental platform for
networking and distributed system research called Seattle [12].
Deployed seven years ago, Seattle continues to run in a safe
and contained manner on tens of thousands of computers
around the world. A core design principle of its operation is the
installation of secure sandboxes on end-user computers. These
sandboxes limit the consumption of resources, such as CPU,
memory, storage space, and network bandwidth, allowing

This full text paper was peer-reviewed at the direction of IEEE Instrumentation and Measurement Society prior to the acceptance and publication.

978-1-5386-2092-2/18/$31.00 ©2018 IEEE

Seattle to run with minimal impact on system security and
performance. By operating inside a sandbox, it also ensures
that other files and programs on the computer are kept private
and safe.

We first provide a high-level walkthrough of Sensibility
Testbed, when a researcher conducts an experiment on a
mobile device (Section II-A), and then present the different
components of Sensibility Testbed (Section II-B).

A. Overview

Let’s assume that device owner Alice participates in a
Sensibility Testbed experiment, while a researcher Rhonda
wants to run code on Sensibility Testbed using a number of
devices, including Alice’s.

To run code on Alice’s device, Rhonda only needs to
download an experiment manager (Section II-B3) to her own
computer. The experiment manager is a light-weight command
line console that can directly access Alice’s device, upload
experiment code, and communicate with Alice’s device to
start or stop the execution of the experiment. The experiment
manager can also be used to download data from remote
devices to Rhonda’s local computer, or to a server she has
set up to store the data.

B. Sensibility Testbed Components

1) Secure Sandbox: The sandbox in Sensibility Testbed
provides a programming language interface equipped with
system calls for networking, file system access, threading,
locking, logging, and most importantly, sensors. Every system
call in the sandbox is strictly sanitized to preserve consistent
behavior across different OSes, and to avoid exploitable vul-
nerabilities. Additionally, the sandbox interposes on system
calls that use resources, such as network and disk I/O, and
prevents or delays the execution of these calls if they exceed
their configured quota [13]. Therefore, different researchers
can run experiments on different sandboxes on the same
device, without any interference between the experiments or
the rest of a device. Most importantly, the same system call
interposition technique can modify a system call’s behavior,
such as the return value of a call and the frequency.

2) Device Manager: The Sensibility Testbed device man-
ager is part of the Sensibility Testbed app that device owners
install on their devices. It allows device owners to control the
experiments running on their devices. The Sensibility Testbed
app starts as the device boots, and runs as a background
process. The device manager also includes code to dynami-
cally traverse NAT gateways and firewalls (both are commonly
found on Internet connections over WiFi), so that it remains
contactable even if the device does not currently possess a
public IP address.

3) Experiment Manager: Researchers use an experiment
manager to directly access remote devices, much like using a
command line console via ssh. The experiment manager, in-
cluding assorted sandbox libraries to support the development
of experiments, is available in packaged form for downloading
from our project website (the light-weight command line

console in Section II-A). It runs on different operating systems
and platforms. To accommodate the complexity of today’s
networks, the experiment manager supports contacting devices
in WiFi networks, and networks behind NAT gateways and
firewalls.

4) Clearinghouse: Sensibility Testbed’s clearinghouse is
hosted on a web server at New York University. It is imple-
mented based on the Django web framework. The clearing-
house stores information about available devices and registered
researcher’s experiments. Furthermore, it possesses crypto-
graphic keys that allow it to assign a researcher access to
sandboxes. Similarly, when the researcher’s experiment period
is over, the clearinghouse removes her access rights from every
sandbox she previously controlled.

III. SAS WORKSHOPS

We have been organizing and hosting workshops with SAS
since 2014. This has benefitted the project in two ways:
it contributes to testing and it suggests new features and
improvements to the platform. In addition, we developed a
sensor app for indoor localization. Sensibility Testbed itself
also evolved over the past four years. Notably, it evolved from
a simple Android app based on an XML-RPC [14] interface,
to developing our own embedded Python interpreter in C
that can call into a running JVM to read out sensor values.
In this section, we look back on our experience organizing
four hackathons and one localization challenge, as well as the
evolution of Sensibility Testbed.

A. Hackathons

1) 2014 — Queenstown, New Zealand: This was the first
year we hosted a hackathon using Sensibility Testbed. The
system was in a very early stage of its development, and the
design and implementation was far from mature. However, this
first year was a success despite all the challenges.

The first version of the Sensibility Testbed app depended
on an XML-RPC interface. Since Sensibility Testbed supports
Android, the app was developed in Java. However, Sensibility
Testbed’s secure sandbox was written in a programming lan-
guage similar to Python, and thus the experiment a researcher
developed must be written in a way similar to Python. In
order for the Python code to access sensor data provided by
Android Java interfaces, we let the native Android app and
the Python sandbox run at the same time. The Android app
opens up a port for communication, providing interfaces for
sensor data whenever the data is available. If an experiment
(written in Python) establishes a connection with the Android
app using this designated port, then the experiment can invoke
the Android app’s Java interface, using a remote procedure
call, to obtain sensor data. To enable all the sensor interface
in Java, we relied on a third-party library called Scripting
Language for Android (sl4a).

We spent about an hour at the workshop presenting our
system to the participants, and teaching them how to use
Sensibility Testbed to write programs that read sensor data.
Then the participants spent the rest of the day working in

groups, using Sensibility Testbed to develop an app. At the
end of the day, each group pitched their work at the conference
banquet, where we asked the conference organizers to judge
their work. Certificates were given to the top three teams. Team
members on the first place team each received a new Android
phone.

In the first hackathon, we had about 20 participants. The top
team was from the University of Houston. They built an app
that monitors the battery level of a device, and whether WiFi
and Bluetooth were turned on. If battery is low, the app uses
text to speech to tell the device user to turn off the WiFi or
Bluetooth. Other teams built exciting apps as well, e.g., using
accelerometer, GPS, and noise data.

Takeaway: The first year was critical for us. We learned
that simple installation and good documentation are the most
important elements of a successful hackathon. We carried on
these important elements in the following years.

2) 2015 — Zadar, Croatia: As the first hackathon was well-
received, we were invited to host another one in the following
year in Croatia. With the experience we had in the first year,
we followed the same agenda. The second hackathon was also
successful.

However, during this second year, we discovered some
weaknesses of our system. For example, the XML-RPC in-
terface slowed the access frequency for the accelerometers
and gyroscope from 150 Hz to 50 Hz. This slowdown was
noticeable and introduced inaccuracies in some experiments.
Furthermore, XML-RPC is not a secure communication chan-
nel. If an attacker learns about the designated port, he or she
can use an XML-RPC call to get all the sensor data as is
desired.

Another issue was caused by sl4a. Originally, the Sen-
sibility Testbed app automatically downloaded the apk for
sl4a, and installed it within the Sensibility Testbed app.
However, in early 2015, Google Play Store disallowed this in-
app installation behavior. We then changed our app such that
the app would prompt the user to install sl4a manually. As
a result, the user had to allow “installing apps from unknown
sources” in the device settings, as sl4a was not an app in the
Play Store. This added an additional burden to the participants
of our hackathon. Therefore, we planned for some significant
changes in the next year.

Takeaway: The unexpected findings helped us discover the
problems, and solve them in a timely manner. For the XML-
RPC issue, we needed a new way for experiment code to get
sensor data. To resolve the issue related to sl4a, we needed
to develop our own sensor interfaces.

3) 2016 — Catania, Italy: The changes we made in 2016
were fundamental, as we got rid of the XML-RPC interface
and sl4a entirely, from the lessons we learned from the previ-
ous year. In order to improve the efficiency and security of the
data access, we re-engineered the interface between Sensibility
Testbed’s Python sandbox and the Android operating system.

In this new design, we interfaced the native Sensibility
Testbed Android app with the Python-based sandbox. This is
achieved by using the Java Native Interface (JNI) to define

Android app

Native C code

Main activity

Sensor
services

Sensor
bindings

Custom Python
interpreter

JNI

Sandbox
Experiment

Fig. 1. Sensibility Testbed Android app and Python sandbox archi-
tecture.

interfaces into the Android app on one side, and a custom
Python interpreter that then hosts the Sensibility Testbed
sandbox on the other side. Custom sensor bindings were
written and compiled into the Python interpreter using the
CPython API. That way, Android sensors became callable and
readable from within the Python interpreter in the form of
built-in modules. On top of that, we created wrapper functions
for the sandboxed code so that the extent of sensor access can
be tailored. We can therefore implement policies to protect a
user’s privacy. Figure 1 shows this architecture.

With all these modifications, we were able to completely
discard sl4a, as well as the slow and unsafe XML-RPC
interface. However, the support efforts on the development
end increased as a result of this design decision. This is due
to our use of the Android Native Development Kit (NDK)
in the creation of the augmented Python interpreter. The
NDK is a low-level toolkit for compiling C and C++ code
for Android (as opposed to the higher-level Java and Kotlin
toolkits available, which account for virtually all of the code
written for the platform.) Since the NDK sees less use, its
version changes frequently introduced “breaking changes”,
and the Sensibility Testbed development team had to track
updates carefully.

However, the end result for Sensibility Testbed users is
positive. In this year’s hackathon, participants were able to
install only one app, instead of two, and use an experiment
manager to easily interact with a device and get sensor data at
almost native rate. For example, if a device’s rate is 150 Hz,
the experiment through our sandbox read the sensor at almost
150 Hz. As a result, it was much easier for the participants
to get an experiment running, and get the data they wanted.
A group with members from Qatar and Norway developed an
app that detected the slips and fall of a device owner, and
report the event using text-to-speech.

Despite the progress, we encountered some unexpected
difficulties this year. As the conference was hosted in a
museum, the WiFi connectivity was very sporadic, and the
quality was poor. Participants had difficulty connecting to their
devices while conducting their experiment, or the connection

would break from time to time. Eventually, we were able to
borrow a WiFi router from the conference and set it up for
the hackathon.

Takeaway: Despite the technical progress, non-technical
issues can still be our obstacles. We need to prepare fully
in all aspects.

4) 2017 — Glassboro, New Jersey, USA: With the lesson
we had in 2016, we devised new strategy: we brought our own
WiFi router and setup a hotspot in the conference room where
we hosted the hackathon. We also brought our technical team
to troubleshoot any issues on the spot. Last but not least, we
improved our documentation about Sensibility Testbed to a
significant degree, where it is crystal clear what steps should
be followed.

With all previous years’ effort and our new changes, 2017
was the year we had the least number of issues. A group with
members from Italy and Canada developed an app that by
scanning the WiFi network at the conference, it recommended
which WiFi router had the best connectivity quality in terms
of received signal strength.

Takeaway: Hard work pays off. We will continue our effort
in 2018.

B. Localization Challenge

Some of the work to improve sensing rates was motivated
by our own internal development of a sensor app for indoor
localization. The app was designed to use the accelerometer
to count steps and the gyroscope to measure the heading of
the device.

In 2016, we hosted a localization challenge using Sensibility
Testbed. The conference was held in a museum, a venue with
a relatively complex floor plan. Our team concluded that this
would be a good test of the accuracy and usability of the app
as well as an opportunity to collect accelerometer data for
testing localization algorithms, in general.

The indoor localization challenge is the problem of deter-
mining where a device is located in an indoor environment
where there is no access to GPS. It has many possible appli-
cations, from allowing a user to navigate to a room, to tagging
video streams with camera location. The first issue with this
problem is defining what is meant by location. Without GPS,
there is no natural reference coordinate system. For our app,
we create fiducial or reference points that define a coordinate
system, and all locations are computed with respect to those
coordinates. For our challenge, we had no access to building
blueprints or any prior information about the venue, so we
needed a system that was easy to set up and reliable. Although
it would have been possible to use WiFi or Bluetooth beacons,
we chose an approach that required less infrastructure. The
location markers were QR codes printed on paper and taped
to the walls.

Using QR codes to create reference points worked well.
The locations of the QR codes with respect to each other were
easily measured using a laser range-finder. The only constraint
was that we needed to arrange the points in triangles where
each vertex was visible by the other two. As long as we could

decompose the space into triangles such that each triangle
shared an edge with another triangle, the coordinate system
was well-defined. Although the room was not rectangular, and
there were alcoves, we were able to find triangles that covered
the space and set up the reference points.

Users of the indoor localization app were requested to walk
around the space and occasionally capture one of the QR
codes using their phone. This allowed the app to compute
the location and orientation of the phone at specific times. In
between these measurements, the app updated its position and
orientation based on accelerometer and gyroscope measure-
ments, integrated through a Kalman filter.

One of the issues that we encountered was that some
attendees had iPhones, and our app only works on Android.
Even for Android, the app did not seem to install on all
of the older versions. In those cases, we were able to lend
the participants one of the mobile phones that we brought.
Another issue was related to the lack of WiFi connectivity
in the room where we conducted the experiments. Our app
was designed with the assumption that mobile phones could
connect frequently to the Internet and upload data to a server
that we had set up. This was a problem because the app
was collecting large amounts of data, some of which was
lost when the phone ran out of disk space. However, the
experiment was successful and we collect a number of traces
with accelerometer and gyroscope data together with reference
points. The data sets can be found in our repository.

Takeaway: App developers cannot assume that user devices
will have frequent Internet connectivity.

Similar work had been done by Microsoft. The Microsoft
Indoor Localization Challenge was held at IPSN in 2014 [15].
At that event, there were two categories: structured and struc-
tureless, and teams collected their own data. Infrastructure-
free approaches used existing WiFi and geo-magnetic signals.
Infrastructure-based approaches relied on the deployment of
customized RF-beacons, infrared, ultrasound, and Bluetooth.
The study concluded that indoor localization with 1-meter
accuracy was still an unsolved problem.

IV. DISCUSSION AND LESSONS LEARNED

Due to the many possible hardware platforms and system
configurations brought by the participants, our platform has
to keep up with the new features and environments (Sec-
tion IV-A) while still being easy to use (Section IV-B). Further-
more, it has to balance security with usability (Section IV-C).
In this section, we describe what we have learned by hosting
hackathons with Sensibility Testbed.

A. Working in Fast-changing and Unfamiliar Environments

1) Smartphone Device: In principle, Android is based on
the open-source Linux kernel; however, it is a fast-changing
operating system that keeps incorporating nonstandard addi-
tions and changes which break one-to-one Linux compatibility
for our sandbox. In the past, Android updates have caused
a number of problems. For example, since Android 5.0,
Google included a number of system behavior changes such

as forbidding executable files in the user-accessible parts of
the device’s file system. These and other changes required
substantial changes to the internal layout of our app, and also
to the core parts of the sandbox.

Furthermore, our Sensibility Testbed app currently supports
ARM CPU with a 32-bit instruction set. As ARM/64-bit
becomes more popular, we will need to support that, as well
as other ISAs.

2) Participants’ Laptops: From the past four hackathons,
we found that the majority of our participants had Windows
laptops, which do not have Python installed. In contrast,
Python is preinstalled on most Linux distributions and Mac,
and is available as a package on all others. Therefore, Windows
users had to install Python manually, with the right version 2.7.
As a result, we had to provide extra guidance to participants
that they install the correct Python environment.

3) Network Connectivity: Since a participant establishes
an ssh-like connection with a smartphone device, a bad
network connection can frustrate the participant after both the
smartphone and the laptop have been set up. Furthermore, if
the participant changes location and thus changes the device’s
IP address, it will take a while before the new IP address
can be recognized by the participant’s laptop. For this issue,
we added buttons in the app to refresh the state of a device,
or instructed the participant to restart the connection on the
laptop end. However, this is not a sustainable and long-term
solution.

Lessons Learned: As the environment is crucial for running
experiments, we will need to keep up with the new features
of Android, and any potential new environments that we may
want to target, such as iOS. On the other hand, providing
Windows users with more detailed instructions can lead to
a more smooth user experience. For network connectivity, we
currently plan to work on a version of the laptop-side software
so that the laptop and smartphone can work in tethering mode.
To sum up, we need to work out or work around issues as they
emerge, while keep the system user-friendly.

B. Working with Researchers with No Prior Knowledge

1) Command Line: Many researchers have not worked with
a command-line console before our hackathon. Therefore, in
many cases we had to teach participants how to navigate file
systems, run commands, etc.

2) Lack of familiarity with Python or Sensibility Testbed:
Some participants had never programmed in Python. But
fortunately, the Sensibility Testbed API (based on Python) is
very easy to understand and use. We provide documentation
for each API call’s syntax, as well as intuitive examples. We
found that only occasionally we had to explain the APIs to
the participants or provide hands-on assistance.

Although none of the participants had any prior experience
with Sensibility Testbed, we found that by following our
detailed tutorials, most of the participants were able to write
experiments in a very short amount of time. Among the 25
teams that have participated so far, only one group did not
finish the application development.

Lessons Learned: Despite lack of experience from the
participants, our documentation effort has played a critical
role in the past hackathons. Although it is very difficult to
document a large and complex system, this work is very
important for the usability of the system.

C. Usability vs. Security

As Sensibility Testbed is a testbed running on volunteers’
devices, security and privacy is a primary goal (Section II).
However, in order to make strong claims of privacy protection,
it was necessary to relax some of the usability features, and
we had to strike a balance between usability, security and
privacy. For example, in Sensibility Testbed, the programming
interface disables some sensor access that are a risk to privacy,
such as cameras and microphones [11]. During the hackathons,
quite a few participants requested access to these sensors, for
applications like facial recognition and intrusion detection.
However, due to the high risk, we decided not to enable
access to these sensors. Although this made some application
impossible to implement, the resulting security benefit was
greater.

We also made improvements once we identified initial
design flaws, e.g., sl4a both added burden to participants to
install a separate app, and also was not secure due to the XML-
RPC interface (Section III-A). By removing this component,
both the usability and security aspects of Sensibility Testbed
were greatly improved. Although the effort was significant, our
experience from the hackathons provided a strong incentive to
make this change.

Lessons Learned: It is difficult to achieve both usability
and security, therefore we need to make tradeoffs in our design
and implementation. As we gain more momentum in Sensi-
bility Testbed’s use, and get more feedback from participants,
we will be able to find out which usability/security features
worked and which did not. Additionally, the Android operating
system has made its security model stronger over time, such as
requesting permissions from the user. Since our security model
is built on top of that, we need to keep up with Android’s
security model.

V. RELATED WORK

As a smartphone testbed, Sensibility Testbed tries to balance
the security and usability. Our testbed also draws upon the
experiences of other platforms, though most of the other
platforms do not take usability into consideration.

PhoneLab [9] is a smartphone testbed that is the most
close to our testbed. However, there are significant differences
that make Sensibility Testbed more suitable for a conference
like SAS. First, researchers using PhoneLab have to write
their own experiment in Android native code, and submit
the experiment in the Google Play Store. This process alone
can take significant time. Second, the data collected from
PhoneLab devices is sent to an external server. Researchers
can only get the data when an experiment is over. Finally,
researchers do not have the permission to decide when to
run an experiment, or which devices to choose from. Such

scheduling is done by the PhoneLab services. Therefore, from
the researcher’s point of view, PhoneLab is not flexible enough
to learn within a day.

There are also other testbeds for the mobile and wireless
network, or sensor network community. For example, Mobi-
Lab [16] is a wireless sensor network testbed for carrying
out repeated and reproducible experiments. It is a controlled
network testbed that can ensure experiments produce pre-
dictable outcomes, despite the high fluctuation of link quality
during mobility. In contrast, Sensibility Testbed embraces
the unpredictability of wireless experiments which is a more
realistic environment.

The work of Zhao, etc. [17] presented a federated semantic
for Internet of Things (IoT) testbeds. This allows highly
heterogeneous IoT experiments to be interoperable, instead
of being fragmented or silo solutions. However, this type of
testbeds rely on existing experiments, and cannot stand on their
own and serve as a platform for researchers to freely conduct
research experiments.

OneLab [18] has been used at TridentCom. However,
OneLab is also a testbed for federating various testbeds, such
as PlanetLab Europe (PLE), an IoT testbed, a cognitive radio
testbed, and a wireless testbed. Even if OneLab portal is easy
to use, deploying experiments across federated platforms still
requires researchers to know how to work with each individual
testbed. Therefore, not only the platform cannot stand on
its own, the learning curve is overall higher than Sensibility
Testbed.

VI. CONCLUSION

We described our past four year’s experience using Sen-
sibility Testbed to host hackathons with SAS, by briefly
introducing the system, the effort we made to host hackathons
and localization challenge successfully, the problems we ran
into, and the lessons learned. In the design of Sensibility
Testbed, we struck a balance between usability and security.
At the SAS conference, we work with unfamiliar environments
and with researchers who had no prior exposure. Sensibility
Testbed thus has evolved as we gain experiences each year,
and has become more user-friendly while secure at the same
time. All these experiences will help us improve Sensibility
Testbed further, make it easier to use, and host more successful
hackathons with SAS in the future.

REFERENCES

[1] C. A. Kardous and P. B. Shaw, “Evaluation of smartphone sound
measurement applicationsa),” The Journal of the Acoustical Society of
America, vol. 135, no. 4, pp. EL186–EL192, 2014.

[2] M. Faulkner, M. Olson, R. Chandy, J. Krause, K. M. Chandy, and
A. Krause, “The next big one: Detecting earthquakes and other rare
events from community-based sensors,” in Information Processing in
Sensor Networks (IPSN), 2011 10th International Conference on. IEEE,
2011, pp. 13–24.

[3] Y. Zhuang, J. Pan, Y. Luo, and L. Cai, “Time and location-critical emer-
gency message dissemination for vehicular ad-hoc networks,” Selected
Areas in Communications, IEEE Journal on, vol. 29, no. 1, pp. 187–196,
2011.

[4] Y. Zhuang, J. Pan, and L. Cai, “A probabilistic model for message propa-
gation in two-dimensional vehicular ad-hoc networks,” in Proceedings of
the seventh ACM international workshop on VehiculAr InterNETworking.
ACM, 2010, pp. 31–40.

[5] S. Sundaresan, W. De Donato, N. Feamster, R. Teixeira, S. Crawford,
and A. Pescapè, “Broadband internet performance: a view from the gate-
way,” in ACM SIGCOMM Computer Communication Review, vol. 41,
no. 4. ACM, 2011, pp. 134–145.

[6] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and
S. Shayandeh, “Appinsight: Mobile app performance monitoring in the
wild.” in OSDI, vol. 12, 2012, pp. 107–120.

[7] J. Spooren, D. Preuveneers, and W. Joosen, “Leveraging battery usage
from mobile devices for active authentication,” Mobile Information
Systems, vol. 2017, 2017.

[8] A. Nikravesh, H. Yao, S. Xu, D. Choffnes, and Z. M. Mao, “Mobilyzer:
An open platform for controllable mobile network measurements,” in
Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2015, pp. 389–404.

[9] A. Nandugudi, A. Maiti, T. Ki, F. Bulut, M. Demirbas, T. Kosar, C. Qiao,
S. Y. Ko, and G. Challen, “Phonelab: A large programmable smartphone
testbed,” in Proceedings of First International Workshop on Sensing and
Big Data Mining. ACM, 2013, pp. 1–6.

[10] Y. Zhuang, L. Law, A. Rafetseder, L. Wang, I. Beschastnikh, and
J. Cappos, “Sensibility testbed: An internet-wide cloud platform for
programmable exploration of mobile devices,” in Computer Communi-
cations Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on.
IEEE, 2014, pp. 139–140.

[11] Y. Zhuang, A. Rafetseder, Y. Hu, Y. Tian, and J. Cappos, “Sensibility
testbed: Automated IRB policy enforcement in mobile research apps,”
in 19th International Workshop on Mobile Computing Systems and
Applications (HotMobile18), Tempe, Arizona, USA. ACM, 2018.

[12] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson, “Seattle:
a platform for educational cloud computing,” ACM SIGCSE Bulletin,
vol. 41, no. 1, pp. 111–115, 2009.

[13] J. Cappos, A. Dadgar, J. Rasley, J. Samuel, I. Beschastnikh, C. Barsan,
A. Krishnamurthy, and T. Anderson, “Retaining sandbox containment
despite bugs in privileged memory-safe code,” in Proceedings of the 17th
ACM conference on Computer and communications security. ACM,
2010, pp. 212–223.

[14] A. Rafetseder, F. Metzger, L. Pühringer, K. Tutschku, Y. Zhuang,
and J. Cappos, “Sensorium-a generic sensor framework.” Praxis der
Informationsverarbeitung und Kommunikation, vol. 36, no. 1, p. 46,
2013.

[15] D. Lymberopoulos, J. Liu, X. Yang, R. R. Choudhury, V. Handziski,
and S. Sen, “A realistic evaluation and comparison of indoor location
technologies: Experiences and lessons learned,” in Proceedings of the
14th International Conference on Information Processing in Sensor
Networks, ser. IPSN ’15. New York, NY, USA: ACM, 2015, pp. 178–
189. [Online]. Available: http://doi.acm.org/10.1145/2737095.2737726

[16] J. Wen, Z. Ansar, and W. Dargie, “Mobilab: A testbed for evaluating
mobility management protocols in wsn,” in Testbeds and Research
Infrastructures for the Development of Networks and Communities.
Springer, 2016, pp. 49–58.

[17] M. Zhao, N. Kefalakis, P. Grace, J. Soldatos, F. Le-Gall, and P. Cousin,
“Towards an interoperability certification method for semantic federated
experimental iot testbeds,” in Testbeds and Research Infrastructures for
the Development of Networks and Communities. Springer, 2016, pp.
103–113.

[18] L. Baron, R. Klacza, N. Kurose, M. Y. Rahman, C. Scognamiglio,
T. Friedman, S. Fdida, and F. Saint-Marcel, “Onelab tutorial: A single
portal to heterogeneous testbeds,” in TridentCom 2015, 2015.

