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Abstract—Hands-on experience is a critical part of research
and education. Today’s distributed testbeds fulfill that need for
many students studying networking, distributed systems, cloud
computing, security, operating systems, and similar topics. In
this work, we discuss one such testbed, Seattle. Seattle is an
open research and educational testbed that utilizes computa-
tional resources provided by end users on their existing devices.
Unlike most other platforms, resources are not dedicated to the
platform which allows a greater degree of network diversity
and realism at the cost of programmability. Seattle is designed
to preserve user security and to minimally impact application
performance. We describe the architectural design of Seattle,
and summarize our experiences with Seattle over the past few
years as both researchers and educators.

We have found that Seattle is very easy to adopt due to cross-
platform support, and is also surprisingly easy for students to
use. While there are programmability limitations, it is possible
to construct complex applications integrated with real devices,
networks, and users with Seattle as a core component. From
an educational standpoint, Seattle has been shown not only to
be useful as a teaching tool, it has been successful in variety
of different systems classes at a variety of different types of
schools. In our experience, when low-level programmability is
not the main requirement, Seattle can supersede many existing
testbeds for diverse educational and research tasks.

Keywords-Distributed Testbed, End-User Machines, Experi-
mental Facilities, Educational Use

I. INTRODUCTION

Distributed platforms are now a de facto standard in

modern software and application development, as well as ed-

ucation in computer science. Real world distributed testbeds

can provide a programming infrastructure that typically does

not exist in a laboratory environment. To date, existing

testbeds such as PlanetLab [1], Emulab [2], and various

GENI efforts [3] have played critical roles for evaluating

networked and distributed systems. These testbeds, however,

are composed of dedicated resources. As a result, they are

expensive to scale as the management and equipment costs

dominate. Using dedicated hardware also makes it difficult

for a testbed to be representative of the Internet without

constantly purchasing and adding the latest hardware on

diverse end user networks. As such, testbeds composed of

dedicated hardware do not have representative connectivity,

processing power, and churn behavior of existing Internet

hosts. Furthermore, due to resource contention, researcher

and instructor must undergo an approval process and wait for

actions by multiple parties. This has hampered experiment

deployment and educational adoption. With the growing

end-user diversity, heterogeneous network connectivity, and

increasing interest in sensor data from end user devices like

smartphones, traditional platforms leave much to be desired.

Over the past four years, we have been using a testbed

constructed with a different approach, namely, the Seattle

testbed [4]. Seattle utilizes computational resources provided

by end users on their existing devices. The growth and

success of this testbed is enabled via end user participation.

It is designed to incentivize participation while minimizing

the risk to end users. To this end, Seattle is able to preserve

user security and to minimally impact the performance of the

user’s other applications. The testbed provides researchers

and educators with the ability to create and evaluate enticing

prototypes that span a wide range of devices, from servers,

desktop PCs and laptops, to smartphones and tablets. Despite

the security restrictions and programmability limitations that

are necessary to make the platform safe for end users, our

experience indicates that it is an easy to use and powerful

platform for both education and research. The development

and direction of Seattle follows a common model in the open

source community, which we call a community platform.

Hence, Seattle embraces the heterogeneity of today’s end

user environment, and provides a unique environment that

is not available on other testbeds.

In this work, we provide our experiences with Seattle

platform from both research and educational perspectives.

For researchers, Seattle allows the research community

to answer fundamental research questions using real end-

user machines, and support devices behind NATs, wireless

routers, firewalls, and mobile platforms. For educators, Seat-

tle provides a usable and safe programming platform that is

accessible to students in many security, operating systems,

distributed systems and networking courses. Despite certain

challenges and limitations, we believe that Seattle will

continue to have a unique, positive impact in the educational

and research communities.

The rest of this paper is organized as follows. Section II

describes the architecture of Seattle, and its current size

and scale. The experiences with Seattle platform by a

broad range of researchers and educators are presented in

Sections III and IV. A summary of our on-going work to

overcome some of Seattle’s current limitations is provided

in Section V, followed by an overview of related work in

Section VI. Section VII concludes this paper with our future

vision of the Seattle testbed, as we expand it to an even larger

scale.



II. SEATTLE: AN OPEN COMMUNITY PLATFORM

This section describes the sufficiently general testbed

architecture of Seattle that can support many research and

educational use cases.

A. System Goals

The creators of Seattle testbed [4] have set out five high-

level design goals which guide the core development of the

testbed. These goals are listed roughly in order of priority

from highest to lowest:

1) Safety: The end users that participate in the testbed

should not face significant risk. Code should be strictly

sandboxed. Code executed on the testbed must not interfere

with the performance or correctness of user’s applications.

2) Open Development: The testbed must be constructed

out of loosely integrated components. To the extent that

is feasible, components should not rely on each other and

should be replaceable. All code should be open source with

a permissive license and documented for easy modification.

3) Open Participation: The testbed must be an open

system with participation from real end users and developers.

All software should be easy to install, un-install, and stop.

Developers should be able to easily gain access to resources.

4) Democratic Deployment: If multiple competing im-

plementations of a component are available, all versions

should be available. An end user should be able to select

a component based on its value, not prescribed defaults.

5) Diversity: The underlying devices that run the testbed

should provide a realistic view of the Internet. This means

that the testbed should support heterogeneous network and

device types.

B. Testbed Architecture

As testbed users, it is important to know the system

architecture and components, and how the components work

together to provide services to its users. The details of each

component are listed as follows. With these details in mind,

a researcher or educator can fully utilize the Seattle platform

from different standpoints.

1) Virtual Machine: In order to allow programs to run

safely on end user machines, the creators of Seattle have

encapsulated them in a virtual machine (VM). The virtual

machine has several goals. First and foremost, it must

prevent a program from performing malicious actions like

installing key loggers or reading the user’s sensitive files.

In addition, the virtual machine provides performance iso-

lation for applications to prevent them from consuming

too much CPU, memory, battery, etc. To cut down on the

abuse complaints from our testbed, the virtual machine also

prevents the user from spoofing the source address of packets

or sending ICMP messages. The virtual machine provides

memory, CPU, disk, and network access in a similar way to

cloud services like an Amazon EC2 instance. Thus the safety

for the end user does not significantly limit the generality

of code that can be executed.

2) Node Manager: When users want to deploy their code

on a remote system, they need a way to upload code into

a virtual machine and start it. This should only be allowed

for users that have the appropriate credentials to modify a

virtual machine. The node manager component takes care

of these tasks by mediating access to those virtual machines

to ensure that only authorized parties can execute code in

them. Since the node manager maintains and controls the

VMs running on a node, it also provides an interface to

upload code into a VM, start and stop a VM, and collect

log files and data from a VM. The node manager is agnostic

whether the interface is accessed interactively, by a script,

or even another piece of code running in a VM.
3) Service Manager: A researcher uses a service manager

to interface with the node manager on a group of nodes

running code on her behalf. This can provide multiple

different types of interfaces, like a shell, GUI, or automated

scripts. Depending on the task at hand, it might make

sense to use an interactive service manager that provides

direct control of and feedback from node managers. For

classroom assignments, students would most probably use an

interactive service manager to deploy code into virtual ma-

chines and debug the result. Other tasks, such as automatic

deployment, monitoring services, and periodic aggregation

of data and log files are better handled with a scriptable

service manager. Such a scriptable service manager would

monitor the number of service instances and re-deploy a

user’s code onto new virtual machines as needed.
4) Clearinghouse: The purpose of a clearinghouse is to

enable researchers to pool and share resources. Without a

clearinghouse, a researcher can distribute a Seattle installer

with his credentials inside, so that the node manager grants

them access to VMs. This means, however, this researcher

can only access resources on the machines of users that ran

his installer. This severely limits the scale and diversity of

the resources that are accessible, and is relatively uncommon

(about 10% of our users).
Most researchers instead provide an installer that they

get from a clearinghouse. Using a clearinghouse allows

researchers to collectively pool resources and then acquire

VMs across all clearinghouse resources according to the

clearinghouse’s policy. Researchers can trade VMs on their

well-equipped lab machines for VMs across the Internet on

other kinds of Internet-enabled devices contributed to the

testbed. A clearinghouse can also provide mechanisms for

acquiring a specific category of nodes, offer service level

agreements, trade VMs between users, etc.
5) Lookup Service: One big issue that occurs in a dis-

tributed system like Seattle is for parties to discover each

other. For example, a service manager or a clearinghouse

must be able to locate node managers that have VMs they

can control. The lookup service allows any party to either

advertise a value under a certain key, or to look up a key to

find out the associated values. This key-value store is used

for a variety of coordination tasks across all components.

Seattle’s creators leverage many different designs for such a

service and the choice of a lookup service is not limited to
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Figure 1: World map showing the distribution of nodes in the
Seattle testbed (The area of the circle is logarithmic in the number
of nodes).

services available within the testbed.

6) Software Updater: Even though the VM and the

node manager provide a safety barrier against malicious or

buggy user code, there must be a way to patch potential

vulnerabilities in the VM, the node manager, and other parts

of the system (including the software updater itself). Ideally,

testbed software can be updated with no end user interaction

whatsoever. This also means that the end user need not

manually search for new releases of the software; instead,

updates are pushed to nodes automatically.

7) Infrastructure Services: There are a number of infras-

tructure services that make it easier to perform a specific

action. Some of these run on VMs within the testbed,

while others are hosted on stand alone servers. These in-

clude monitoring services, communication relays for NAT

(Network Address Translation) traversal, or a customized

installer creator for bundling applications with Seattle.

C. Current Testbed Size and Scale

The Seattle testbed has been used in a variety of different

contexts and its use is spread across the world. This can

best be seen by a world map which represents the global

user base in Figure 1. As shown in the map, Seattle has

a large user base outside of the US. Additionally, Seattle

is deployed on a wide variety of networks, as shown in

Table I. In the past two years, there have been 20,445 IPs

contacted Seattle for updates, with an average of about 20

new IPs a day. This metric over-counts mobile nodes and

under-counts nodes behind a NAT. A reverse DNS lookup

was used on each IP and then tried to categorize the resulting

host names. The result shows about 4% computers in other

testbeds (like PlanetLab) and 17% computers at universities,

with the remainder roughly split between confirmed home

machines and machines that do not respond to reverse DNS

requests (they are “unclassified” as in Table I, and we expect

them most likely be home systems). There are 505 nodes

with a host name explicitly indicating a phone or a tablet.

Since nodes often have diurnal patters, the number of online

virtual machines at a time is around 3 to 6 thousand.

Node Type Quantity

University nodes 3,510
Home machines 7,594
Other Testbeds 859
(PlanetLab, Emulab, etc.)
Phones 505
Unclassified 7,977

Total 20,445

Table I: Seattle node types determined via reverse DNS lookups
on systems that retrieve software updates.

III. RESEARCH EXPERIENCE WITH SEATTLE

Over the past four years, Seattle has been promoted to

researchers through presentations and demos at various lev-

els of conferences, workshops and seminars. By its design,

as described in Section II, Seattle has a number of features

that made it immediately attractive for the exploratory type

of network research. For example, the number of networks

Seattle is deployed on is significant (Table I); all of the

code is open and easy to modify; and it is easy to deploy

experiments. All of these aspects make Seattle a convenient

platform for rapid prototyping and measurement.

In this section we describe our past experiences regarding

how to design and deploy experiments on Seattle. We also

present some published results using Seattle. The mecha-

nisms used to design and deploy Seattle experiments are

in Section III-A, and the application use cases in Sec-

tions III-B1 and III-B2 summarize key findings from our

prior experiences [5]. Sections III-B3 and III-B4 introduce

new experiments on smartphone and tablet devices.

A. Experimentation Design and Deployment

The prerequisite for using nodes federated in the Seattle

testbed is to register an account at the Seattle clearinghouse

website [6]. In contrast to other testbed systems, Seattle

follows a self sign up policy, so the prospective user need

not be associated with an academic or industrial institution

participating in the system, nor is consent from a Principal

Investigator required. This makes Seattle a truly public

testbed. Any new registration is processed and access is

available immediately. Once registered with a username, the

user is gifted credit for ten VMs at a time in the Seattle

testbed. Via the clearinghouse website, credits can be used

to access up to 10 concurrent VMs on the testbed.

1) Design Of Experiment: The programming language

used on Seattle VMs is Repy, a restricted subset of

Python [7]. When it comes to designing an experiment,

one needs to take into account the restrictions put forth by

the Repy sandbox [8]. Much like other programming envi-

ronments, Seattle comes with an extensive set of standard

libraries [9]: Libraries for network time synchronization,

data serialization and encoding, cryptography, handling of

URLs, HTTP, and XML, GeoIP, a NAT layer, DNS and

other announcement / advertisement / lookup libraries, and

parallelization and synchronization primitives.

2) Deployment: The interactive frontend for deploying

code on acquired VMs is seash, the Seattle shell. To

locate VMs provided by the user’s clearinghouse, seash



uses Seattle’s VM lookup services. Then, seash exchanges

cryptographically signed messages with the VMs to control

experiments and move data. There are also GeoIP and DNS

remapping services available to make it easy to understand

devices with diverse or changing locations.

Furthermore, seash makes the parallel interaction with

multiple VMs a straightforward task. It automatically issues

parallel requests, ensures the order of commands, and clearly

indicates the success status of each command per VM.

3) Scale Out: As stated before, every user registered with

the main Seattle clearinghouse is granted credit for ten VMs.

If users want to contribute to the resources available to

others reciprocally, they can install Seattle on their machines.

Altruistic contributions like these are given back to the

community of users in the form of free VM credits.

Users who want to increase their VM credit beyond ten

VMs can install (or have others install) Seattle using a

Seattle installer linked with their clearinghouse account.

Each additional install gives the user access to ten more

VMs. Since Seattle runs on most desktops, laptops, tablets,

and phones, our experience is that it is easy to find devices

to install Seattle on. Compare to existing testbeds such as

Emulab and PlanetLab, Seattle’s tit-for-tat approach can get

users more resources in a much more convenient way.

Note again that not all installers need to be linked to

a clearinghouse. A user can create Seattle installers that

allow access to specific user keys that are unassociated

with a clearinghouse. The user will be able to access these

VMs directly, but will not obtain additional credits from a

clearinghouse.

B. Research Use Cases

1) Video Streaming and Overlay Routing: Seattle has

been used to construct a routing overlay across a number of

nodes on different continents, which in turn was configured

to forward a live video stream. The route was modified in

the progress, and the effects of black-hole routing, delay

mismatch, and buffering artifacts due to overload situations

on nodes were evaluated.

The software for this experiment has two parts. On the

stream source, Repy code runs to encapsulate the output of

a web cam into the overlay transport protocol. On the stream

sink where the stream is displayed and evaluated, traffic is

decapsulated. For convenience, we had the source and sink

on a campus LAN, while the VMs were running in different

countries and even on different continents.

The routing overlay between source and sink is deployed

to Seattle VMs that fit the desired properties, e.g., are located

in remote places. The overlay router code consists of only

15 lines of code, as it is only responsible for receiving an

encapsulated packet, modifying its header, and sending it

off again. Eventually, through this project, improvements to

Seattle’s networking code were identified and fed back into

the main Seattle release [10], [11].

2) Content Distribution Network (CDN) Measurements:

CDNs are large-scale networks that provide content to

customers everywhere with high performance through repli-

cation of content at a large number of distributed sites. Thus,

measurements from a single vantage point such as a Point of

Presence (PoP) or at a campus network gateway do not suc-

cessfully capture the global-scale effects of CDN manage-

ment. Seattle has been used as the platform for a distributed

measurement campaign that monitored the video hosting

platform YouTube over the course of four weeks from forty

vantage points, and has performed various application-layer

network measurements to gauge YouTube’s load balancing

strategies and performance improvements [12].
The metrics gathered during this measurement campaign

were the IP addresses www.youtube.com resolves to over

time and location of the node, the round-trip time to these

addresses and all of our VMs as measured by the TCP

three-way handshake procedure, the packet loss experienced

on TCP connection initiation, and the (approximate) packet

sizes and inter-arrival times when downloading HTTP con-

tent to estimate the bottleneck bandwidth. Using a com-

bination of GeoIP and the nodes’ Fully-Qualified Domain

Names (FQDNs), we then grouped results by VM timezones

to identify location-dependent performance variations. The

results indicate that the number of frontend IP addresses

www.youtube.com resolves to changes over time following

a diurnal pattern, a probable cycle of human activity.
3) ET Phone-Home: Many times an end user will have

connectivity problems with a network device and have a hard

time troubleshooting it. A network administrator can only

help so much because they can only see one perspective,

from the network to the device. In this use case, by running

a Seattle instance on a phone or other device, a user can

allow the network administrator access to test connectivity

from their machine. Thus the Seattle instance becomes an

Extra Technician (ET) which collects statistics and can

transmit them to the administrator, possibly over a different

transmission medium such as 3G.
In our prior work [13], we described the ET system

designed to provide ISPs and others with an environment to

troubleshoot home networking in a remote, safe and flexible

manner. The system was implemented on Nokia N800 and

N810 devices running the Maemo operating system [14]. ET

can be sent to smartphones in reply to text messages sent

by customers or after the ISP is hired. Alternatively, users

can download the script using the smartphone connection to

the Internet.
4) Open3GMap: Open3GMap [15] is another Seattle re-

search project running on users’ smart devices. This project

is motivated by the research challenges in participatory

sensing. Smartphones are devices with wireless network

connectivity that can constantly provide data communication

on the move. They are also embedded with a rich set

of sensors that are capable of, for instance, revealing the

availability and signal quality of nearby wireless networks,

GPS location, etc. However, privacy has been the primary

issue in sensing and data sharing for traditional applications

in participatory sensing. To address these challenges, we

implemented Open3GMap as a Seattle project that opens



Figure 2: 3G reception quality at different GPS locations.

up secure sensor access to both local and remote processes

via a generic sensing software framework1.

As this is a secure, open-source project, Android is

an ideal platform. User-configurable privacy is achieved

through Privacy Configuration (a set of privacy filters),

where fine-grained security settings allows one of the fol-

lowings: 1) full exposure of sensor data; 2) reducing the

precision of sensor values, e.g., rounding GPS coordinates;

3) salt and hash sensor values for anonymizing gathered

data; or 4) completely deny access to individual (or all)

sensors. For Open3GMap, we collect data from the 3G radio

and GPS sensor on an Android device, e.g., using Repy

code over an XML-RPC interface to communicate with the

sensors. The XML-RPC interface confirms to the Seattle

sensor specification [16]. Figure 2 shows the different types

of 3G network devices displayed according to their GPS

locations, where data points are shown to represent the avail-

able cellular access technology at different geolocations.

IV. CLASSROOM EXPERIENCES WITH SEATTLE

From our past experience, Seattle is not only very easy

to adopt in research projects, but also surprisingly easy for

students to use. Seattle was first publicly promoted in 2009

as an educational testbed for networking classes [17]. It

helped fill a void in the networking curriculum by allowing

students to get practical experience with real-world end user

networks. Our existing educational materials have been used

in about 40 classes at a dozen universities, ranging from

tier-1 research universities to 4-year liberal arts colleges. In

this section, we first give an overview of Seattle’s use in

classrooms, then describe several educational use cases we

have experienced in the past.

A. Overview: Educational Use of Seattle

Seattle has been used in approximately 40 classes, about

25 of which are networking, about 8 security classes, one OS

class, and the remainder being distributed systems or cloud

computing classes. These materials have been used in classes

at all levels, with about an equal split between graduate and

undergraduate classes. In our experience with Seattle, the

feedback from students has been very positive, because they

1https://github.com/fmetzger/android-sensorium/

think it is easy to learn and is fast to get their code up

and running. The most popular assignment for networking

classes [18] covers non-transitive connectivity and NATs,

requires no programming, and takes the students only about

90 minutes to complete.

There have been about a half dozen educational work-

shops / tutorials for Seattle, with another two dozen or so

presentations, posters, and talks at educational venues [19].

The first three workshops were run by the creators of Seattle,

and the latter ones were run by outside educators. These

workshops serve to promote the platform and demonstrate

how useful the educational materials for Seattle are in the

classroom.

Over the years, there have been extensive educational

modules for Seattle to facilitate reuse in the classroom.

These modules cover topics such as routing, sliding window

protocols, web servers, peer-to-peer networks, and high-level

abstractions like MapReduce (details see next section).

Educators have also given positive feedback about Seattle

on other forums. As of February 16th, 2013, Seattle is

the top ranked ACM SIGCOMM educational resource [20].

Materials using Seattle are being integrated into assignments

for the most popular networking textbook [21].

B. Educational Modules

Within the past few years, a sequences of modules were

developed to increase the breadth and depth of topics in

systems that are accessible to students. These materials will

in many cases be adapted to work across multiple classes. In

particular, Repy makes Seattle applicable to a broad range

of systems courses and provides several additional benefits,

including portability, simplicity, diversity, etc.

1) Implementing Access Control (Sec / OS): In this

module, we instruct students to implement access control

techniques to prevent an attacker from performing a specific

action. For example, a student is told that an attacker must

not be able to write a file to the system where the first two

characters in the file are ’MZ’ [22]. Students must provide

a correct reference monitor that blocks access only in this

specific circumstance and allows all other writes through.

2) Escaping Access Control (Sec / OS): This module

leverages the previous module by having students try to

bypass each others’ reference monitors [23]. The students

try to write programs that either write ’MZ’ as the first

two characters or a program that does not write this but

is blocked from writing.

Informal Feedback: Our experience with the above series

of use modules has been very positive. The students seem

to throughly enjoy being able to attack each others’ code.

Further, when they see how other students are able to bypass

their reference monitor, it reinforces the threats posed by

race conditions and incorrectly ordered access checks. It also

helps students to get used to reviewing code for security

flaws. These assignments have proven popular enough that

we have created multiple versions of these assignments.



3) Threat Modeling Wireless Routers (Sec / Net): In

this module, students are asked to examine how a NAT

works and decide how to protect against an attacker that

can initiate TCP and UDP connections from behind it (a

common feature for browsers, shared WiFi hotspots, etc.).

Each student is asked to write code that filters network

access in a way that allows users normal access, but prevents

an attacker from being malicious on the network [24].
4) Non-Transitive Connectivity and NATs (Net / Dist

Sys): This module has students learn about non-transitive

connectivity and NATs through practical experimentation on

Seattle. This assignment requires no programming. Students

perform a series of steps to find non-transitive connectivity.

(Where a routing problem on the Internet prevents two nodes

from directly communicating when they can talk through

intermediaries.) Once they discover this, the student will

cause the nodes to communicate through intermediaries for

their network traffic. Finally, students get experience with

what traffic looks with NAT. This gives students experience

with connections similar to what they see at home or when

connecting through many wireless networks.
Feedback: This assignment has been used and evaluated

using pre and post surveys [25]. The results show two

key features. First, students that use these assignments

demonstrate improvement when reasoning about NATs, non-

transitive connectivity, and similar topics. Second, students

also enjoy doing this assignment. While these results demon-

strate success, a more thorough evaluation leveraging eval-

uation experts can be conducted to further understand the

positive impact of such an educational module.
5) Link State Routing (Net): Students using this module

build a Dijkstra’s shortest path overlay between different

Seattle nodes. In the basic assignment, software provided

to the students will select nodes that should be considered

down. The student must generate the routing overlay (and

has facilities to check this offline). Following this, the

student will deploy their overlay on real Seattle nodes. The

final step of the assignment has students measure latencies

for Seattle nodes and feed this into the routing algorithm.
A big feature that works well for students and instructors

is that the assignment naturally decomposes into six steps.

Some instructors choose to give the code for some steps

to the students to reduce the workload on the students.

For example, they can give the code which does packet

forwarding, and simply ask students to perform Dijkstra’s

algorithm to decide where packets should be forwarded to.
6) Stop-and-Wait (Net): This module has students imple-

ment a simple loss-less data transmission protocol over UDP.

Students implement a basic acknowledgment system for this

assignment. They can then either test their code on the real

Internet (using Seattle) or locally with a relay that drops

traffic in a manner they specify.
7) Sliding Window (Net): While the stop-and-wait pro-

tocol will prevent loss, it is extremely slow and inefficient.

The sliding window assignment has students extend their

stop-and-wait solution to handle a configurable number of

lost messages. As before, students can experiment with loss

rates they configure or use real Seattle nodes on the Internet.

8) Web Server (Net): In this module, students create a

minimal web server to serve text and HTML files. The

student’s webserver has a single dynamic component for

listing files in a directory, it will need to read and send file

contents to clients as well as accept incoming data. From

this assignment, students learn about how a webserver can

serve both static and dynamic content concurrently.

9) Chat Server (Net): Students using this module build

a web-based chat service called Seattlechat. Seattlechat has

three main components, a central Seattlechat server whose

focus is to relay messages, a collection of Seattlechat transla-

tors that change messages into different formats for display,

and a Seattlechat client which uses a standard web browser

for communicating with a user. Students get experience

with multi-tier web applications and learn how to compose

components to build a working web service.

10) Distributed Hash Table (Net / Dist Sys): For this

assignment the students first implement a DHT-like message

routing system based on Chord, and test their implemen-

tations on local Seattle resources. The students then run

their code on globally distributed Seattle resources. Chord

works well over LAN, but has performance and correctness

problems in a global scale deployment with non-transitive

connectivity. After explaining the reasons behind Chord’s

poor performance, we can have the class discuss solutions to

these problems. Students can then implement these solutions

to achieve better performance and reliability.

This assignment reinforces several important ideas. First,

the students will reuse their implementation, which em-

phasizes good software engineering practices. Second, the

assignment demonstrates that test and deployment environ-

ments may differ significantly. Third, students will hone

their debugging skills as they attempt to understand why

their “correct code” does not work in a global deployment.

Fourth, by creating their implementation from scratch, and

motivated by a real problem, students can arrive at unique

solutions. Lastly, instructors can easily evaluate student

implementations using a small set of metrics.

V. DISCUSSIONS AND FUTURE WORK

A. Limitations

For all of its strengths, Seattle is not without weaknesses

as well. Its greater degree of network diversity and realism

comes at the cost of programmability. There are a few places

where we think Seattle could improve on its functionality.

Per design, its performance is restricted. There is a way for

resource donors to increase the restrictions during install,

but the standard values are set quite low (e.g. an average

10 KBps of network traffic). We acknowledge that port

restrictions make sense for safety purposes, but this leaves us

with no way of transparently serving Domain Name System

(DNS), HTTP, and other services on well-known ports

(which would require special privileges). Sometimes, ICMP

ping and traceroute measurements would be of interest, but

are not available due to Repy’s restrictions. If a node reboots,



the user has to restart the experiment either manually or by

scripting. At the moment, Seattle’s scriptable deployment

service does not run on Repy, which means the user has to

provision a machine outside the testbed to do that. We are in

the process of rectifying these situations so that the Seattle

testbed will become more flexible.

B. Future Work of Seattle

1) Virtual Machine:

i. Repy V2. Since the initial deployment of Repy V1,

there has been on-going work to add better support for

several things. First, users will be allowed to add security

policies to all code that executes on their sandbox [8]. For

example, the end user may want to restrict the code in the

Seattle node using a policy that allows the node to only

communicate with other Seattle nodes [26].

Another feature addition was to support extensibility of

the sandbox. Repy V2 can be extended with additional

functionality so that it can utilize other devices, if the end

user allows it. For example, a researcher added support for

accessing tun / tap interfaces from Repy V2 to support

a project called ToMaTo [27]. These hooks are available

on any Seattle nodes that have enabled it. In the future,

providing safe access to GPS can be made possible from

users who opt-in to this.

ii. Lind. Ongoing work at the University of Victoria aims

at extending Repy V2 to support programming languages

other than Python. The researcher will be able to compile

their programs using the tool chain from Google Native

Client (NaCl) [28] to validate the safety of code. The

resulting code will execute computationally in the NaCl

sandbox, but call into Repy V2 to perform system calls.

This extension will give researchers the ability to execute

anything that can be compiled for the x86 architecture and

possibly other architectures such as ARM. We feel this

will be useful both for reusing legacy code and for writing

performance critical experiments.

2) Educational Modules: In addition to the educational

modules in Section IV-B, there are also several others under

development. We list some of them as follows.

i. Understanding Web Modification (adaptable to Net):

There are many countries and ISPs that filter or alter Internet

traffic [29], [30]. Students will use Seattle nodes in countries

all around the world to examine how a set of popular sites

look from different locations, and look to whether filtering

occurs and also find the type of filtering.

ii. Evading Web Censorship (adaptable to Net / Dist Sys):

As a follow-on to the previous module, students will build

an overlay to evade web modification. They will deploy the

web proxy, but will relay the requests through an overlay

network on Seattle. Students will use unencrypted overlay,

end-to-end encryption and Onion routing across the overlay.

iii. Man-in-the-Middle Attacks (adaptable to Net / Dist

Sys): This module has clients act as a man-in-the-middle

to change network content before it reaches the client. The

student writes a Seattle program that sits in-between their

web browser and the Internet and changes traffic.

iv. XSS (Cross-site scripting) Attacks: We will create a

module where students learn how to inject attack code into a

Seattle web application that is provided to them. Following

this, they will explore different techniques for mitigating

XSS.

v. Dynamic Code Injection: Students will be given a web

application that dynamically interprets requests and has an

injection vulnerability. Then they will design a defense to

this attack. After this, they will try to attack each other’s

“patched” version of the web server to find additional

vulnerabilities.

VI. RELATED WORK

Like any large scale systems work, the Seattle testbed

makes heavy use of other work and ideas from many fields.

Our goal is to combine aspects of the existing systems’ ideas

in order to create a scalable general-purpose testbed that is

easy to use, diverse, and open for anyone to join.

A. Peer-to-Peer Networks

Peer-to-peer (P2P) networks are similar to the Seattle

testbed in that administrators do not need to fully provision

their servers. One example application is given in [31] where

a P2P application uses a large dataset gathered from Bit-

Torrent users for crowdsourcing event monitoring. However,

in P2P systems, the coordinated execution of code is only

considered in some special cases like P2P-based network

management [32]. In addition, resource isolation, safety and

privacy are typically not a major concern. The Seattle testbed

focuses comprehensively on these issues and in particular on

the execution of code on behalf of another user.

B. Cloud Computing

Cloud computing is similar to Seattle in that resources

which are not owned by the user provide the user with

improved availability and performance. The Seattle testbed

shares many of the scalability benefits as cloud computing,

albeit lacking pairwise bandwidth. However, cloud comput-

ing infrastructures typically consist of large data centers and

require developers to pay for the resources. In contrast, the

Seattle testbed leverages donated resource sharing.

C. Volunteer Computing

Volunteer computing efforts like BOINC [33] and

SETI@Home [34] also leverage unused resources on end-

user computers. However, the primary leveraged resource

is the CPU. Access to volunteer computing resources is

tightly controlled because developers are given low-level

access to the machine so security is not provided. Also,

a volunteer computing platform will usually only execute

when the system is idle so resource isolation is not a major

concern.



D. Measurement Infrastructure

There have been a variety of efforts to gather measure-

ments from end user machines. NETI@home [35] monitors

the traffic a user sends throughout the course of their normal

actions. This is useful, but does not allow researchers to mea-

sure paths between users (unless they intersect) or provide

a mechanism for in-situ experimentation [32]. Fathom [36]

is a Firefox extension that implements a number of mea-

surement primitives that enable websites or other parties

to program network measurements using JavaScript. Other

existing techniques for measuring network performance,

such as SAMKnows or BISMark [37], cannot adapt their

measurements procedure and software in the course of a

measurement study. Seattle instead allows for very general

programmability and rapid code updates on end nodes.

VII. CONCLUSIONS

In this paper we present our research and educational

experiences with Seattle testbed over the past four years.

Seattle serves a role similar to existing testbeds such as

PlanetLab, but provides diverse network connectivity, real

world use patterns and high scalability. It is an excellent

platform providing in-depth understanding of real world

problems for researchers, and hands-on experiences for

students. Although it has limitations in its programmability,

future work will expand the usability of Seattle by adding

support for efficient computation. Seattle has already proven

itself an excellent platform for experimental research and

educational use across a diverse set of classes.

REFERENCES

[1] “PlanetLab,” http://www.planet-lab.org/.
[2] “Emulab,” https://www.emulab.net/.
[3] “GENI,” http://www.geni.net/.
[4] “Seattle,” https://seattle.poly.edu/.
[5] A. Rafetseder, F. Metzger, and K. Tutschku, “Three thrilling

years of using the seattle Internet testbed,” under submission,
2013.

[6] “Seattle Clearinghouse,” https://seattleclearinghouse.poly.
edu/.

[7] “Repy Tutorial,” https://seattle.cs.washington.edu/wiki/
RepyTutorial.

[8] J. Cappos, A. Dadgar, J. Rasley, J. Samuel, I. Beschastnikh,
C. Barsan, A. Krishnamurthy, and T. Anderson, “Retaining
sandbox containment despite bugs in privileged memory-
safe code,” in Proceedings of the 17th ACM conference on
Computer and communications security. ACM, 2010.

[9] “Seattle Standard Library (SeattleLib),” https://seattle.cs.
washington.edu/wiki/SeattleLib.

[10] J. Eisl, A. Rafetseder, and K. Tutschku, “Service architectures
for the future converged internet: Specific challenges and
possible solutions for mobile broad-band traffic management,”
in Future Internet Services and Service Architectures, 2011.

[11] K. Tutschku, A. Rafetseder, W. Wiedermann, and J. Eisl, “To-
wards sustained multi media experience in the future mobile
internet,” in 14th International Conference on Intelligence in
Next Generation Networks (ICIN), October 2010.

[12] A. Rafetseder, F. Metzger, D. Stezenbach, and K. Tutschku,
“Exploring youtube’s content distribution network through
distributed application-layer measurements: A first view,” in
1st Workshop on Modeling, Analysis, and Control of Complex
Networks, 2011.

[13] L. Collares, C. Matthews, J. Cappos, Y. Coady, and
R. McGeer, “Et (smart) phone home!” in Proceedings of
NEAT’11 workshop. ACM, 2011, pp. 283–288.

[14] “Using Seattle on the Nokia N800 and N810,” https://seattle.
cs.washington.edu/wiki/SeattleOnNokia.

[15] “Open3GMap,” http://homepage.univie.ac.at/albert.rafetseder/
o3gm/.

[16] “Using Sensors in Seattle,” https://seattle.cs.washington.edu/
wiki/UsingSensors.

[17] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Ander-
son, “Seattle: a platform for educational cloud computing,”
in ACM SIGCSE Bulletin. ACM, 2009, pp. 111–115.

[18] “Take Home Assignment — Seattle,” https://seattle.cs.
washington.edu/wiki/EducationalAssignments/TakeHome.

[19] “Seattle Events,” https://seattle.poly.edu/wiki/SeattleTalks.
[20] “ACM SIGCOMM Educational Resources,”

http://edusigcomm.info.ucl.ac.be/.
[21] J. Kurose and K. Ross, Computer Networks: A Top Down

Approach Featuring the Internet. Addison Wesley, 2006.
[22] “Building a reference monitor that implements

access control,” https://seattle.cs.washington.edu/wiki/
EducationalAssignments/SecurityLayerPartOne.

[23] “Access control testing and penetration,” https:
//seattle.cs.washington.edu/wiki/EducationalAssignments/
SecurityLayerPartTwo.

[24] “C. Heffner. How to hack millions of routers,” http://www.
youtube.com/watch?v=Zazk0plSoQg.

[25] S. Wallace, M. Muhammad, J. Mache, and J. Cappos, “Hands-
on internet with seattle and computers from across the globe,”
Journal of Computing Sciences in Colleges, 2011.

[26] “C. Barsan and J. Cappos. ContainmentInSeattle,” https://
seattle.cs.washington.edu/wiki/ContainmentInSeattle.

[27] D. Schwerdel, D. Hock, D. Günther, B. Reuther, P. Tran-
Gia, and P. Müller, “Tomato-a network experimentation tool,”
2011.

[28] “Google native client,” http://code.google.com/p/nativeclient/.
[29] R. Faris and N. Villeneuve, “Measuring global internet fil-

tering,” Access denied: The practice and policy of global
Internet filtering, 2008.

[30] C. Zhang, C. Huang, K. Ross, D. Maltz, and J. Li, “Inflight
modifications of content: who are the culprits?” in Workshop
of Large-Scale Exploits and Emerging Threats, 2011.

[31] D. Choffnes, F. Bustamante, and Z. Ge, “Crowdsourcing
service-level network event monitoring,” in ACM SIGCOMM
Computer Communication Review. ACM, 2010.
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