
Rethinking Trust in Forge-Based Git Security

Aditya Sirish A Yelgundhalli∗, Patrick Zielinski∗, Reza Curtmola†, and Justin Cappos∗
∗New York University

{aditya.sirish, patrick.z, jcappos}@nyu.edu
†New Jersey Institute of Technology

reza.curtmola@njit.edu

Abstract—Git is the most popular version control system
today, with Git forges such as GitHub, GitLab, and Bitbucket
used to add functionality. Significantly, these forges are used to
enforce security controls. However, due to the lack of an open
protocol for ensuring a repository’s integrity, forges cannot prove
themselves to be trustworthy, and have to carry the responsibility
of being non-verifiable trusted third parties in modern software
supply chains.

In this paper, we present gittuf, a system that decentralizes
Git security and enables every user to contribute to collectively
enforcing the repository’s security. First, gittuf enables distribut-
ing of policy declaration and management responsibilities among
more parties such that no single user is trusted entirely or
unilaterally. Second, gittuf decentralizes the tracking of repos-
itory activity, ensuring that a single entity cannot manipulate
repository events. Third, gittuf decentralizes policy enforcement
by enabling all developers to independently verify the policy,
eliminating the single point of trust placed in the forge as
the only arbiter for whether a change in the repository is
authorized. Thus, gittuf can provide strong security guarantees in
the event of a compromise of the centralized forge, the underlying
infrastructure, or a subset of privileged developers trusted to set
policy. gittuf also implements policy features that can protect
against unauthorized changes to branches and tags (i.e., pushes)
as well as files/folders (i.e., commits). Our analysis of gittuf shows
that its properties and policy features provide protections against
previously seen version control system attacks. In addition, our
evaluation of gittuf shows it is viable even for large repositories
with a high volume of activity such as those of Git and Kubernetes
(less than 4% storage overhead and under 0.59s of time to verify
each push).

Currently, gittuf is an OpenSSF sandbox project hosted by the
Linux Foundation. gittuf is being used in projects hosted by the
OpenSSF and the CNCF, and an enterprise pilot at Bloomberg
is underway.

I. INTRODUCTION

In recent years, there has been a significant surge in
software supply chain attacks, with some being carried out
by suspected nation-state actors [1], [2]. This trend continues
to grow year over year as highlighted in numerous surveys [3]–
[5]. While efforts have been made to bolster software supply
chain security with increased transparency and verifiability,
these solutions have primarily concentrated on other aspects
like software builds and distribution [6]–[10], neglecting the

crucial but often attacked area of Version Control Systems
(VCS) [11]–[17], where source code resides. Of these systems,
Git [18] stands out as the most widely used VCS, as indicated
by 93.87% of surveyed developers [19].

While Git is a distributed VCS, developers use a synchro-
nization point to submit and receive changes, with centralized
forges, or social coding platforms, filling this role and provid-
ing additional features such as issue trackers, wikis, continuous
integration (CI), etc. Today, forges such as GitHub [20],
GitLab [21], or Bitbucket [22] are used to enforce security
controls that protect the integrity of a repository’s contents.
As these security controls are not part of the Git protocol,
users are reliant on their forge’s opinionated implementations
of these features.

We identify three key features forges provide that are
imperative for ensuring the integrity of a repository. First,
forges have mechanisms for policy declaration that can enu-
merate a repository’s trusted users and rules about which
user can write to which portion of a repository. Forge policy
declaration capabilities do not apply the principles of least
privilege and separation of duties. Instead, these capabilities
are concentrated in a small set of privileged users who can each
act unilaterally, exposing the repository to the compromise of
a single privileged user [11], [16].

Second, the forge is responsible for activity tracking by
maintaining an audit log of all actions. Such a log is used
to monitor and inspect actions performed in a repository.
Third, when a user makes a change, the forge performs policy
enforcement to ensure the change is valid. Unfortunately, users
cannot verify the integrity of the repository’s audit log them-
selves, nor can they validate the forge’s policy enforcement
and integrity checks, meaning that a compromised forge can
subvert the enforcement of repository policies [12]–[16]. At
the same time, the forge cannot prove itself trustworthy, and
has to carry the responsibility of being a non-verifiable trusted
third party. This has been highlighted in software supply chain
security threat models in academia [23], the industry [24] by
the Supply-chain Levels for Software Artifacts (SLSA) [8]
project, and in NIST recommendations [25], [26].

In this paper, we introduce gittuf, a forge-agnostic Git
security system. Like forges, gittuf implements policy se-
mantics that can protect the contents and metadata of a Git
repository. Specifically, gittuf can be used to ensure pushes
to a repository’s branches and tags as well as modifications
to its files/folders (especially important in monorepos1) are

1In a monorepo setup, a single repository is used to house multiple projects,
with each project stored in a different folder. This is used by several enterprises
(e.g., Google [27], Uber [28], [29], and X [30], formerly known as Twitter).

Network and Distributed System Security (NDSS) Symposium 2025
24–28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.241008
www.ndss-symposium.org

performed by authorized users. However, unlike forges, gittuf
empowers every developer to enforce the repository’s secu-
rity. gittuf achieves this by decentralizing the aforementioned
three aspects of repository security: policy declaration, activity
tracking, and policy enforcement.

First, gittuf distributes the responsibility of declaring policy
among multiple privileged users and ensures consensus. In
other words, gittuf policy can be configured to ensure that
no user can unilaterally make policy changes. Further, gittuf
allows for granular authentication: a developer who is also
a repository owner can authenticate separately for each role,
minimizing the chances of exposing the higher privileged
credentials. Similarly, gittuf makes policy declaration more
granular: a privileged user can be allowed to extend (and
not override) existing policy, and only for specified parts
of the repository (branches, tags, files/folders). Implemented
using namespaced delegations, this feature enables distributing
policy declaration responsibilities amongst more users without
overprivileging them. In this manner, gittuf allows more users
to take an active role in policy declaration, enabling shared
responsibility. Simultaneously, gittuf limits the impact of com-
promising any one privileged user trusted to declare repository
policy, mitigating the causes of some prior incidents [11], [16].

Second, gittuf decentralizes the tracking of repository ac-
tivity. To do this, gittuf implements a “reference state log”
(RSL) that tracks pushes to Git branches, tags, changes to
gittuf policy, and code review approvals. The RSL is an au-
thenticated, ordered, append-only log maintained collectively
by all users of the repository. Every time a user pushes to
the synchronization point, they add a cryptographically signed
entry to this log. As it is designed to be append-only, gittuf
ensures that any attempts to drop, reorder, or otherwise tamper
with the entries in the log are detected by other users. Thus, no
single entity is entirely trusted to maintain the log of repository
activity. The RSL was originally proposed to address the
related class of “metadata manipulation attacks” [31]. gittuf
extends its design with improved developer authentication
management as well as support for common Git workflows
such as force pushes.

Third, gittuf decentralizes the enforcement of the reposi-
tory’s security policies by enabling every developer to indepen-
dently verify and enforce its security policies. Rather than have
the forge be the sole arbiter of whether a repository change
is authorized, gittuf makes policy enforcement a collective
undertaking and ensures that the compromise of any one point
is not sufficient to subvert the repository’s security [12]–[16].
Note that gittuf enables all collaborating parties to partake in
enforcing a repository’s security controls, including the forge
itself as one of the parties. With gittuf, the forge can prove
itself trustworthy by adding transparency and verifiability to
its existing policy mechanisms.

gittuf has been designed and developed in collaboration
with the industry as an open source security project. As such,
all significant feature additions to gittuf were authored and
reviewed by participants from both academia and industry.
gittuf has a growing open source community spanning multiple
academic institutions, companies, and independent individual
contributors. Seeing potential in gittuf, the Open Source Secu-
rity Foundation (OpenSSF) [32] Technical Advisory Council
(composed of representatives of GitHub, Google, IBM, Intel,

Snyk, and Kusari) accepted the project into the OpenSSF
sandbox, part of the Linux Foundation. gittuf is being used
in projects hosted by the OpenSSF and the Cloud Native
Computing Foundation (CNCF) [33]. Finally, gittuf is being
piloted for enterprise use at Bloomberg [34].

To summarize our contributions, we present in this paper:

• our analysis of the current forge security model used
by Git repositories

• the shortcomings in forge features for policy manage-
ment, activity tracking, and policy enforcement

• the architecture of gittuf, a novel system that decen-
tralizes policy declaration, activity tracking, and policy
enforcement

• our analysis of gittuf’s properties and its ability to
mitigate prior attacks

• our evaluation of gittuf’s performance in terms of
storage and runtime overhead introduced

In the rest of this paper, we present a more detailed
description of Git as well as the centralized security model
operated by forges (Section II). We then describe gittuf’s
threat model and system goals (Section III), and gittuf’s design
and implementation (Section IV). This is followed by our
security analysis of gittuf including its ability to handle prior
incidents(Section V), its performance evaluation and current
deployments (Section VI), and a discussion of various gittuf
properties and present limitations (Section VII). We close with
an analysis of related work (Section VIII) and our conclusions
(Section IX).

II. BACKGROUND

Before describing gittuf, we review Git internals, Git’s se-
curity features and collaboration model, and features provided
by forges, including their limitations. We also define general
terms used in the paper.

A developer is any user performing commits or other ac-
tions in a Git repository. A privileged set of repository owners
serve as the root of trust for gittuf. Client devices, repositories,
and other services like CI/CD systems can act as verifiers,
which means they perform verification over repository actions.
In the most common use case, a single repository will serve
as the synchronization point where developers discover each
others’ changes. All these parties, whether developers, reposi-
tory owners, or authorized bots, are identified by their signing
keys or identities when they make changes to the repository.
Finally, a forge is a centralized social coding platform that
often serves as a repository’s synchronization point.

A. Git

Git implements a content-addressable store [35], henceforth
known as the Git object store, for each repository. Every Git
object is addressed using its SHA-1 hash, which serves as the
object’s ID. The store records several types of Git objects that
collectively represent the software tracked in the repository.

An essential Git object is a commit which is a self-
contained representation of the whole repository at some

2

point in time, and can more generally be referred to as a
revision. Each commit contains a pointer to a Git tree object
that represents the root folder of the repository using one
or more entries. Each entry points to a file or another tree
object to represent subdirectories using their respective SHA-
1 identifiers.

Git supports named references that serve as pointers to Git
objects. Each reference is a file that contains the ID (i.e., SHA-
1 hash) of a Git object. The most common type of Git reference
is a branch, which represents an ongoing line of development.
A branch points to a commit that is at the tip of that line of
development. When a change is made to the branch, a new
commit is created and set as the branch’s tip. Another type
of Git reference is a tag, which simply points to a specific
commit object and is meant to serve as a static point in the
project’s history. Optionally, a tag reference may point to a
tag object, which in turn identifies the commit object using
its SHA-1 identifier. Thus, a tag object can also serve as an
identifier for a repository revision.

Note that while Git repositories typically use branch and
tag references, Git supports other custom references as well.
These references exist outside the typical branch and tag
namespaces, and are used by forges like GitHub [36], GitLab,
and Bitbucket (for pull or merge requests), Git Notes [37] (to
attach additional information to a Git commit), Gerrit [38] (to
submit changes for code review), Git-appraise [39] (to store
code review results), or Git-bug [40] (to track issues in the
repository). gittuf leverages this Git feature to store additional
metadata within the repository.

Finally, Git implements custom protocols to communicate
with remote repositories (e.g., the synchronization point). Git
supports modifying these workflows using a feature called
a remote helper [41]. gittuf makes use of this feature to
synchronize additional metadata.

B. Git Security Features and Collaboration Model

Git provides a basic defense layer using several security
features. First, each commit object protects the integrity of
the corresponding revision by including the ID of the tree
object for that revision, which acts as a Merkle hash tree
over the repository data in that revision. Second, each commit
object contains IDs of its parent commits. This creates a hash
dependency between commits and ensures that the history of
commits cannot be altered arbitrarily without being detected.
Third, Git provides users with the option to cryptographically
sign commit and tag objects, which allows an auditor to
unequivocally identify the user who committed code and
prevents users from repudiating their commits. It also ensures
the integrity of the signed object. Git supports signing with
GPG, SSH, and X.509 (which in turn has been leveraged
for identity based signing [7], [42]), but does not provide
mechanisms to distribute and manage which keys must be
trusted for signatures.

While Git is a decentralized VCS, a common model for
Git based development workflows is to use a centralized syn-
chronization point where all developers submit their changes
to and from which they receive updates. Some popular options
for synchronization points are Git forges like GitHub [20], Git-
Lab [21], and Bitbucket [22], that add a variety of collaboration

features for repositories such as an issue tracker, wiki, and CI
features. In addition to their public instances, these forges, and
other open source options [43]–[45], can also be self-hosted
by enterprises.

As Git does not provide semantics for enforcing access
control rules such as which parties can write to different
portions of the repository. As a result, the forge is frequently
tasked with applying security policies. We examine the security
features provided by forges and their limitations next.

C. Forge Security Features and Limitations

Forge access control policies allow repository owners to de-
clare trusted developers, where each developer is authenticated
using their forge credentials. Developers can be grouped into
teams, and each team or developer can be assigned a custom
set of permissions, enabling for the creation of a hierarchical
set of roles with different permissions. However, the policy
declaration capabilities offered by forges have shortcomings.
First, any developer trusted to make a change to a repository’s
security policies can do so at will, unilaterally. This means
that compromising a single privileged user can bypass the
forge’s protections while evading detection: disable a rule
for a brief period of time, make changes to the repository
that would violate the disabled rule, and then re-enable the
rule. Second, forge authentication systems are not granular:
a developer who may be the owner of a repository cannot
choose to authenticate with the forge without those privileges
for a session. Any exposure of these credentials will lead to
the attacker gaining all of the privileges of the user. Third,
policy declaration semantics are not sufficiently granular. If
a user is trusted to declare policy for a repository, they
are trusted for all parts (branches, tags, files/folders) of the
repository. Additionally, it is not possible to allow them to
extend rather than override existing policies. By allowing a
user to extend existing policy granularly for a part of the
repository, they cannot take actions such as deprivileging other
trusted users or removing rules for other parts of the repository.
The result is repositories end up with overprivileged users,
especially in large repositories such as monorepos, which can
be disastrous when we also consider that each user is trusted to
act unilaterally. These shortcomings which concentrate policy
declaration capabilities have been leveraged in incidents in the
past [11], [16].

Further, forges maintain an authenticated activity log that
can be used to audit changes in the repository. While this
is a valuable feature, the forge is a single point of trust
for this information. A malicious or compromised forge can
arbitrarily drop, reorder, or tamper with events in the log.
This is also especially of concern in enterprise contexts that
have to contend with insider threats among the administrators
of the forge software.

Finally, forges enforce the policy established by a repos-
itory’s owners and maintainers. When a developer attempts
to push to the forge, the forge authenticates the user and
verifies they are allowed to push to the namespace in question.
Alternatively, if a contribution workflow offered by the forge is
used (e.g., GitHub’s pull request functionality [36]), the forge
enforces policies on that workflow, such as requiring a mini-
mum number of code review approvals. In this model, the forge

3

is the sole entity that can verify and enforce the policy, and
vulnerabilities in the past [13], [46]–[48] have shown that these
can be bypassed. Users are unable to perform any verification
of their own. In part, this is because forges use non-standard
authentication protocols for user management [49], [50] which
cannot be independently verified, in contrast to cryptographic
signatures. Forges also lack policy transparency [51]: security
policies (such as the different teams and their permissions)
are managed outside of the repository, and only visible to
users with significant privileges. In fact, forges require the
same privileges to both unambiguously view and set repository
policy. As a result, any attempts at independent verification
depends on the forge to provide the correct set of policies
applicable to some change, with it being impossible to verify
the right set of policies were in fact provided. Thus, while
forges help ensure the integrity of a repository, developers
must entirely trust the forge software, the infrastructure
used to host it, and its administrators (whether those of
a public instance or enterprise employees for a self-hosted
instance) to behave correctly.

III. THREAT MODEL AND SECURITY GOALS

We consider the standard scenario where a forge is used
to manage a Git repository on a centralized synchronization
point. This forge can be a publicly hosted solution (e.g.,
the github.com service), or self-hosted on premises by an
enterprise. Either option exposes the forge instance to both
external attackers and insider threats. External attackers may
circumvent security measures and compromise the version
control system, manifesting themselves as advanced persistent
threats (APT) and making unnoticed changes to the system.
Similarly, insider threats may be posed by rogue employees
with escalated privileges who abuse their authority to make
unnoticed changes.

To protect the integrity of the repository’s contents, the
maintainers of the repository define security controls such as
which contributors can write to different parts of the repository.
gittuf is meant to protect against scenarios where any party, in-
dividual developers, bots that make changes, or the forge itself,
may be compromised and act in an arbitrarily malicious way
as seen in prior incidents [11]–[17]. This includes scenarios
such as:

• T1: Modifying configured repository security policies,
such as to weaken them

• T2: Tampering with the contents of the repository’s
activity log, such as by reordering, dropping, or oth-
erwise manipulating log entries

• T3: Subverting the enforcement of security policies,
such as by accepting invalid changes instead of re-
jecting them

Note that we consider out of scope a freeze attack [9],
where the forge serves stale data, as development workflows
involve a substantial amount of out-of-band communication
which prevents such attacks from going unnoticed. We simi-
larly consider weaknesses in cryptographic algorithms as out
of scope for this paper. Based on this threat model, we aim
to decentralize three key aspects of Git security, deriving the
following system goals for gittuf.

Decentralize policy declaration. gittuf must enable distribut-
ing the responsibility of setting a repository’s policy amongst
multiple trusted developers, with the ability to configure the
number of developers who must approve to achieve consensus.
A privileged developer must not be able to unilaterally make
policy changes, offering protections against a malicious insider
threat and scenarios where an attacker manages to compromise
a single user. Thus, gittuf must enable requiring threshold
approvals for policy changes, following the principle of sepa-
ration of duties.

Further, gittuf must allow for authenticating granularly, to
minimize the chances of exposing high privilege credentials
that must only be used for policy declaration. This applies
the principle of least privilege for the credentials used for
regular repository operations. Additionally, it must be possible
to enable a privileged party to extend the trust they have (or
a subset) to a new party by specifying granular delegations.
In other words, a privileged party must be allowed to declare
and extend the existing policy for some portion of a repository
without having to trust them to set policy for other portions
of the repository.

Decentralize activity tracking. The log of activity in a
repository is vital for auditing and verifying actions performed
by developers. Audit logs are often used to triage specific inci-
dents, which highlights the importance of the trustworthiness
of the log’s contents. gittuf must ensure the log is maintained
in a decentralized manner, so that a single trusted entity cannot
arbitrarily tamper with the contents of the sole copy of the log.

Decentralize policy enforcement. gittuf must enable any party
that can read the contents of a repository to independently
verify that policy was followed, without trusting any other
party to do so on their behalf. This means that when multiple
developers are trusted to contribute to the repository, they
can each independently verify policy, detect a violation, and
act appropriately to correct it. In such a distributed model
with multiple independent verifiers, a single honest verifier is
sufficient to detect a policy violation.

IV. DESIGN AND IMPLEMENTATION

A. gittuf Overview

gittuf allows developers to define policies that restrict who
can write to portions of the repository, such as branches,
tags, and files/folders. Significantly, gittuf allows a user to
be granted policy declaration privileges in a granular manner,
limiting what they are allowed to set policy for. gittuf also
enables requiring consensus among a set of privileged users
for policy changes, and allows for granular authentication to
avoid exposing high privilege credentials for tasks that do not
need the elevated privileges. As achieving consensus from all
privileged users can impose significant delays in development
workflows, gittuf allows for configuring the number of privi-
leged users who must approve to achieve consensus.

Further, gittuf decentralizes the tracking of repository
activity by implementing a Reference State Log (RSL), an
authenticated, append-only, synchronized log of repository
actions. gittuf uses the RSL to maintain a global state of the
repository in a distributed fashion as a custom Git reference

4

Fig. 1: A developer commits to the feature branch (step 1⃝). When the developer pushes the new commit to the forge, she
also creates and pushes a corresponding RSL entry (step 2⃝). Other developers fetch the change to the feature branch and
the RSL entry (step 3⃝). Each developer independently verifies the consistency of the RSL and that the change to the feature
branch is authorized (step 4⃝).

in the repository. Every gittuf client, including developers,
CI/CD bots, etc., adds a signed entry to this log for each push
operation to the remote repository; this entry not only records
the user’s changes in the RSL and their intent to make it
available to others, but it also is a validation that the user’s view
of the repository matches the view recorded by other users in
the RSL, preventing metadata manipulation attacks [31]. The
RSL also records other repository actions using authorization
attestations stored as additional metadata. These records can
be customized to meet the requirements of the specific action.

To decentralize policy enforcement and thus mitigate the
impact of a compromised centralized forge, gittuf enables all
entities that support gittuf (i.e., gittuf clients, gittuf-enabled
synchronization point, other services that can act as gittuf ver-
ifiers) to independently verify security policies. Every verifier
must have access to the policy [51] and authorization attes-
tations, and thus, as with the RSL, they are also maintained
in custom Git references in the repository. As with pushes to
regular branches, the RSL also tracks pushes to the policy and
authorization attestations Git references: whenever the policy
is updated or an authorization attestations is added, the act is
recorded with an entry in the RSL.

During verification, gittuf applies the policy for entries in
the RSL, with each entry representing a push action in the
repository. To independently authenticate the entity making a
change, gittuf uses cryptographic signatures. Entities writing
to the repository, whether a human developer or a bot, are
identified by their signing key (for GPG or SSH keys) or

identity (for Gitsign [7], [42]). gittuf includes features to
securely distribute, rotate, and revoke the trust of these signing
keys and identities.

Figure 1 shows an example of gittuf’s use by the developers
of a repository. A developer commits changes to the feature
branch and pushes it to the forge. In the process, the developer
creates an entry in the RSL to record the push action, which is
also sent to the forge. Other developers fetch the new change
as well as the new entry in the RSL. Each developer validates
the existing RSL has not been tampered with, and that the only
change is the addition of the new entry. Each developer also
verifies that the change to the feature branch is authorized.

In the rest of this section, we first describe gittuf’s policy
declaration features, followed by how gittuf decentralizes
activity tracking using the RSL and authorization attestations.
We close with gittuf’s verification and recovery workflows,
used by all developers in enforcing gittuf policy, and a brief
discussion of our implementation of gittuf.

B. Policy Declaration in gittuf

gittuf implements access control policies to protect the
integrity of the contents of a Git repository. To implement
the access control policy, gittuf adds a metadata layer that is
tracked using a custom Git reference in the repository. If a Git
branch, tag, or file/folder in the repository has a policy rule
associated with it, we refer to it as a protected namespace. The
metadata consists of a root of trust and one or more rule files.

5

Root of trust. A gittuf client must have some initial basis
for knowing why it can trust the gittuf policy metadata. To
address this, gittuf policy stores in a fixed location root of
trust metadata. The root of trust metadata is cryptographically
signed by a threshold of repository owners. The threshold
is a configurable, numeric value that indicates the minimum
number of signatures required for the metadata to be con-
sidered valid. The threshold for the root of trust metadata
and the repository owners’ keys are declared in the root
of trust metadata. When a new version of the root of trust
metadata is created, it must be signed by a threshold of the
root keys declared in the previous root of trust metadata. The
threshold feature can be used to ensure no repository owner
acts unilaterally. It is important to note that the initial set
of root signing keys must be established for the repository
either using an out-of-band mechanism or in a trust-on-first-
use (TOFU) manner when contacting a repository (likely over
HTTPS).

All trusted developers in gittuf policy directly or indirectly
gain their trust from the root of trust. This ensures that the
owners of a repository can ultimately revoke the trust of
any developers that become malicious (and submit malevolent
changes to the repository or gittuf policy) as long as a threshold
of root keys are not compromised as well.

Rule files. To declare protected namespaces and which devel-
opers are trusted to modify them, gittuf employs rule files. A
rule file is a cryptographically signed piece of metadata that
consists of a name, a list of trusted keys or signing identities
representing developers, and a list of rules. A gittuf rule is the
key semantic used to declare protected repository namespaces
(such as branches, tags, or files/folders) and the list of users
that are trusted to modify the namespace. As such, each rule
has a name, a set of patterns that identify the namespaces
protected by the rule, and the set of trusted keys or signing
identities authorized by the rule to sign changes for those
namespaces. As with the root of trust, the rule can specify
a numeric threshold that indicates the minimum number of
signatures from the rule’s trusted keys/identities required to
meet the rule. This enables declaring rules that require multiple
developers to authorize changes to protected namespaces. Like
the threshold for policy changes, this ensures that a compro-
mised developer cannot unilaterally make arbitrary changes to
protected repository namespaces.

To enable the distribution of policy declaration responsibil-
ities, gittuf implements semantics to allow some party to extend
the existing policy for a specific namespace only. To support
this, gittuf uses delegations, as in other security systems [6],
[9], [10]. Any rule can be converted into a delegation by
creating a rule file with the same name as the rule. This
allows a subset of trust to be extended to another party, with
this process continuing transitively, as desired. Importantly, the
threshold semantic also applies to a delegation, verified by
the signatures on the corresponding rule file. As before, the
threshold feature ensures that even delegated rule files can be
protected from a single malicious or compromised developer.

gittuf policy has a primary rule file, for which the signing
keys and threshold are declared by the repository owners in the
root of trust metadata. Stored in a fixed location, the primary
rule file is the starting point for determining the rules that apply

to a protected namespace. All delegated rule files are reached
directly or indirectly from the primary rule file (and therefore
from the root of trust metadata).

gittuf’s implementation of the threshold semantic for all
policy metadata provides protections against a subset of trusted
developers becoming malicious and making ill-intentioned
changes to the gittuf policy. With gittuf’s use of cryptographic
signatures, a developer can also choose to divide different
privileges they hold among separate signing keys, distributing
trust among different credentials. Additionally, gittuf’s support
for namespaced delegations allows for extending policy decla-
ration capabilities granularly. Thus, gittuf policy can be used
to safely distribute policy declaration responsibilities among
multiple parties.

To better understand gittuf’s policy metadata, consider
Listing 1 which contains root of trust metadata and three rule
files. The root of trust declares three keys for the subsequent
root of trust and three keys for the primary rule file, with
a threshold of two for both pieces of metadata. Two of the
four rules in the primary rule file have been converted into
delegations with corresponding rule files that add additional
trusted developers and grant them permissions to sign for
the protected namespaces. The protect-ios-app rule file,
signed by Alice, grants Dana and George permission to write to
the ios folder. While Alice is trusted to grant other developers
permission to write to the ios folder, she is not trusted to do
so for files in the android folder. She can only extend the
trust (or a subset) she has been granted, and cannot override
the rules she inherits or grant herself more trust.

Listing 1: Example of gittuf policy state with its root of trust
and three distinct rule files connected using delegations. The
root of trust declares the trusted signers for the next version
of the root of trust as well as the primary rule file. Signatures
are omitted.
rootOfTrust:
keys: {R1, R2, R3, P1, P2, P3}
signers:
rootOfTrust: (2, {R1, R2, R3})
primary: (2, {P1, P2, P3})

ruleFile: primary
keys: {Alice, Bob, Carol, Helen, Ilda}
rules:
protect-main-prod: {git:refs/heads/main,

git:refs/heads/prod}
-> (2, {Alice, Bob, Carol})

protect-ios-app: {file:ios/*}
-> (1, {Alice})

protect-android-app: {file:android/*}
-> (1, {Bob})

protect-core-libraries: {file:src/*}
-> (2, {Carol, Helen, Ilda})

ruleFile: protect-ios-app
keys: {Dana, George}
rules:
authorize-ios-team: {file:ios/*}
-> (1, {Dana, George})

ruleFile: protect-android-app
keys: {Eric, Frank}
rules:
authorize-android-team: {file:android/*}

-> (1, {Eric, Frank})

6

Fig. 2: An illustration of gittuf’s Reference State Log. Entries
may describe gittuf policy (1⃝), Git commits (2⃝), or gittuf
Attestations (3⃝). During verification of an RSL reference
entry, the contemporaneous policy and set of attestations are
used. Commits, RSL entries, and policy entries may contain
hashes of other items, indicated by the arrows.

C. Activity Tracking in gittuf

To record changes in a repository, gittuf leverages a Refer-
ence State Log (RSL) [31]. The RSL is an append-only, linear
hash chain that serves as a log of activity in the repository.
Thus, the RSL indicates the order in which repository actions
occur. It is maintained collectively by gittuf clients in a custom
Git reference in the repository. For any activity that modifies
the state of the repository, an entry is added to the RSL via a
new commit to the RSL’s Git reference. For some actions, the
entry points to metadata, known as an authorization attestation,
that captures additional context.

When a developer fetches updates from the synchronization
point (including new entries in the remote RSL), they use the
RSL to ensure that their perceived state of the repository is
consistent with that of the other users. Effectively, their gittuf
client ensures that the RSL only grows with the addition of
new entries, with no changes made to historic entries or their
order.

Figure 2 shows a repository in which the RSL (in green)
starts with the policy described in policy-1. A commit is
added to the main branch (commit-A). After this, the policy
is changed to policy-2, and two new commits are submitted
together (commit-B and commit-C) to the main branch.
The actions making these changes are all recorded in the RSL.

gittuf’s RSL design is inspired by the RSL introduced by
Torres-Arias et al. [31], but differs in some important aspects.
First, gittuf’s RSL does not natively support distributing trusted
keys. Instead, gittuf’s RSL leaves that responsibility to the
policy metadata introduced in Section IV-B. Second, gittuf’s
RSL supports the ability to revoke a prior entry. This allows
for marking an entry in the RSL as invalid without losing the
RSL’s append-only property. We discuss this in greater detail
further in this section.

Regular pushes. When a gittuf user performs a push to a
remote repository, the user creates an RSL reference entry
that binds the reference being pushed to a particular revision.
Specifically, the entry contains the reference name indicating
the updated branch or tag, and a commit or tag ID. The
RSL reference entry is cryptographically signed by the user

who created it, and is then appended to the RSL via a new
Git commit. While an RSL reference entry directly records
changes to branches and tags, changes to files/folders are
recorded indirectly. This is because in Git, the state of the
repository’s files/folders depends on the current revision’s Git
tree. For example, the latest RSL entry for the main branch
specifies the commit at the tip of the branch, and this commit’s
Git tree represents the state of the files/folders for the main
branch at that commit.

Force pushes and push revocations. As the RSL is append-
only, a reference entry cannot be amended or removed. How-
ever, it is sometimes necessary to add new information to an
existing entry or to indicate an entry must not be considered
valid any longer (e.g., a push to a branch is overwritten with a
force push, or a push violates gittuf policy). To support such
cases while also preserving the RSL’s append-only property,
gittuf extends the RSL’s design to add the RSL annotation
entry. An RSL annotation entry lists one or more prior RSL
reference entries it applies to, a message, and a boolean
parameter indicating whether the reference entries listed must
be revoked. Like the RSL reference entry, each RSL annotation
entry is also cryptographically signed.

Policy changes. In the distributed policy verification and
enforcement model, it is necessary to unambiguously identify
the policy applicable to a particular change in the Git repos-
itory. gittuf tracks all versions of policy as it evolves in the
repository’s RSL. Each version of the policy is known as a
policy state. A policy state, like the example in Listing 1,
contains the full set of gittuf policy metadata, such as the root
of trust metadata and all rule files applicable at that point.
When any of the policy metadata, such as rule files or the
root of trust, is changed, a new policy state with the result of
these changes is written to the repository and recorded in the
RSL. For example, the repository in Figure 2 has two policy
states. The RSL-1 entry records the original policy state and
the RSL-3 entry records an updated policy state.

Importantly, gittuf’s tracking of all policy versions allows
an auditor to verify changes in the repository at some historical
point in time by rewinding to a prior policy state that was
governing the repository. In addition, gittuf’s policy states
allows for determining the validity of a trusted key/identity or
rule. When a key is revoked and a new policy state is created,
the key is still trusted for signatures created before the key’s
revocation using the policy states applicable at the time. Thus,
revoking a key does not invalidate all signatures ever issued
by it [52].

Other repository activity. gittuf uses authorization attesta-
tions, stored as additional cryptographically signed metadata,
to record other types of repository activity. Like the policy
metadata, gittuf stores authorization attestations in a custom
Git reference that is tracked by the RSL. When an attestation
is added, this event is recorded as a new RSL entry. Such
RSL entries are used to record the authorization attestations
available at that point in time, and are used when verifying
subsequent RSL entries. We describe one type of authorization
attestation here, but note that other types can be defined to
support recording more repository actions.

In some repositories, a rule may require multiple develop-

7

ers to authorize a change, such as two-party code review for
merges into the default branch. To enforce such a policy, gittuf
uses an authorization attestation to record a developer’s ap-
proval of a forthcoming change, known as an approval attesta-
tion. In the example of Listing 1, the protect-main-prod
rule requires two developers to sign off on a change to the
main branch. To meet this requirement, when a change must
be made to the main branch, one of the trusted developers—
Alice, Bob, or Carol—must first sign an approval attestation
approving the change to the branch. Then, one of the two
who did not sign the approval attestation may update the
state of the main branch and record an RSL reference entry
for the change. gittuf does not define the specific method by
which a developer is prompted to approve a change; this is
typically determined by the project’s development workflow,
and may be via a GitHub Pull Requests [36] or a GitLab Merge
Requests [53]. Additionally, an approval attestation can include
more than one signature, meaning the mechanism can be used
to meet gittuf rules that require thresholds greater than two.

An approval attestation contains three pieces of information
to identify the change being approved. First, it contains the
name of the Git reference that will be updated. In the example
above, the change is to the main branch, and this will be
recorded in the accompanying approval attestation. Second, the
approval attestation contains the from Git revision, which is the
state of the Git reference prior to the change. This ensures that
an old approval cannot be used to perform a rewind attack
where the reference is reverted to an old state from a more
recent state. Finally, the approval attestation contains the hash
of the target Git tree, identifying the state of the Git reference
after the change is made2. This target Git tree must match the
Git tree of the revision recorded in the RSL reference entry
once the change is approved and made.

In Figure 2, a developer approving updating main from
commit-A to commit-C creates an approval attestation
in attestation-1, which records main as the reference
name, commit-A as the from Git revision, and the expected
Git tree, matching the tree object of commit-C, as the target
tree. The actual change to the main branch is recorded in the
RSL using the RSL-5 entry, which comes after RSL-4 entry
corresponding to attestation-1.

D. Policy Enforcement in gittuf

In this section, we describe how gittuf enforces policies.
First, we present how gittuf can be used to independently verify
repository activity against policy. Then, we describe how gittuf
recovers from policy violations detected during the verification
process.

1) Verifying Policy Compliance: Every gittuf user performs
the same verification steps on each protected namespace they
are tracking whenever communicating with the synchroniza-
tion point. This means that each party tracking a protected
namespace independently verifies that all RSL entries and
policy changes are valid for all times in the repository lifecycle.

2We use the ID of the tree object because it can be computed ahead of time
using git merge-tree [54], as opposed to using the ID of the commit/tag
object which, although deterministic, cannot be determined ahead of time (as
it includes information such as creation time).

Fig. 3: An overview of gittuf verification. In box 1, gittuf
uses policy-1 to verify RSL-2 and commit-A. Next, the
change in policy to policy-2 is verified using the existing
policy policy-1 in box 2. Box 3a shows the push of
commit-B, recorded as RSL-4, violating policy-2, which
now requires additional approval. A successful push of the
same commit is shown in box 3b, where the push (RSL-5)
occurs after an approval attestation is recorded (RSL-4).

The gittuf verification workflow is triggered when a gittuf
user either fetches new changes from or submits changes to the
synchronization point. The input to the verification workflow is
an RSL reference entry, and the workflow identifies the specific
policy state applicable to the entry by finding the latest entry
for the policy Git reference in the RSL. Similarly, the workflow
also identifies the set of authorization attestations available to
verify the entry.

Figure 3 illustrates gittuf’s verification workflow. In box 1,
gittuf verifies RSL-2 and commit-A using policy-1, as
that is the applicable policy. Next, in box 2, gittuf moves on to

8

Fig. 4: An illustration of gittuf’s recovery workflow. The
recovery workflow uses an RSL annotation entry (2⃝) to revoke
invalid entries (1⃝), following which a fix RSL reference entry
(3⃝) is applied that restores the affected Git reference to the
last good state.

the next RSL entry, which introduces policy-2. gittuf uses
policy-1 to verify the root of trust metadata in policy-2.
The new policy adds a rule requiring an additional approval for
changes. Thus, in box 3a, gittuf verification detects a violation
with the push introducing commit-B, RSL-4. While the
violation must be fixed using gittuf’s recovery workflow, we
demonstrate the correct way to introduce that commit in
box 3b. Here, commit-B is pushed (now represented using
RSL-5) after it is approved using an approval attestation,
recorded using RSL-4.

To verify file protection rules, gittuf identifies the files
modified by a commit. For example, in Figure 3, commit-B
is inspected against commit-A to find modified files. If the
commit is the first commit in the history, commit-A, all of
the files in that commit’s Git tree3.

2) Recovering from Violations: As noted in Section III,
gittuf aims to decentralize the enforcement of security policies.
When an honest gittuf client (with push access to the synchro-
nization point) detects a policy violation (i.e., the verification
workflow fails for some RSL entry because it is signed by an
unauthorized developer or it lacks sufficient approvals), it must
be able to issue a correction to fix the violation. gittuf defines
a recovery procedure that fixes the violation and indicates to
other gittuf clients that a fix was issued.

The aim of the recovery procedure is to return the affected
reference to its last valid state. For this, gittuf identifies the
last RSL reference entry for the affected reference that passes
policy verification and determines the Git tree for its commit.
This tree is the recovery workflow’s desired “fixed state” for
the affected reference.

In addition to the violating RSL reference entry, other RSL
reference entries that have been added after the violating entry
are also considered to be violations so long as they are for
the same reference. This is because, even if these changes to
a reference are individually valid, they build on changes that
violate policy and thus could contain maliciously misleading
changes. After the recovery procedure is complete, authorized
developers for the affected reference can individually reapply
changes to the reference using standard Git tooling. Also note

3The files in the initial commit’s Git tree are enumerated recursively to
include all files, even those in all subfolders.

that a gittuf client that adds a “valid” RSL reference entry
without addressing the policy violation is likely buggy or
malicious, and must be investigated further.

To revoke all identified invalid entries, gittuf creates an
RSL annotation entry, described in Section IV-C, that lists
the invalid entries. In addition, to restore the reference to a
good state, gittuf creates a fix RSL reference entry for the
Git reference. This entry comes after the violating entry and
the revoking annotation entries, and has a Git revision with
the same Git tree identified earlier as being the last valid
state. This is demonstrated in the repository in Figure 4. The
RSL annotation entry RSL-5 revokes the original invalid entry
RSL-3 and the subsequent entry RSL-4, even though RSL-4
did not violate policy itself. After the annotation entry, a fix
reference entry RSL-6 is added that sets the main branch to
a valid state.

The recovery workflow purposely applies a new commit
(commit-D) as the fix rather than reusing the commit from
the last valid entry (commit-A). This “revert” based mech-
anism, as opposed to a “reset” mechanism where the same
revision as the last valid state is used, ensures that clients have
an update to fetch in case of a recovery. This mitigates bugs
that could lead to a client on an invalid commit incorrectly
assuming it is ahead of the forge.

E. Implementation

Our implementation of gittuf has been developed in part-
nership with industry and open source stakeholders to ensure
that it is optimized for common user workflows with sane
defaults. This reduces the chances of an inexperienced user
misconfiguring gittuf policy and gaining a false sense of
security. The implementation consists of the features described
in this section thus far: the RSL, policy metadata, and autho-
rization attestations, with each stored in a custom Git reference
under the refs/gittuf/ namespace. All of the additional
metadata is stored using the Git object store. By leveraging
these Git semantics, the implementation of gittuf is compatible
with tools in the broader ecosystem such as popular forges.

The policy includes support for multiple signing mecha-
nisms, including GPG and SSH keys, and Sigstore Gitsign [7],
[42] identities. These can be extended to support additional
signing mechanisms that Git may add. Further, authoriza-
tion attestations are implemented using the in-toto attestation
framework [55]. in-toto attestations are widely used in the
realm of software supply chain security [7], [8], [56]–[58]
as an authenticated, structured mechanism to record supply
chain actions and outcomes. Additionally, the implementation
includes the verification and recovery workflows.

Developers invoke the implementation in two ways. First,
the gittuf command provides gittuf-specific functions to
manage the policy metadata. The repository owners and de-
velopers use the command to sign the root of trust, create
rule files, add rules, etc. Second, gittuf implements a Git
remote helper [41], described in Section II-A, which performs
additional gittuf actions invisibly during interactions with the
synchronization point. After a one-time setup and configura-
tion on a developer’s local copy of a repository, the remote
helper synchronizes the additional gittuf metadata during the
pushes and pulls invoked by the developer, and validates the

9

Fig. 5: Comparison of a forge’s centralized policy declaration
with gittuf’s decentralized policy declaration.

consistency of the RSL. The remote helper also automatically
creates one or more RSL reference entries for each reference
pushed by the developer to the synchronization point.

V. SECURITY ANALYSIS

Our security analysis of gittuf consists of two parts. We
first evaluate and discuss gittuf’s ability to meet the security
goals defined in Section III. We then analyze gittuf’s efficacy
in protecting against previously seen attacks.

A. Achieving System Goals and Mitigating Threats

gittuf’s policy semantics protect the integrity of a reposi-
tory’s branches, tags, and files/folders. We analyze here how
gittuf meets its system goals, mitigating the threats in our threat
model.

Decentralize policy declaration. gittuf achieves this goal
with three properties. First, gittuf’s support for thresholds for
changes to policy metadata ensures that no single trusted party
can unilaterally update the repository’s policy. Instead, the trust
required for such a policy change is distributed among multiple
parties, a threshold of whom must approve. In contrast, a single
privileged user can unilaterally modify the policies enabled on
a forge. Significantly, gittuf provides the means for requiring
approvals for policy changes: the repository’s privileged users
can determine the approval threshold for individual rule files,
allowing them to pick thresholds that balance security and
practicality.

Second, gittuf allows for separation of credentials by role.
For example, a developer who is also a repository’s owner
can define and use separate signing keys for each role. This
separation of privileges ensures minimizes the chances of
exposing the high privilege key during everyday operations.

Third, gittuf’s support for namespaced granular delegations
enables more users to extend a repository’s policy while
limiting what portions of the repository they are trusted
for. This decentralizes the ability to set policy, rather than
concentrating it in a small set of privileged users. Using this

feature, it is possible to limit the use (and therefore exposure)
of credentials with significant privileges (such as that of the
repository owners). In enterprise contexts, where developers
frequently change teams and responsibilities, delegations allow
for policy updates to happen locally (e.g., adding a developer to
a particular package in a monorepo by its immediate manager)
but safely (e.g., the manager of said package in the monorepo
is not trusted for other packages).

We illustrate the differences between gittuf’s policy dec-
laration and that of forges in Figure 5. By meeting this
goal, gittuf provides protections against threat T1. A threshold
of privileged developers, due to malicious insiders or key
compromises, may still update gittuf policy to reduce its
protections. In such a scenario, gittuf ensures that the change
in policy is visible to all users, and allows for recovery after
detection, as long as a threshold of root of trust keys are not
also compromised.

Decentralize activity tracking. The RSL implemented by
gittuf tracks all activity in the repository in an ordered, au-
thenticated, and decentralized manner. All developers working
on the repository maintain a copy of the log, and thus ensure
the log is not tampered with. Any attempt to reorder, drop,
or manipulate the log’s contents is detected the next time a
gittuf client fetches the RSL, thus providing protections against
threat T2. Consider a scenario where a developer pushes to
the forge with an accompanying entry in the RSL. The forge
may carry out a fork attack to drop this push from the RSL.
Other developers would continue adding entries to the RSL,
unaware of the dropped entry, but the original developer whose
RSL entry was dropped would detect the divergence in their
RSL and everyone else’s. The forge may also try to maintain
two divergent RSLs, but for this to go undetected, the forge
must also control developer signing keys. This is because the
forge would have to recreate the entries from one group of
developers, signed by their keys, to present to another group
of developers to evade detection. Thus, the RSL being tracked
in the repository in a distributed manner mitigates attacks
where a malicious forge presents divergent states to different
verifiers [59], [60].

This protection extends to all activity tracked by the RSL,
and therefore applies to the repository’s authorization attesta-
tions. In contrast, a malicious forge without gittuf may falsely
claim a developer approved a change, telling each developer
there is an approval from someone other than themselves. This
type of behavior is mitigated when using gittuf’s RSL.

Note that a malicious forge serving as the synchronization
point could still misbehave in a Byzantine way by executing
freeze attacks [9] which replay stale state. However, the
common workflow for Git repositories involves a substantial
amount of both in-band (i.e., via the Git repository) and
out-of-band (e.g., email, instant messaging, etc.) developer
communication. Hence, a freeze attack will be detected almost
immediately.

Decentralize policy enforcement. Every gittuf-enabled party
that receives the RSL and policy information performs verifi-
cation for actions pertaining to the references it tracks. Thus,
any party can independently perform gittuf verification for the
references they are aware of using the workflow described in

10

Fig. 6: Comparison of a forge’s centralized policy enforcement model with gittuf’s decentralized policy enforcement model.

Section IV-D1.

In turn, this decentralizes policy enforcement in the reposi-
tory. As any and all developers can use execute the verification
workflow for a Git reference, they can also enforce the policy
by issuing a fix using the recovery workflow described in
Section IV-D2 when they detect a violation. Thus, by enabling
the independent verification of security policies, gittuf makes
it possible to decentralize the enforcement of these policies, in
turn mitigating threat T3.

We contrast gittuf’s distributed policy enforcement with
a forge’s centralized policy enforcement in Figure 6. Sig-
nificantly, a single honest gittuf verifier with push access is
enough to detect and correct policy violations. By empowering
all developers to verify policies, gittuf improves the chance
that there is at least one honest verifier. Even if there is an
overwhelming number of malicious verifiers, a single honest
verifier is sufficient to detect the violation. As before, if a
threshold of trusted users update gittuf policy to reduce its
protections (e.g., as a result of malicious insiders or key
compromises), this is not considered a policy violation. Here,
recovery is still possible after detection as long as a threshold
of gittuf’s root of trust keys are not also compromised.

B. Prior Incidents

To see how gittuf performs in real-world incidents, we
selected attacks from the CNCF [33] catalog of software
supply chain attacks [61] that were representative of SLSA [8]
source threats [24]. The attacks involved the unauthorized
modification of source code, typically by bypassing a syn-
chronization point’s security controls or authentication. After
filtering out code exfiltration attacks, which fall beyond our
threat model, we identified the seven relevant attacks [11]–
[17]. We evaluate whether gittuf’s features can protect against
similar attacks. Our analysis, described here, shows that gittuf
can protect against all of these attacks.

Unknown Juniper Code [17], [62]. The networking com-
pany Juniper disclosed in a security advisory that it found
unauthorized code in its firewall operating system. From the
advisory, it is clear that an unknown attacker managed to

submit unauthorized changes to the source code by accessing
the server where it was hosted. Thus, the attackers were
able to bypass the security controls of the synchronization
point. With gittuf, it would not be sufficient to bypass the
server’s authentication and security enforcement. Instead, they
would have had to compromise all developers performing
policy enforcement. In addition, the attackers would have to
record their change in an authenticated manner in gittuf’s RSL,
making it more difficult still to evade detection.

FSF Website Defacement [14]. The Free Software Foundation
had its website defaced by an unknown attacker in 2010.
Through a SQL injection attack, the attacker was able to gain
access to the CVS repository containing the source code of the
website. The website used a CI/CD workflow to rebuild the
website when its source changed and deploy it. Such CI/CD
workflows are common today, but these automated workflows
implicitly trust the contents of the source repository as they
have no way to independently perform policy verification.
However, such an attack performed on a Git repository using
gittuf would ensure the unauthorized changes would not be
deployed, as the automated workflows would independently
verify the changes and stop the deployment.

Malicious PHP Commits [15]. The PHP project had two
malicious commits appear in its source repository, claiming
to be authored by two of its maintainers. The attacker com-
promised the repository platform used to host the repository,
thus bypassing its authentication and security enforcement. The
commits were only flagged because other contributors did not
understand the changes made, and could have gone undetected
in a repository with fewer reviewers. With gittuf in place, the
attacker would have had to compromise either the developers in
question or compromise all developers performing verification
of policies. Compromising the centralized synchronization
point would not suffice.

Kernel Backdoor Attempt [12]. Before Git, the Linux Kernel
was maintained in a BitKeeper repository, with a mirror set
up on CVS for those who did not wish to use BitKeeper.
An attacker pushed malicious code directly to the CVS mir-
ror, bypassing the synchronization point’s authentication and

11

security controls. The attack was luckily discovered because
a contributor noticed a change in the mirror that was not in
the primary copy of the repository. While this attack predates
the Linux Kernel’s use of Git for source control, this attack
could have occurred had the underlying VCS been Git for the
compromised repository. gittuf’s decentralized policy enforce-
ment would have detected such an attack, as the attacker only
managed to compromise the centralized copy of the repository.

Additionally, for Git repositories where automated mirror-
ing (as was seen in this incident) is necessary, the secondary
repository mirroring the first one can independently verify
the first’s policies, only updating the mirror when verification
passes. Further, the secondary repository can have its own
policies that ensure pushes to the mirror were from the
authorized bot.

Top.gg GitHub Compromise [11]. Top.gg is a bot discovery
site for Discord, the popular instant messaging platform.
Unidentified attackers compromised the GitHub account of a
privileged contributor of one of the repositories, suspected to
be via stolen cookies. The attackers then used GitHub’s web
interface to add a malicious commit to the repository. This
attack highlights the benefit of separating the authentication to
the forge from the authentication of the author of a commit.
The attack vector used to authenticate with GitHub would not
work with gittuf. Significantly, the developer’s SSH keys do
not seem to have been compromised as the attackers opted to
create the malicious commit via the web interface.

Gentoo GitHub Compromise [16]. An attacker compromised
the GitHub organization for the Gentoo project and removed
every developer’s access. In addition, the attacker pushed
malicious changes to repositories. The developers believe that
an attacker compromised an administrator’s GitHub account
via their password, leading to compromising the repository
platform due to administrative privileges, and highlighting the
benefit of separating credentials based on privileges. More
generally, gittuf can be configured so that the compromise
of a single administrator can be contained, by setting higher
thresholds for significant metadata such as the root of trust
and important rule files. Such multi-authorization requirements
cannot be set for forge policy and security controls today.

Ruby on Rails on GitHub [13]. A security researcher was
able to leverage a GitHub vulnerability to push an unautho-
rized commit to the Ruby on Rails repository. This was a
compromise of the repository platform rather than that of the
maintainers of the Ruby on Rails repository. Vulnerabilities
that allow for bypassing forge authentication and policy en-
forcement capabilities are not uncommon [46]–[48], with some
of these cases potentially allowing an attacker to hide their
traces by manipulating the audit log. gittuf’s decentralization of
activity tracking and policy enforcement in particular provide
protections against such attacks.

VI. PERFORMANCE EVALUATION AND DEPLOYMENTS

In this section, we describe our findings from evaluating the
storage and runtime overhead of our implementation of gittuf
described in Section IV-E. We also briefly describe ongoing
real-world deployments of gittuf.

Repo Git-only gittuf-enabled Increase
Packed

Git 273.04MiB 282.91MiB 3.62%
K8s 1171.03MiB 1188.66MiB 1.51%

Unpacked
Git 2844.45MiB 2864.22MiB 0.70%
K8s 3992.27MiB 4065.93MiB 1.85%

TABLE I: Storage overhead of gittuf in the Git and Kubernetes
(shown as K8s) repositories. The packed size indicates the size
transmitted over the network.

Pushes Git Kubernetes
Branch only Branch + File

10 0.693s 0.952s 2.864s
20 0.698s 1.191s 11.769s
50 0.708s 1.861s 26.675s
100 0.711s 2.668s 47.148s
500 1.078s 11.030s 183.332s

1000 1.491s 22.110s 412.732s

TABLE II: The runtime overhead of performing gittuf veri-
fication in the Git and Kubernetes repositories. For the Git
repository, only reference protection rules are employed, while
for the Kubernetes repository, we measured the overhead
without and with file protection rules.

Choice of repositories and experimental setup. We selected
two Git repositories for our evaluation: the repository for
Git [63] itself and the repository for Kubernetes [64]. Both
of these repositories have a large volume of activity, and
thus serve as candidates to confirm gittuf can scale to large
repository setups. We also specifically chose the Kubernetes
repository because it is developed as a monorepo. In addition
to the core Kubernetes source code, 30 other projects related
to Kubernetes are developed in the same repository [65].

In the repository for Git, we added two Git reference rules,
to protect the default master branch and tagged releases
between v1.8.0 to v2.43.0. We created RSL reference entries
for pushes to / merges into the respective references. In the
Kubernetes repository, we added a Git reference protection
rule for the default master branch and 30 file/folder rules
for the separate projects, with each rule applying to all of
the files for the corresponding project. Collectively, the rules
apply to just under 12,000 files at the most recent commit used
for this evaluation, and contain over 2,400 keys (representing
contributors). As with the repository for Git, we created RSL
reference entries for merges into the master. We conducted
our experiments on a machine with an AMD Ryzen 7640U
CPU and 32 GB of RAM running Ubuntu 24.04, and Git
v2.43.0.

Storage overhead. We measured the storage overhead added
by gittuf and present the results in Table I. We find that the
storage increase ranges from 0.70% to 3.62%. The storage
used depends primarily on the repository’s configuration, i.e.,
whether the repository is packed [35] or not, and how well
the other contents in the repository can be compressed by
Git when packed. With gittuf introducing under 4% storage
overhead across all configurations, we conclude that the stor-
age overhead imposed by the additional metadata recorded by
gittuf is practical for real-world repositories.

12

Runtime overhead. In addition to the storage overhead, we
measured the runtime overhead imposed by gittuf verification.
We measured this overhead based on the number of pushes
that need to be fetched by a verifier. Note that each push
can encompass multiple commits. In the Git case, we find
that verifying branch protection adds an average of 0.0015s to
0.0693s per push action, as shown in Table II. When verifying
only branch protection rules in the Kubernetes repository,
we find that it takes an average of 0.022s to 0.095s per
push action. When verifying both branch and file protection
rules, this number rises to an average of 0.29s to 0.59s per
push action, indicating that verifying file policies is relatively
more expensive. The Kubernetes runtime overhead is shown in
Table II. Given that these verification workflows are performed
after changes are fetched from the synchronization point,
which includes expensive network communication, we find the
runtime overhead of gittuf to be practical.

Community and deployments. gittuf is released under the
open source Apache 2.0 license. Part of the OpenSSF sandbox,
gittuf has a community composed of members from two
academic institutions and a number of enterprises contributing
to it. The majority of features were either added by or reviewed
and approved by industry participants in conjunction with
academic participants. To date, gittuf has had five releases.

Today, implementation is being used in Git repositories of
CNCF and OpenSSF projects, including that of gittuf itself.
gittuf is also being piloted at Bloomberg. The company uses
an on-premise deployment of a popular forge, with gittuf being
piloted to provide verifiability for the features the forge is
trusted for: policy declaration, activity tracking, and policy
enforcement.

VII. DISCUSSION AND LIMITATIONS

In this section, we discuss other security guarantees pro-
vided by gittuf and its adoptability. We also present gittuf’s
limitations and a discussion of how we plan to address them
in future work.

Secure distribution and management of a repository’s
trusted keys and signing identities. gittuf policy can be used
to distribute the trusted keys and signing identities for the
repository. Further, gittuf policy states can be used to rotate
and revoke keys. If a developer leaves or experiences a key
compromise, gittuf can be used to issue a new policy state
without that developer’s key or identity. Notice that gittuf
allows for successfully verifying signatures issued using the
old key up until the rotation or revocation event is recorded via
a new policy state in the RSL. The updated policy state is used
to verify signatures issued after this event. In contrast, existing
key management solutions flag as untrusted the signatures
issued before a rotation or revocation event [52].

Backwards compatible. gittuf can be initialized with existing
Git repositories, with the caveat that gittuf’s protections only
apply from that point onwards. Changes in the repository prior
to gittuf’s initialization are assumed to be verified. Further, as
gittuf uses Git semantics like the object store, references, and
support for cryptographic signing of commits and tags, it can
be used in conjunction with repositories hosted on popular

forges like GitHub, GitLab, and Bitbucket with no impact to
gittuf’s security properties.

Extensible. gittuf’s design is extensible in a number of ways.
Fundamentally, gittuf stores additional metadata in dedicated
portions of the repository, and this can be extended to support
additional security features. For example, gittuf’s support for
authorization attestations can be used for validating a particular
change underwent the right tests before it was merged into
a protected branch. Similarly, gittuf’s design can be used to
support Git-only users contributing to a repository. Git-only
users do not create RSL reference entries, which are required
for ordering and security in gittuf. Nonetheless, whenever a
gittuf user who is working on the same Git references pushes
to the repository, they could create RSL reference entries on
behalf of the Git-only users for those changes while capturing
additional authentication details as an authorization attestation.
We leave the detailed design of this feature and the analysis of
its security guarantees to future work. Finally, gittuf’s policy
semantics can be extended to support other attributes beyond
the ability to write to a namespace and define policies for it.

Limitations and future work. gittuf still has several limi-
tations that we plan to address in future work. Specifically,
we plan to add support for cross-repository policies, where
multiple Git repositories can share a gittuf root of trust and
primary rule file. This feature simplifies the management of
gittuf root of trust, and is necessary for the ongoing enterprise
pilot of gittuf. We defer detailed discussion of this feature
and other lessons from the enterprise pilot of gittuf to future
work. In addition, we aim to extend namespaced access control
rules with the ability to also set constraints on individual users,
simplifying policy declarations.

Further, we want to leverage prior work such as le-git-
imate [66] to make it easier for gittuf users to use gittuf with
forges like GitHub and GitLab. Also, gittuf still relies on the
baseline access control security of synchronization points, that
of the ability to push to the server. We aim to remove this
dependence for gittuf-enabled synchronization points that can
use gittuf policy to determine who can push to the server.

When only a subset of a repository’s developers use gittuf,
the overall security of the repository is still improved due to
protections against threats T1 and T3. However, RSL entries
will not be created for pushes from those developers who
do not use gittuf. This leaves the repository susceptible to
metadata manipulation attacks [31], until a gittuf user pushes
to the same branch and updates the RSL. Thus, to achieve
all of its security goals, gittuf requires adoption by all de-
velopers contributing to a repository. While this is similar to
security controls offered elsewhere (a forge cannot enforce
security controls on changes made by a user who does not
use the forge), we aim to extend gittuf’s implementation of
authorization attestations to support additional mechanisms
for authenticating a Git-only developer (e.g., a signed push
certificate [67], a signed email patch, etc.).

Finally, we plan to build on gittuf’s metadata layer to
enable read access control rules, hash algorithm agility to
transition Git away from SHA-1, and integrations with other
Git tools [20], [21], [39], [40], [68] and industry security
efforts such as SLSA [69].

13

VIII. RELATED WORK

The security of Git has been studied before. Torres-Arias
et al. [31] describe a class of attacks against Git repositories,
known as “metadata manipulation attacks”, and propose a
“reference state log” as a solution. In essence, either the
synchronization point or a party with commit access can
maliciously move any branch pointer to any commit in a
repository, even if all commits and tags are signed. gittuf
builds on the reference state log concept to address a variety
of other security concerns. Specifically, gittuf improves the
authentication mechanisms proposed by Torres-Arias et al. to
be resistant to a single key compromise, adds mechanisms
to revoke RSL contents, and builds support for distributed
access control policy declaration and enforcement. In doing
so, it provides fork consistency for a repository’s activity log,
similar to SUNDR [59] and SPORC [60] in networked file
systems and cloud contexts. Courtès [70] describes the solution
adopted by the Guix package manager. This system embeds
an authorization file with a list of all trusted keys at the
commit. Each commit’s signature is verified against the list of
trusted keys from the parent commit. This system is focused on
enabling independent authentication of the author of a commit.
gittuf also leverages signatures as a mechanism to authenticate
Git commits, but implements a hierarchical key management
system to protect against a single key compromise. The Guix
system also does not support authorization policies for repos-
itory namespaces, and does not track repository activity.

Xu et al. propose Gringotts [71], a system that maintains
an encrypted Git repository for each plaintext Git repository
to protect against unauthorized directory reads (which gittuf
lacks) and writes to branches. Gringotts is capable of enforcing
these access control policies but it does so by relying on cen-
tralized key management performed by repository administra-
tors. It also relies on centralized parties to declare all repository
access control rules and does not decentralize the repository’s
activity tracking. On the other hand, gittuf primarily focuses on
write permissions, for branches, tags, and files/folders in the
repository, and enables distributed, shared responsibility for
policy declaration. To better integrate Git signing into forges,
Afzali et al. [66] describe le-git-imate, a tool to digitally sign
Git objects created using the web UI of Git forges like GitHub.
Such signatures can be verified using gittuf, making le-git-
imate complementary to gittuf. Afzali et al. [72] also describe
a mechanism to ensure the trustworthiness of forge code review
features. This system protects the integrity of the code review
process, rather than repository’s contents, lacking the ability
to declare access control rules in a shared trust manner.

In the broader area of source control system security, Chen
et al. [73] studied weaknesses with version control systems
that use delta-encoding, where a repository stores differences
between revisions. Git includes in-built protections with its
content addressed object store against such attacks. Vaidya
et al. [74] added support for cryptographic signatures to cen-
tralized version control systems like Apache Subversion [75]
that currently lack this feature. Git already includes these
features, which are leveraged by gittuf. The Invisible Internet
Project (I2P) implemented [76] some access control features
for Monotone [77], a predecessor to Git. In addition to key
management, the system also included namespace based rules,
but relied on server side hooks for enforcement. Wheeler

authored an essay [78] that describes security properties for
source control systems.

More generally, the area of software supply chain security
has seen renewed interest due to high profile attacks [1]
with the release of standards [25], [26], practical guidelines
for securing software supply chains [79], [80], and academic
research. Okafor et al. [81] systematize software supply chain
security patterns, showing that three properties (transparency,
validity, and separation) are vital for a secured supply chain.
gittuf achieves all three properties in its design. The in-toto [6],
[55] framework allows for enforcing policies on the process
used to build software, but its verification aspects do not extend
to the cyclical aspect of source code development, where
changes build on prior changes. Similar to other software
supply chain security efforts [8], [82], gittuf leverages in-
toto as a mechanism to record verifiable information, but is
otherwise tailored to the nuances of developing source code
using Git.

Software supply chain defense mechanisms rely on crypto-
graphic signing for authenticating trusted entities. Sigstore [7]
proposes a way for creating cryptographic signatures using
identities via OIDC, addressing issues with managing long-
lived keys, with extensions like Speranza [83] and DiVer-
ify [84] adding privacy preserving semantics and removing
identity providers as single points of trust. Sigstore is comple-
mentary to gittuf, and indeed, gittuf policy supports Sigstore
identities for Git signatures. Of note, signing mechanisms
have been leveraged for signing in packaging ecosystems,
with prior research [85] measuring the factors that drive the
adoption of signing factors. In the context of securing package
registries, The Update Framework [9], [10] and Uptane [86],
[87] secure the delivery of software via update systems using
features like delegations, which gittuf builds on, but like in-
toto, it does not address the nuances of Git-based source
code development. Finally, Ferraiuolo et al. [51] introduced
the idea of policy transparency, where policies are inserted
into a transparency log. Policy transparency is key to gittuf’s
aim of decentralized Git repository policy enforcement, with
the collectively maintained append-only RSL acting as the
transparency log.

IX. CONCLUSION

In this paper, we introduced gittuf, a forge-agnostic Git
security system. gittuf empowers all parties working on a
repository, developers and the forge alike, to collectively
ensure a repository’s security by decentralizing policy decla-
ration, activity tracking, and policy enforcement. In addition
to providing strong security guarantees even in the event of
a forge compromise, gittuf provides forges a way to prove
that they are trustworthy, rather than carry the burden of being
non-verifiable trusted third parties.

We validated gittuf’s design by evaluating it against seven
previously seen version control system attacks and found that
gittuf’s design would protect against all of them. We also found
that gittuf is feasible even with a high volume of repository
activity using the repositories for Git and Kubernetes. There-
fore, given its practicality and its ability to defend against
historic attacks, we conclude that gittuf significantly improves
the security of source code development, and thus, the software

14

supply chain as a whole. This is borne out by gittuf’s adoption
in OpenSSF and CNCF projects and the ongoing enterprise
pilot at Bloomberg.

ACKNOWLEDGMENTS

We would like to thank the NDSS Symposium reviewers
for their feedback on this paper. We would also like to thank
Billy Lynch, Dennis Roellke, Marcela Melara, Santiago Torres-
Arias, and Trishank Karthik Kuppusamy for their parts in
making gittuf and this paper a reality.

This material is based upon work supported by the United
States National Science Foundation (NSF) under Grants No.
CNS 2247829, CNS 2054692, and DGE 2043104. Any opin-
ions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily
reflect those of the NSF.

REFERENCES

[1] FireEye, “Highly Evasive Attacker Leverages SolarWinds Supply Chain
to Compromise Multiple Global Victims With SUNBURST Backdoor,”
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-
solarwinds-supply-chain-compromises-with-sunburst-backdoor, 2020.

[2] S. Ramakrishna, “New Findings From Our Investigation of
SUNBURST,” https://orangematter.solarwinds.com/2021/01/11/new-
findings-from-our-investigation-of-sunburst/, 2021.

[3] Sonatype, “8th Annual State of the Software Supply Chain,” https:
//www.sonatype.com/resources/2022-software-supply-chain-report,
2023.

[4] Anchore, “Software Supply Chain Security Report,” https://anchore.
com/software-supply-chain-security-report-2022/, 2022.

[5] “SLSA++: A Survey of Software Supply Chain Security Practices
and Beliefs,” https://www.chainguard.dev/unchained/new-slsa-survey-
reveals-real-world-developer-approaches-to-software-supply-chain-
security, 2023.

[6] S. Torres-Arias, H. Afzali, T. K. Kuppusamy, R. Curtmola, and
J. Cappos, “in-toto: Providing farm-to-table guarantees for bits and
bytes,” in 28th USENIX Security Symposium (USENIX Security
19). Santa Clara, CA: USENIX Association, Aug. 2019, pp.
1393–1410. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/torres-arias

[7] Z. Newman, J. S. Meyers, and S. Torres-Arias, “Sigstore: Software
signing for everybody,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’22.
New York, NY, USA: Association for Computing Machinery, 2022,
p. 2353–2367. [Online]. Available: https://doi.org/10.1145/3548606.
3560596

[8] The Linux Foundation, “SLSA: Suppy-chain levels for software arti-
facts,” https://slsa.dev.

[9] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine, “Survivable
key compromise in software update systems,” in Proceedings of
the 17th ACM Conference on Computer and Communications
Security, ser. CCS ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 61–72. [Online]. Available:
https://doi.org/10.1145/1866307.1866315

[10] T. K. Kuppusamy, S. Torres-Arias, V. Diaz, and J. Cappos, “Diplomat:
Using delegations to protect community repositories,” in 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
16). Santa Clara, CA: USENIX Association, Mar. 2016, pp. 567–
581. [Online]. Available: https://www.usenix.org/conference/nsdi16/
technical-sessions/presentation/kuppusamy

[11] Checkmarx Security Research Team, “Over 170k users affected by
attack using fake python infrastructure,” https://checkmarx.com/blog/
over-170k-users-affected-by-attack-using-fake-python-infrastructure/,
2024.

[12] J. Corbet, “An attempt to backdoor the kernel,” http://lwn.net/Articles/
57135/, 2003.

[13] E. Homakov, “Hacking rails/rails repo,” https://homakov.blogspot.com/
2012/03/how-to.html, 2012.

[14] Free Software Foundation, “Savannah and www.gnu.org down-
time,” https://www.fsf.org/blogs/sysadmin/savannah-and-www.gnu.org-
downtime, 2010.

[15] N. Popov, “php.internals: Changes to Git commit workflow,” https://
news-web.php.net/php.internals/113838.

[16] The Gentoo Developers, “Project:Infrastructure/Incident reports/2018-
06-28 Github ,” https://wiki.gentoo.org/wiki/Github/2018-06-28.

[17] S. Checkoway, J. Maskiewicz, C. Garman, J. Fried, S. Cohney,
M. Green, N. Heninger, R.-P. Weinmann, E. Rescorla, and H. Shacham,
“A systematic analysis of the juniper dual ec incident,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 468–479. [Online]. Available:
https://doi.org/10.1145/2976749.2978395

[18] “Git,” https://git-scm.com.

[19] Stack Overflow, “2022 Developer Survey - Version Control,”
https://survey.stackoverflow.co/2022/#version-control-version-control-
system, 2022.

[20] “GitHub,” https://github.com.

[21] “GitLab,” https://about.gitlab.com.

[22] “Bitbucket,” https://bitbucket.org/product/.

[23] P. Ladisa, H. Plate, M. Martinez, and O. Barais, “Sok: Taxonomy
of attacks on open-source software supply chains,” in 2023 IEEE
Symposium on Security and Privacy (SP), 2023, pp. 1509–1526.

[24] The Linux Foundation, “SLSA: Threats & mitigations,” https://slsa.dev/
spec/v1.0/threats, 2023.

[25] M. Souppaya, K. Scarfone, and D. Dodson, Secure Software
Development Framework (SSDF) version 1.1, Feb. 2022. [Online].
Available: http://dx.doi.org/10.6028/NIST.SP.800-218

[26] R. Chandramouli, F. Kautz, and S. Torres-Arias, “Strategies for
the integration of software supply chain security in DevSecOps
CICD pipelines,” Tech. Rep., 2 2024. [Online]. Available: https:
//doi.org/10.6028/nist.sp.800-204d

[27] R. Potvin and J. Levenberg, “Why Google stores billions of lines of
code in a single repository,” Communications of the ACM, vol. 59, no. 7,
pp. 78–87, 2016.

[28] A. Zeino, “Faster Together: Uber Engineering’s iOS Monorepo,” https:
//www.uber.com/blog/ios-monorepo/, 2017.

[29] A. Lucido, “The Journey To Android Monorepo: The History Of Uber
Engineering’s Android Codebase Organization,” https://www.uber.com/
blog/android-engineering-code-monorepo/, 2017.

[30] D. Ordogh, “Typelevel Boston Summit 2018: Pants and Monorepos,”
https://www.youtube.com/watch?v=IL6LBWNi3fE, April 2018.

[31] S. Torres-Arias, A. K. Ammula, R. Curtmola, and J. Cappos,
“On omitting commits and committing omissions: Preventing git
metadata tampering that (re)introduces software vulnerabilities,”
in 25th USENIX Security Symposium (USENIX Security
16). Austin, TX: USENIX Association, Aug. 2016, pp.
379–395. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/torres-arias

[32] “Open Source Security Foundation (OpenSSF),” https://openssf.org.

[33] “Cloud Native Computing Foundation (CNCF),” https://cncf.io.

[34] “Bloomberg,” https://www.bloomberg.com/company/.

[35] S. Chacon and B. Straub, Pro Git. Apress, 2014.

[36] GitHub, “Checking out pull requests locally,” https://docs.github.com/
en/pull-requests/collaborating-with-pull-requests/reviewing-changes-
in-pull-requests/checking-out-pull-requests-locally.

[37] “Git Notes,” https://git-scm.com/docs/git-notes.

[38] Gerrit, “The refs/for namespace,” https://gerrit-review.googlesource.
com/Documentation/concept-refs-for-namespace.html.

[39] Google, “git-appraise: Distributed code review for Git,” https://github.
com/google/git-appraise.

[40] M. Muré, “git-bug: Distributed, offline-first bug tracker embedded in
Git, with bridges,” https://github.com/MichaelMure/git-bug.

15

https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://orangematter.solarwinds.com/2021/01/11/new-findings-from-our-investigation-of-sunburst/
https://orangematter.solarwinds.com/2021/01/11/new-findings-from-our-investigation-of-sunburst/
https://www.sonatype.com/resources/2022-software-supply-chain-report
https://www.sonatype.com/resources/2022-software-supply-chain-report
https://anchore.com/software-supply-chain-security-report-2022/
https://anchore.com/software-supply-chain-security-report-2022/
https://www.chainguard.dev/unchained/new-slsa-survey-reveals-real-world-developer-approaches-to-software-supply-chain-security
https://www.chainguard.dev/unchained/new-slsa-survey-reveals-real-world-developer-approaches-to-software-supply-chain-security
https://www.chainguard.dev/unchained/new-slsa-survey-reveals-real-world-developer-approaches-to-software-supply-chain-security
https://www.usenix.org/conference/usenixsecurity19/presentation/torres-arias
https://www.usenix.org/conference/usenixsecurity19/presentation/torres-arias
https://doi.org/10.1145/3548606.3560596
https://doi.org/10.1145/3548606.3560596
https://slsa.dev
https://doi.org/10.1145/1866307.1866315
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/kuppusamy
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/kuppusamy
https://checkmarx.com/blog/over-170k-users-affected-by-attack-using-fake-python-infrastructure/
https://checkmarx.com/blog/over-170k-users-affected-by-attack-using-fake-python-infrastructure/
http://lwn.net/Articles/57135/
http://lwn.net/Articles/57135/
https://homakov.blogspot.com/2012/03/how-to.html
https://homakov.blogspot.com/2012/03/how-to.html
https://www.fsf.org/blogs/sysadmin/savannah-and-www.gnu.org-downtime
https://www.fsf.org/blogs/sysadmin/savannah-and-www.gnu.org-downtime
https://news-web.php.net/php.internals/113838
https://news-web.php.net/php.internals/113838
https://wiki.gentoo.org/wiki/Github/2018-06-28
https://doi.org/10.1145/2976749.2978395
https://git-scm.com
https://survey.stackoverflow.co/2022/#version-control-version-control-system
https://survey.stackoverflow.co/2022/#version-control-version-control-system
https://github.com
https://about.gitlab.com
https://bitbucket.org/product/
https://slsa.dev/spec/v1.0/threats
https://slsa.dev/spec/v1.0/threats
http://dx.doi.org/10.6028/NIST.SP.800-218
https://doi.org/10.6028/nist.sp.800-204d
https://doi.org/10.6028/nist.sp.800-204d
https://www.uber.com/blog/ios-monorepo/
https://www.uber.com/blog/ios-monorepo/
https://www.uber.com/blog/android-engineering-code-monorepo/
https://www.uber.com/blog/android-engineering-code-monorepo/
https://www.youtube.com/watch?v=IL6LBWNi3fE
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/torres-arias
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/torres-arias
https://openssf.org
https://cncf.io
https://www.bloomberg.com/company/
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/checking-out-pull-requests-locally
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/checking-out-pull-requests-locally
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/checking-out-pull-requests-locally
https://git-scm.com/docs/git-notes
https://gerrit-review.googlesource.com/Documentation/concept-refs-for-namespace.html
https://gerrit-review.googlesource.com/Documentation/concept-refs-for-namespace.html
https://github.com/google/git-appraise
https://github.com/google/git-appraise
https://github.com/MichaelMure/git-bug

[41] “gitremote-helpers: Helper programs to interact with remote reposito-
ries,” https://git-scm.com/docs/gitremote-helpers.

[42] “gitsign: Keyless Git signing using Sigstore,” https://github.com/
sigstore/gitsign.

[43] “Gitea,” https://about.gitea.com/.

[44] “Forgejo: Beyond coding. We forge.” https://forgejo.org/.

[45] “Gogs: A painless self-hosted Git service,” https://gogs.io/.

[46] “CVE-2023-7028,” https://www.cve.org/CVERecord?id=CVE-2023-
7028.

[47] “CVE-2022-2992,” https://www.cve.org/CVERecord?id=CVE-2022-
2992.

[48] “CVE-2024-39930,” https://www.cve.org/CVERecord?id=CVE-2024-
39930.

[49] GitHub, “About authentication to GitHub,” https://docs.github.
com/en/authentication/keeping-your-account-and-data-secure/about-
authentication-to-github.

[50] GitLab, “User account,” https://docs.gitlab.com/ee/user/profile/index.
html.

[51] A. Ferraiuolo, R. Behjati, T. Santoro, and B. Laurie, “Policy
transparency: Authorization logic meets general transparency to
prove software supply chain integrity,” in Proceedings of the 2022
ACM Workshop on Software Supply Chain Offensive Research and
Ecosystem Defenses, ser. SCORED’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 3–13. [Online].
Available: https://doi.org/10.1145/3560835.3564549

[52] A. K. Kornel, “Welp, there go my Git signatures,” https://karl.kornel.
us/2017/10/welp-there-go-my-git-signatures/, 2017.

[53] GitLab, “Merge Requests,” https://docs.gitlab.com/ee/user/project/
merge requests/.

[54] “git-merge-tree: Perform merge without touching index or working
tree,” https://git-scm.com/docs/git-merge-tree.

[55] “in-toto Attestation Framework,” https://github.com/in-toto/attestation.

[56] B. DeHamer and P. Harrison, “Introducing npm package provenance,”
https://github.blog/2023-04-19-introducing-npm-package-provenance/,
2023.

[57] Docker, “Build attestations,” https://docs.docker.com/build/attestations/.

[58] Google Cloud, “View build provenance,” https://cloud.google.com/
build/docs/securing-builds/view-build-provenance.

[59] J. Li, M. Krohn, D. Mazières, and D. Shasha, “Secure untrusted
data repository (sundr),” in Proc. of the 6th USENIX Symposium on
Operating Systems Design & Implementation (OSDI ’04), 2004.

[60] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten, “Sporc:
Group collaboration using untrusted cloud resources,” in Proc. of the 9th
USENIX Symposium on Operating Systems Design & Implementation
(OSDI ’10), 2010.

[61] “Catalog of Supply Chain Compromises,” https://github.com/cncf/tag-
security/tree/main/supply-chain-security/compromises.

[62] J. Robertson, “Juniper Breach Mystery Starts to Clear With New
Details on Hackers and U.S. Role,” https://www.bloomberg.com/news/
features/2021-09-02/juniper-mystery-attacks-traced-to-pentagon-role-
and-chinese-hackers, 2021.

[63] “Git Source Code Mirror,” https://github.com/git/git.

[64] The Kubernetes Authors, “Kubernetes Source Code Repository,” https:
//github.com/kubernetes/kubernetes.

[65] The Kubernetes Authors, “External Repository Stag-
ing Area,” https://github.com/kubernetes/kubernetes/blob/
3f7a50f38688eb332e2a1b013678c6435d539ae6/staging/README.md.

[66] H. Afzali, S. Torres-Arias, R. Curtmola, and J. Cappos, “le-git-imate:
Towards verifiable web-based git repositories,” in Proceedings of
the 2018 on Asia Conference on Computer and Communications
Security, ser. ASIACCS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, pp. 469–482. [Online]. Available:
https://doi.org/10.1145/3196494.3196523

[67] “git-push: –signed,” https://git-scm.com/docs/git-push#Documentation/
git-push.txt---signedtruefalseif-asked.

[68] “Gerrit code review,” https://www.gerritcodereview.com/.

[69] M. Lieberman, “The Breadth and Depth of SLSA,” https://slsa.dev/blog/
2023/04/the-breadth-and-depth-of-slsa, 2023.

[70] L. Courtès, “Building a secure software supply chain with GNU Guix,”
The Art, Science, and Engineering of Programming, vol. 7, no. 1, June
2022. [Online]. Available: https://programming-journal.org/2023/7/1/

[71] W. Xu, H. Ma, Z. Song, J. Li, and R. Zhang, “Gringotts: An encrypted
version control system with less trust on servers,” IEEE Transactions
on Dependable and Secure Computing, pp. 1–18, 2023.

[72] H. Afzali, S. Torres-Arias, R. Curtmola, and J. Cappos, “Towards veri-
fiable web-based code review systems,” Journal of Computer Security,
vol. 31, no. 2, pp. 153–184, 2023.

[73] B. Chen and R. Curtmola, “Auditable version control systems.” in
NDSS, 2014.

[74] S. Vaidya, S. Torres-Arias, R. Curtmola, and J. Cappos, “Commit
signatures for centralized version control systems,” in Proc. of the
34th International Conference on ICT Systems Security and Privacy
Protection (IFIP SEC ’19). Springer International Publishing, 2019,
pp. 359–373.

[75] “Apache subversion,” https://subversion.apache.org/.
[76] “I2P: Monotone Guide,” https://geti2p.net/en/get-involved/guides/

monotone.
[77] “Monotone,” https://www.monotone.ca/.
[78] D. A. Wheeler, “Software Configuration Management (SCM) Security,”

https://dwheeler.com/essays/scm-security.html, 2015.
[79] A. Vega, E. Fox, F. Razzak, A. F. Marshall, C. Kennedy, M. Swift,

J. Meadows, A. S. A. Yelgundhalli, N. Kumar, J. Lock, A. Martin,
M. Moore, V. Anandan, M. Logan, R. Julian, B. Lum, M. Lieberman,
and G. Ing, “Software Supply Chain Best Practices,” Tech.
Rep., 5 2021. [Online]. Available: https://github.com/cncf/tag-
security/blob/main/community/working-groups/supply-chain-
security/supply-chain-security-paper/CNCF SSCP v1.pdf

[80] A. S. A. Yelgundhalli, A. F. Marshall, A. Vega, A. Block, A. Chetal,
A. Simon, B. Lum, B. Mitchell, C. Kennedy, D. Papandrea, G. Aguiar,
J. Hall, J. Kjell, M. Moore, M. Moore, M. Lieberman, P. Patel,
P. Wadhwa, and S. Nadgowda, “The Secure Software Factory,” Tech.
Rep., 5 2022. [Online]. Available: https://github.com/cncf/tag-security/
blob/main/community/working-groups/supply-chain-security/secure-
software-factory/Secure Software Factory Whitepaper.pdf

[81] C. Okafor, T. R. Schorlemmer, S. Torres-Arias, and J. C. Davis,
“Sok: Analysis of software supply chain security by establishing
secure design properties,” in Proceedings of the 2022 ACM Workshop
on Software Supply Chain Offensive Research and Ecosystem
Defenses, ser. SCORED’22. New York, NY, USA: Association
for Computing Machinery, 2022, pp. 15–24. [Online]. Available:
https://doi.org/10.1145/3560835.3564556

[82] M. Moore, A. S. A. Yelgundhalli, and J. Cappos, “Securing automotive
software supply chains,” in Symposium on Vehicles Security and Privacy
(VehicleSec), 2024.

[83] K. Merrill, Z. Newman, S. Torres-Arias, and K. R. Sollins, “Speranza:
Usable, privacy-friendly software signing,” in Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’23. New York, NY, USA: Association for
Computing Machinery, 2023, p. 3388–3402. [Online]. Available:
https://doi.org/10.1145/3576915.3623200

[84] C. L. Okafor, J. C. Davis, and S. Torres-Arias, “Diverify: Diversifying
identity verification in next-generation software signing,” 2024.
[Online]. Available: https://arxiv.org/abs/2406.15596

[85] T. R. Schorlemmer, K. G. Kalu, L. Chigges, K. M. Ko, E. A. Ishgair,
S. Bagchi, S. Torres-Arias, and J. C. Davis, “Signing in four public
software package registries: Quantity, quality, and influencing factors,”
in 2024 IEEE Symposium on Security and Privacy (SP), 2024, pp. 1160–
1178.

[86] T. K. Kuppusamy, A. Brown, S. Awwad, D. McCoy, R. Bielawski,
C. Mott, S. Lauzon, A. Weimerskirch, and J. Cappos, “Uptane: Securing
software updates for automobiles,” in International Conference on
Embedded Security in Car, 2016, pp. 1–11.

[87] T. K. Kuppusamy, L. A. DeLong, and J. Cappos, “Uptane: Security
and customizability of software updates for vehicles,” IEEE vehicular
technology magazine, vol. 13, no. 1, pp. 66–73, 2018.

16

https://git-scm.com/docs/gitremote-helpers
https://github.com/sigstore/gitsign
https://github.com/sigstore/gitsign
https://about.gitea.com/
https://forgejo.org/
https://gogs.io/
https://www.cve.org/CVERecord?id=CVE-2023-7028
https://www.cve.org/CVERecord?id=CVE-2023-7028
https://www.cve.org/CVERecord?id=CVE-2022-2992
https://www.cve.org/CVERecord?id=CVE-2022-2992
https://www.cve.org/CVERecord?id=CVE-2024-39930
https://www.cve.org/CVERecord?id=CVE-2024-39930
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/about-authentication-to-github
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/about-authentication-to-github
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/about-authentication-to-github
https://docs.gitlab.com/ee/user/profile/index.html
https://docs.gitlab.com/ee/user/profile/index.html
https://doi.org/10.1145/3560835.3564549
https://karl.kornel.us/2017/10/welp-there-go-my-git-signatures/
https://karl.kornel.us/2017/10/welp-there-go-my-git-signatures/
https://docs.gitlab.com/ee/user/project/merge_requests/
https://docs.gitlab.com/ee/user/project/merge_requests/
https://git-scm.com/docs/git-merge-tree
https://github.com/in-toto/attestation
https://github.blog/2023-04-19-introducing-npm-package-provenance/
https://docs.docker.com/build/attestations/
https://cloud.google.com/build/docs/securing-builds/view-build-provenance
https://cloud.google.com/build/docs/securing-builds/view-build-provenance
https://github.com/cncf/tag-security/tree/main/supply-chain-security/compromises
https://github.com/cncf/tag-security/tree/main/supply-chain-security/compromises
https://www.bloomberg.com/news/features/2021-09-02/juniper-mystery-attacks-traced-to-pentagon-role-and-chinese-hackers
https://www.bloomberg.com/news/features/2021-09-02/juniper-mystery-attacks-traced-to-pentagon-role-and-chinese-hackers
https://www.bloomberg.com/news/features/2021-09-02/juniper-mystery-attacks-traced-to-pentagon-role-and-chinese-hackers
https://github.com/git/git
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes/blob/3f7a50f38688eb332e2a1b013678c6435d539ae6/staging/README.md
https://github.com/kubernetes/kubernetes/blob/3f7a50f38688eb332e2a1b013678c6435d539ae6/staging/README.md
https://doi.org/10.1145/3196494.3196523
https://git-scm.com/docs/git-push#Documentation/git-push.txt---signedtruefalseif-asked
https://git-scm.com/docs/git-push#Documentation/git-push.txt---signedtruefalseif-asked
https://www.gerritcodereview.com/
https://slsa.dev/blog/2023/04/the-breadth-and-depth-of-slsa
https://slsa.dev/blog/2023/04/the-breadth-and-depth-of-slsa
https://programming-journal.org/2023/7/1/
https://subversion.apache.org/
https://geti2p.net/en/get-involved/guides/monotone
https://geti2p.net/en/get-involved/guides/monotone
https://www.monotone.ca/
https://dwheeler.com/essays/scm-security.html
https://github.com/cncf/tag-security/blob/main/community/working-groups/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf
https://github.com/cncf/tag-security/blob/main/community/working-groups/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf
https://github.com/cncf/tag-security/blob/main/community/working-groups/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf
https://github.com/cncf/tag-security/blob/main/community/working-groups/supply-chain-security/secure-software-factory/Secure_Software_Factory_Whitepaper.pdf
https://github.com/cncf/tag-security/blob/main/community/working-groups/supply-chain-security/secure-software-factory/Secure_Software_Factory_Whitepaper.pdf
https://github.com/cncf/tag-security/blob/main/community/working-groups/supply-chain-security/secure-software-factory/Secure_Software_Factory_Whitepaper.pdf
https://doi.org/10.1145/3560835.3564556
https://doi.org/10.1145/3576915.3623200
https://arxiv.org/abs/2406.15596

APPENDIX A
ARTIFACT APPENDIX

This appendix contains information on the artifact evalua-
tion for gittuf.

A. Description & Requirements

1) How to access: The artifact consists of two parts: the
source code of gittuf itself and the set of experiments for
evaluating gittuf. You can obtain these files in two ways.

Option A - Zenodo
The permanently available copy of both parts is avail-

able on Zenodo with the DOI https://doi.org/10.5281/zenodo.
14252266. The upload contains two .zip files, one for
gittuf itself and the other, gittuf-ndss-eval, for the
evaluation scripts.

Option B - GitHub
The GitHub-hosted copy of gittuf itself is available at

https://github.com/gittuf/gittuf, and the set of experiments for
evaluating gittuf are available at https://github.com/adityasaky/
gittuf-ndss-eval. As suggested below in the manual installation
instructions, we suggest using gittuf version v0.7.0, avail-
able at https://github.com/gittuf/gittuf/releases/tag/v0.7.0.

2) Hardware dependencies: None.

3) Software dependencies: We provide two ways to run our
experiments. The first, and recommended option, is to use the
included Dockerfile. For this option, only a container runtime
such as docker or podman is necessary. The second option,
the manual installation, requires the following dependencies to
be installed:

• A recent version of Python 3

• GNU Make

• Go 1.22.8 or newer

• Git 2.43 or newer

4) Benchmarks: None.

B. Artifact Installation & Configuration

There are two options for installation and configuration.

Option A - Containerized

1) Download the gittuf-ndss-eval repository
linked above.

2) Follow the instructions inside on building and running
the Docker container.

Option B - Manual Installation

1) Ensure that all prerequisites listed above are installed
on your system.

2) Download the gittuf source code, available above in
the gittuf/gittuf repository. Make sure to use
the v0.7.0 release. Once downloaded, build gittuf
by running make install in the gittuf directory.

3) Download the artifact evaluation repository
(gittuf-ndss-eval). The downloaded
repository will contain the scripts and sample
repository data to allow for evaluation of gittuf.

C. Experiment Workflow

Each experiment is contained in its own Python file. The
experiments are structured such that the script walks through
each command that is being run and displays the results to the
screen.

D. Major Claims

gittuf’s major claims are as follows:

• (C1): gittuf must enable distributing the responsibil-
ity of setting a repository’s policy amongst multiple
trusted developers, with the ability to configure the
number of developers who must approve to achieve
consensus. This is demonstrated by experiments (E1)
and (E2).

• (C2): gittuf must decentralize how the log of reposi-
tory activity is maintained to ensure a single trusted
entity cannot arbitrarily tamper with the log’s contents.
This is demonstrated by experiment (E3).

• (C3): gittuf must enable any party that can read the
contents of a repository to independently verify that
policy was followed, without trusting any other party
to do so on their behalf. This is demonstrated by
experiment (E4).

E. Evaluation

1) Experiment (E1): [Unilateral Policy Modification] [5
human-minutes]: This experiment simulates a scenario where
a single developer is prevented from editing a policy that was
configured to require two developers to sign off.

[Preparation]

Ensure all prerequisite software is installed.

[Execution]

Run experiment1.py with Python.

[Results]

The script simulates the following scenario: First, a repos-
itory owner (with key root) creates a gittuf-enabled repos-
itory and delegates trust in the policy to two developers
(developer1 and developer2, respectively). To prevent a
single developer from making changes themselves, the thresh-
old for policy metadata signatures is set to two. That is, both
developers need to authorize changes to the policy by signing
the rule file.

developer1 and developer2 initialize and set a rule
to protect the main branch in the policy, with both developers
signing off on the change.

developer1 then attempts to add another rule without
developer2’s agreement, which causes verification to fail.

Successful completion of all the steps run by the script
indicates a successful simulation.

17

https://doi.org/10.5281/zenodo.14252266
https://doi.org/10.5281/zenodo.14252266
https://github.com/gittuf/gittuf
https://github.com/adityasaky/gittuf-ndss-eval
https://github.com/adityasaky/gittuf-ndss-eval
https://github.com/gittuf/gittuf/releases/tag/v0.7.0

2) Experiment (E2): [Delegations] [5 human-minutes]:
This experiment simulates utilization of gittuf’s granular del-
egations feature that allows for distributing policy declaration
responsibilities amongst multiple developers without overpriv-
ileging them.

[Preparation]

Ensure all prerequisite software is installed.

[Execution]

Run experiment2.py with Python.

[Results]

The script simulates the following scenario: First, a repos-
itory owner defines a policy and delegates authority to
make changes to the main branch to developer1 and
the feature branch to developer2. developer1 then
delegates trust to developer3 for the feature branch,
despite developer1 not being trusted for that branch.

When developer3 attempts to verify their change to
the feature branch, gittuf alerts them that they are not
trusted for the branch. In summary, this highlights that gittuf’s
delegations can be used to enable developers to extend the
policy in limited ways: developer1 is trusted to delegate
trust only in the main branch.

Successful completion of all the steps run by the script
indicates a successful simulation.

3) Experiment (E3): [RSL Divergence] [5 human-minutes]:
This experiment simulates a scenario focusing on how gittuf’s
Reference State Log (RSL) propagates across repository
copies, enabling detection of tampering.

[Preparation]

Ensure all prerequisite software is installed.

[Execution]

Run experiment3.py with Python.

[Results]

The script simulates the following scenario: First, a repos-
itory owner creates a gittuf-enabled repository and makes a
commit. developer1 then clones the repository and makes
a change (authorized by the policy), and then pushes their
changes. The upstream repository maliciously drops these
changes.

developer2 then clones the repository, unaware as to
what has happened. The user makes a commit and pushes it
to the remote repository. developer1 then attempts to pull
the latest changes, but is warned that their RSL has diverged
from what is on the remote repository, alerting them of the
server’s misbehavior.

Successful completion of all the steps run by the script
indicates a successful simulation.

4) Experiment (E4): [Write Rule Violations] [5 human-
minutes]: This experiment simulates a scenario where a user
writes to a part of a repository they are not allowed to; another
user then pulls the latest copy of the repository and then

attempts to verify the changes. After a violation is discovered,
gittuf’s recovery procedure is invoked.

[Preparation]

Ensure all prerequisite software is installed.

[Execution]

Run experiment4.py with Python.

[Results]

The script simulates the following scenario: A repository
owner creates a gittuf-enabled repository and sets policy au-
thorizing developer1 to make changes to the main branch.
Another developer, developer2, who is only allowed to edit
the feature branch, submits a commit that affects the main
branch.

Another developer then clones the repository onto their
machine and attempts to verify the changes, but gittuf raises
an alert that an unauthorized signature is on a commit (against
the policy).

developer2 then reverts the unauthorized commit and
revokes the RSL entry for the commit, successfully restoring
the repository. Note that even though developer2 is only
authorized to make changes to the ‘main‘ branch, they were
still able to fix the violation. This is because any user who is
allowed to write to the repository at all is allowed to fix it to
bring it back into compliance with policy.

Successful completion of all the steps run by the script
indicates a successful simulation.

F. Customization

For convenience, each script can be configured using two
(optional) options:

1) --automatic, which skips waiting for input before
each step is run.

2) --repository-directory, which controls the
directory used for the script’s working repository.
Note that this option will not automatically delete
the folder once the script has completed.

18

	Introduction
	Background
	Git
	Git Security Features and Collaboration Model
	Forge Security Features and Limitations

	Threat Model and Security Goals
	Design and Implementation
	gittuf Overview
	Policy Declaration in gittuf
	Activity Tracking in gittuf
	Policy Enforcement in gittuf
	Verifying Policy Compliance
	Recovering from Violations

	Implementation

	Security Analysis
	Achieving System Goals and Mitigating Threats
	Prior Incidents

	Performance Evaluation and Deployments
	Discussion and Limitations
	Related Work
	Conclusion
	References
	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)
	Experiment (E4)

	Customization

