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ABSTRACT
In this paper, we present an experimental study in which an electroencephalogram (EEG) device
was used to measure cognitive load in programmers as they attempted to predict the output of
C code snippets. Our goal was to see if particular patterns within the snippet induced higher
levels of cognitive load, and if the collected EEG data might provide more detailed insights than
performance measures. Our results suggest that while cognitive load can be an influence on
code comprehension performance, other human factors, such as a tendency to forget certain
programming rules or to misread what the code is asking them to do may also play a role,
particularly for novice programmers. We conclude that: (1) different types of code patterns can
affect programmers’ cognitive processes in disparate ways, (2) neither self-reported data nor
brainwave activity alone is a reliable indicator of programmers’ level of comprehension for all
types of code snippets, (3) EEG techniques could be useful to better understand the
relationships between program comprehension, code patterns and cognitive processes, and (4)
tests like ours could be useful to identify crucial learning gaps in novice programmers, which, in
turn can be leveraged to improve programming tools and teaching strategies.
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1. Introduction

Every day new computer programs are created by pro-
grammers of varying skill levels, using programming
languages that also vary in levels of complexity. Compu-
ter programs use source code that contains various sym-
bols, operators and statements to control the execution
of applications. To a computer, code is unambiguous,
precise and can be interpreted only one way. To a
human programmer, however, the same code can
potentially be interpreted in many different ways. Just
as misunderstandings about words and phrases can
occur in any natural language, due to idiomatic
expressions or unfamiliar syntactic structures, program-
mers can also misread the placement of various con-
structs within code. To make matters worse, such
misunderstandings can happen even when program-
mers deal with relatively short code snippets.

Our recent study (Gopstein et al. 2017) identified a
few patterns in the C language that can cause program-
mers to be confused as to how a given piece of code
might behave. In this context, we define confusion as
when a programmer – presented with a deterministic,
syntactically and semantically valid piece of code –
believes a code snippet would output something differ-
ent from what a computer would actually execute. The

minimal portions of code that can induce this confusion
are named atoms of confusion or atoms for short. We
tested the impact of these code patterns by asking par-
ticipants to predict outputs for snippets, half of which
contained an atom. The other half contained the same
code, but the atom was removed and replaced by func-
tionally equivalent, but less confusing statements, a pro-
cess called a transformation. Results from the study
affirm that atoms could lead to a significantly increased
rate of misunderstanding as measured in performance
scores. Such misunderstandings can complicate the
already difficult task of program comprehension – a
software development activity that can take up to
50%–90% of program maintenance efforts (Lientz,
Swanson, and Tompkins 1978).

The link between the presence of atoms and bugs was
confirmed in a follow-up study (Gopstein et al. 2018),
which reported that atoms were prevalent in many
large, popular open-source projects, including git,
clang and mysql-server. Additionally, we found that
both the frequency of bug fixes and comments were cor-
related with the presence of atoms. As software pro-
grammers develop more complex applications, the
number of instances where misunderstandings can
lead to bugs will likely increase as well. Thus knowing
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more about the role of these atoms in creating misun-
derstandings could help programmers avoid behaviours
that could have risky consequences.

Unfortunately, the most commonly used methods for
assessing code comprehension are not effective for
exploring sources of confusion. One approach is to
have programmers complete a series of tasks and evalu-
ate comprehension using some type of performance
indicators, such as completeness or correctness of
answers (Corritore and Wiedenbeck 1991; Teasley
1994; McKeithen et al. 1981; Romero 2004). However,
this method offers little insight into where and why mis-
understandings might occur. Furthermore, the value of
performance measures as an indicator of confusion is
questionable, as other unrelated variables, such as typo-
graphic errors or the participants’ years of program-
ming experience could also affect these measures. A
second approach, Verbal Protocol Analysis (VPA) or
the "think-aloud" method (Ericsson and Simon 1984),
also has its limitations. This strategy asks participants
to talk aloud as they perform a programming task.
Hints to the participants’ thought processes are then
gleaned from their comments. Unfortunately, VPA is
not effective if participants lack the necessary verbal
skills to explain their work process (Adelson and Solo-
way 1985; Letovsky 1987; Pennington 1987a; Wilson
1994; Atman and Bursic 1998; Yeh 2018).

A third alternative that overcomes some of the afore-
mentioned drawbacks is to use tools and techniques that
measure physiological data. Patterns recorded using
these techniques can help researchers understand the
correlations between a task and changes in brain
activity, without interrupting participants’ thought pro-
cesses (Schooler and Engstler-Schooler 1990; Schooler,
Ohlsson, and Brooks 1993). In addition, using physio-
logical data removes variables that make performance-
based evaluations imprecise. Recent studies have
employed such methods as functional magnetic reson-
ance imaging (fMRI) (Fincham et al. 2010; Siegmund
et al. 2017, 2020), near-infrared spectroscopy (NIRS)
(Ikutani and Uwano 2014), eye-tracking (Bednarik
and Tukiainen 2006; Lin et al. 2016), magnetoencepha-
lography (MEG) (Jensen and Tesche 2002),
or electroencephalogram tools (EEG) (Fritz et al. 2014;
Crk, Kluthe, and Stefik 2016; Kosti et al. 2018).
Researchers are particularly embracing on-the-scalp
EEG devices, which when paired with software packages
to assist signal processing, analyses and visualisation,
give researchers an easy to use, non-invasive and afford-
able way to record and measure human brain activities.

In this paper, we seek to expand our prior work
(Gopstein et al. 2017) by utilising EEG technology to
determine if the presence of an atom in code influences

the amount of cognitive workload experienced by study
participants. Precisely, we test the premise that atoms
will impose a higher cognitive load on participants,
which will be reflected in the patterns of neuron oscil-
lation detectable in EEG readings. We took the six
atoms that had the highest effect sizes in our prior
study (Gopstein et al. 2017), and used a non-invasive
EEG headset to record the brain activities of 14 partici-
pants. We then analysed the participants’ EEG data to
see how strongly the changes in participants’ cognitive
load correlate with a particular atom type.1 The follow-
ing research questions guided our assessment of the
data.

(RQ1) Do measurements of cognitive load differ based
on the question type (obfuscated vs. clarified)
being studied by the participant?

(RQ2) Do all atoms affect levels of cognitive load in the
same way?

(RQ3) Do the levels of cognitive load correlate with
performance-based measures, such as accuracy,
reaction time and self-reported levels of confi-
dence and difficulty?

We found that: (1) there was a difference in the
degree of cognitive load induced by atom type; some
atom types varied significantly, while others did not
differ at all, (2) there was a discrepancy between partici-
pants’ performance measures and their self-reported
answers about a question’s level of difficulty or their
confidence in their responses, and (3) there was a
clear correlation between participant reaction times
and the cognitive load observed in the alpha band in
the frontal region, which suggests that the alpha band
in the frontal region could be useful for monitoring cog-
nitive demand during program comprehension tasks.

In essence, our results suggest that some atoms did
significantly increase cognitive load in our participants,
while others had no effect at all. We speculate this vari-
ation can be attributed to two possible options: either
the source of confusion in an atom is not caused by
higher cognitive load, but may instead be caused by
other factors, such as misreading the question, or the
clarified snippets are as cognitively demanding as the
obfuscated ones. One explanation of the latter might
be that the transformation process introduced side
effects and comprehension difficulties. These results
affirm that the transformation process needs to be
done thoughtfully and may require an understanding
of how the atom relates to the syntax of the rest of the
snippet. In a broader sense, our study shows that pro-
gram comprehension studies must consider more
human factors, such as a tendency to forget certain
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programming rules or overlook/underestimate what the
code is asking them to do.

2. Background

In this section, we provide background information
about our prior work (Section 2.1), as well as an over-
view of EEG measurement techniques (Section 2.2).

2.1. Atoms of confusion

We demonstrated in Gopstein et al. (2017) that con-
fusion in software programs could be reduced by iden-
tifying and removing the smallest possible pieces of code
that could influence developer perceptions. An example
of an atom transformation is shown in Figure 1. The
snippet (a), labelled as obfuscated, is functionally equiv-
alent to snippet (b), labelled as clarified, but the atom
has been removed.

We identified atom candidates from the winning
programs of the International Obfuscated C Code Con-
test (IOCCC).2 We eliminated the non-deterministic
features in these programs that were impossible for
humans to reliably predict, such as the rand() func-
tion, and features that were not portable across different
computer architectures. The resulting 19 atom candi-
dates are shown in Table 1 in Gopstein et al. (2017).

Next, we tested our hypothesis that the existence of an
atom in a code snippet would cause more errors in par-
ticipants’ responses than the snippet’s transformed
counterpart by conducting a user study. A total of 73
participants reviewed a series of both obfuscated and
clarified snippets, presented in a randomised order,
and were asked to report the anticipated output for
each one. Responses were graded for both accuracy
and speed, and results confirmed that 15 of the candi-
dates could be classified as atoms.3 As an example,
only 52% of all participants could correctly report the
output of Figure 1(a). However, after removing this
code pattern, participants’ accuracy increased signifi-
cantly for the transformed snippet (Figure 1b).

While our earlier study proved the existence of
atoms, in this paper we seek insight on why these code
patterns create confusion. The next section explains

the measurement strategy chosen for the current study
– collection and interpretation of brainwaves using an
EEG device.

2.2. Electroencephalogram measurement

An EEG device measures the electrical field created by
the activation of neurons, a specialised type of brain
cell designed to transmit information to other nerve
cells, or to muscle or gland cells. As information is
transmitted to other neurons, tiny electrical fields are
created. When a large number of neurons are activated
in synchrony, the magnitude from the summed wave-
forms – in the order of mV – can be recorded by placing
an EEG device on the scalp.

Brainwave signals are collected through an EEG
device’s channels (sensors) that are placed at locations
following the international 10–20 system. In our study,
we use four channels (F3, F4, F7 and F8) in the frontal
region and two channels (P7 and P8) in the parietal
region, which are the available channels in those regions
from the EEG headset we use (shown in Figure 2).

Many studies have shown evidence that these inexpen-
sive EEG headsets can reliably produce outcomes that are
consistent with those predicted by existing theories. For
example, Galán and Beal (2012) used a nine-channel
EEG headset to measure engagement and workload read-
ings for 16 college students as they solved SAT math pro-
blems. They found that the readings could distinguish
between easy and hard problems with an accuracy rate
of 87% and 83%, respectively. Rostami et al. (2015)
used an EEG headset with only one channel and was
able to find that mental effort – a reading reported by
the EEG headset – was consistent with the observation
notes of the facilitators during the experiment.

Table 1 lists studies related to cognitive tasks, along
with their related frequency bands, regions or channels.
We listed the range of frequency bands in each study
when available because frequency ranges do vary, as do
analysis techniques (which are not listed in the table).
Nevertheless, what emerges from these studies is the
importance of alpha and theta bands in brain imaging,
as well as the relevance of brainwaves in the frontal and
parietal regions to cognitive-related studies like ours.

Figure 1. Example of Reversed Subscripts snippet pair: (a) Obfuscated and (b) Clarified.
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3. Related work

In this work, we draw from previous research using two
methods of measuring comprehension – one based on
the performance of study participants and the other
based on physiological data drawn from the measure-
ment of participants’ brain activities. The following
studies were influential in shaping our research ques-
tions, experimental design and interpretation of results.

3.1. Performance-based methods for measuring
comprehension

The most common way to measure program compre-
hension is to let a programmer perform a task, such as
estimating code output, finding or fixing bugs, adding
additional features, and so on. Results are based on
how well the task is completed, and the programmers’
perception of its difficulty. In our study, we call these
types of measurements performance measures.

Several studies (Shneiderman 1977; Soloway and
Ehrlich 1984; Weidenbeck 1986; Pennington 1987b)
equate comprehension with the amount of source
code a programmer can recall. Unfortunately, the lim-
ited capacity of an individual’s working memory (Miller
1956) makes testing by recall unreliable and unscalable.

For example, when dealing with large, complex pro-
grams, recall measures may be low for both novices
and experts (Miller 1956; Adelson and Soloway 1985).
Another performance measure, called ‘fill-in-the-
blank,’ asks participants to study a piece of code and
then complete the portions that have been removed
(Green 1977; Soloway and Ehrlich 1984). Wiedenbeck
and Ramalingam (1999) used a hybrid of both methods
in experiments where participants studied a program
and then answered a series of questions without refer-
ring back to the source. Though not based on rote mem-
orisation, the method still depends on the amount of
information a programmer can retain.

These performance measures might be enough for
laboratory experiments, but understanding software in
the real world requires more than just information
retention (Letovsky 1987). An alternative approach
would be to ask developers to predict the outcome of
a piece of code, to add new functions, or fix a problem
in an existing program. Brooks (1977) used a set of talk-
aloud protocols from a single programmer to construct
a cognitive computer agent capable of predicting what
results programmers might achieve. However, this
type of simulation can be time consuming, subjective,
and limited in scope. Though some researchers consider
it more reliable (Dunsmore and Roper 2000), it does not
negate the need for a comprehension measurement that
is less reliant on the skills of the participant.

3.2. Physiological-based methods for measuring
comprehension

As performance-based methods require a conscious
response from all participants, the test itself could create
cognitive demands capable of interfering with com-
pletion of the task. Therefore, recording a participant’s
physiological reactions (such as heartbeat, skin

Table 1. Cognitive activities with corresponding frequency bands† and regions (C = central, P = parietal, T = temporal, F = frontal).
Cognitive activity Frequency band (range) Region ( channel) Reference

Program
comprehension

θ (4–8 Hz) C (uncertain) Kosti et al. (2018)

α and θ (varied by
subject)

AF3, F7, F3, FC5 Crk, Kluthe, and Stefik
(2016)

Arithmetic β (16–24 Hz) P (P3, P4) Ray and Cole (1985)
θ (3.5–7.5 Hz) F (F3, Fz,‡ F4) and P(P3, Pz,‡ P4) Sammer et al. (2007)

Attention α (8–15 Hz) P (P3, P4) Ray and Cole (1985)
α (8–13.5 Hz) P (P7, P8), PO (PO3, PO4), and O (O1, O2) Kelly et al. (2006)

Working Memory θ (7–8.5 Hz) F (MEG study, no channel) Jensen and Tesche (2002)
α (9–12 Hz) Pz,‡ O2, CP5, T8 Jensen et al. (2002)

α (6–10 Hz) and θ (4–6
Hz)

Anterior (F3, F4, F7, F8, Fz‡) Krause et al. (1996)

α (varied by subject) F (F3, F4, FC5, FC6), C(C3, C4, FC1, FC2, CP1, CP2), P (P3, P4, CP5, CP6), and T
(T3, T4)

Klimesch et al. (1999)

θ (3.5–7.5 Hz) F (F3, F4, FC5, FC6), C (C3, C4, FC1, FC2, CP1, CP2) Klimesch et al. (1996)
† The exact frequency ranges are shown because they are defined differently. ‡ Z is the centre line, between odd and even numbers shown in Figure 2.

Figure 2. Location of six channels used in this study.
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conductivity, pupil size or blood oxygen level) when
engaging in cognitive processes can perhaps give a
truer measurement. One common physiological method
gathers data of brain images as participants perform
cognitive tasks, such as program comprehension, and
notes the changes from a resting state.

Using such brain imaging techniques, researchers
have found cognitive functions can have local effects
in specific regions of the brain. Previous studies have
found that the frontal region is associated with cognitive
activities, such as mental calculation (Dehaene and
Cohen 1995), nonautomatic (i.e. nontrivial) calculation
(Burbaud et al. 1999), memory recall (Gruber, Keil, and
Müller 2001), word search (Yamamoto and Matsuoka
1990), and encoding and retrieval of long-termmemory.
Other studies associate the parietal region with number
processing ability (Dehaene et al. 2003), arithmetic per-
formance and processing (Barnea-Goraly et al. 2005;
Andin et al. 2015) and development of mental arith-
metic (Rivera et al. 2005). Based on this large body of
work, we were able to interpret our brainwave readings
of participants reviewing code snippets in terms of
whether the presence of atoms may be interfering with
the associated cognitive processes in different brain
regions (Section 5.2).

Another way to identify the influence of cognitive
activities on brainwaves is to analyse changes of power
in each frequency band from the brain signals. Several
studies (Sergeant, Geuze, and Van Winsum 1987; Kli-
mesch et al. 1990; Krause et al. 2000; Kelly et al. 2006)
have associated the alpha band with attention and
found that alpha band power tends to decrease when
participants perform cognitively demanding tasks.
Also, studies of memory recall performance found a
positive correlation to the power of upper alpha (10–
12 Hz) (Vogt, Klimesch, and Doppelmayr 1998), and
indicate cognitive activities can create fluctuations in
the theta frequency band. Though Yamamoto and Mat-
suoka (1990) reported that long lasting theta waves
recorded by EEG devices tended to correlate with par-
ticipant reports of stress, Sammer et al. (2007) and Kli-
mesch (1999) showed that theta band power was also
positively related to mental workload.

Recently, a few studies have applied EEG measure-
ments specifically to program comprehension tasks. In
Kosti et al. (2018), the authors found that comprehen-
sion tasks were more cognitively demanding than syn-
tax tasks, and that the theta frequency band was the
most distinguishable biomarker between the two types
of tasks. Crk, Kluthe, and Stefik (2016) found that
change of magnitude in the theta frequency band was
also the best indicator of programming expertise when
testing five different student groups. Fritz et al. (2014)

used multiple physiological sources, including eye-
tracking and EEG data, to train a Naive Bayes classifier
to analyse task difficulty. Their work offers a model for
combining physiological methods to better assess levels
of comprehension.

4. Experiment design

In this section, we describe our IRB-approved exper-
iment. We explain our instrument setup (Section 4.1),
describe the participants recruited (Section 4.2), and
detail the procedure utilised to record and evaluate
data (Section 4.3).

4.1. Instrument setup

To avoid fatigue, we chose to test only the six most con-
fusing atoms – Change of Literal Encoding, Preproces-
sor in Statement, Logic as Control Flow, Post
Increment/Decrement, Type Conversion, and Assign-
ment as Value – from the list of atom candidates (Gop-
stein et al. 2017). For each atom, we selected four
questions – two obfuscated and two clarified – for a
total of 24 code snippets.4

The study instrument used includes two com-
ponents. The first is a web application to present the
code snippets to the participants and collect data such
as snippet types (obfuscated or clarified), reaction
times, answers to each question, and self-reported levels
of difficulty and confidence in each response. The
second is an EEG headset used to record brainwaves.
The headset can record and transmit 10 channels
(Figure 2) of raw EEG signals through a Bluetooth con-
nection to a recording software on our computer called
TestBench. We chose the highest possible sampling rate
of 256 Hz for the device. Since the two components col-
lected data separately, we had to add markers in the raw
EEG data to indicate when a participant would be read-
ing a particular code snippet and when the snippet
would disappear from the screen. We developed a pro-
gram called MarkerTrigger to capture two types of key-
strokes, those made when using the space bar
(indicating the beginning of the experiment) and the
enter key (indicating the end of an event, such as
finishing a question, or entering an answer).

Before the experiments, we installed all software
applications and a Bluetooth receiver on a Dell laptop
with a 15-inch screen running Windows 7. During the
experiment, we opened the web application in Chrome
and displayed one code snippet at a time in full screen
mode. We reduced any artefacts that could be caused
by muscle movements by removing the mouse and dis-
abling the touchpad so all input had to be entered
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through the keyboard. Figure 3 shows a participant
during the experiment (left) and the computer setup
(right).

4.2. Participants

We recruited 14 students, 3 female and 11 male, from
Pennsylvania State University and Bucknell University.
Two participants were graduate students and 12 were
undergraduate students at the time of data collection.
The participants’ majors included Computer Science
(5), Information Sciences and Technology (4), Compu-
ter Engineering (2), Mechanical Engineering (2), and
Education (1). In compliance with our enrollment cri-
teria, all participants had taken at least one semester
of a C/C++ programming course. In the pre-screening
survey, all indicated that they were healthy and not
taking any medication.

4.3. Procedure

The order of events in the experiment, as shown in Figure
4, was largely controlled by the participants, allowing
them to work at their own pace. Each participant first
met individually with the researcher in an isolated

room to learn about the purpose of the study. After
informed consent was obtained, the participant was
instructed to adjust the height of the chair, the screen
angle of the laptop computer, and the distance between
the participant and the computer. This is shown as the
Introduction phase in Figure 4. Next, the Bluetooth
EEG headset was placed on the participant’s head. The
reasearcher made adjustments to ensure that all 10 chan-
nels of interest were showing strong signals. The partici-
pant then read the on-screen instructions and was given
one practice question to get familiar with the interface of
the web application, including how to control the sliders
used for rating difficulty and confidence levels by press-
ing the f and j keys, for left and right, respectively.
This is the Interface Practice phase in Figure 4.

When the participants were ready, they were pre-
sented 24 code snippet questions, one at a time, in a ran-
dom order. Before each code snippet, the participant
was shown a screen with the message ‘Relax’ that stayed
on for 10 s, cueing a brief pause (the Relax phase). The
EEG data from the relax period was used as a baseline
for comparison with the data from the program com-
prehension phase. Our analyses in Section 5.2 are
based on the differences between these two time periods.
After reading each code snippet, the participant took

Figure 3. The experiment setup. All software applications were running in the background. Participants only saw the browser
window.

Figure 4. List of experiment events in sequence. Relax was a timed event (10 s). All others were controlled by the participants.
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some time to interpret the code (the Code Comprehen-
sion phase), then hit the enter key to proceed to the next
screen, where the participant typed the answer using the
keyboard (the Enter Answer phase). The Code Compre-
hension and Enter Answer phases were separated in
order to eliminate any noises from muscle movement
when a participant entered an answer.

Two separate screens with range sliders followed each
question, allowing participants to rate the difficulty of the
preceding question and their level of confidence in their
answers (the Rate Difficulty and Rate Confidence phases).
The design of the slider was inspired by the work in Freyd
(1923), where the authors stated that a graphic rating
method can provide reasonable reliability while freeing
the rater from ‘direct quantitative terms.’ In our exper-
iment, participants moved the slider with the f and j
keys so both hands could remain on the keyboard with
no arm movements. The range of the slider was between
1 and 10 and the descriptive terms were ‘easy’ and
‘difficult’ on either side of the difficulty slider, and
‘unsure’ and ‘very confident’ on the confidence slider.
At the end, each participant also filled out a demographic
survey that asked their age, whether they were taking any
medication, and whether they had any disorders, like
insomnia, that could affect cognition.

4.4. EEG signal processing

We used an open-source application (Tadel et al. 2011)
for brain imaging related analyses and visualisation, and
Matlab to process the raw EEG data. The EEG signal
data were obtained from the recording application (pro-
vided by the manufacturer) that converted and scaled
measured analog signal to digital signal. No additional
converting or scaling was done by the research team
before signal processing. Following the headset manu-
facturer’s recommendation, we chose to use a 0.16-Hz
first-order high pass filter to remove the background
signal. Because the frequency bands (alpha and theta)
that we used in this study are both under 40 Hz, we
first applied a band-pass filter between 0.16 and 40 Hz.
We then used the filter as described in Melia et al.
(2014) to remove peaks and spikes, which typically

represent noise. The remaining amplitudes were limited
to between ±200 μV. These procedures were conducted
to ensure that any changes in brainwaves could be
associated with cognitive load.

5. Results and analysis

In this section, we analyse two types of data gathered in
the study: performance-based data (Section 5.1), which
includes measures of participants’ accuracy and speed of
response, and physiological-based data (Section 5.2),
which are the measurements recorded by the EEG
device. In our analysis of both data sets, gathered
using the procedure described in Section 4, we base
our findings on responses from 10 of 14 participants.5

The results were obtained from averaging participants’
response and EEG signal data.

5.1. Performance-based data analyses

In this section, performance measures and perceptions of
obfuscated and clarified code are analysed. We hypoth-
esise that, when solving obfuscated questions, partici-
pants are more likely to get them wrong, spend more
time working on them, perceive them to be more
difficult, and feel less confident about their answers.

5.1.1. Accuracy and reaction time
To analyse performance, we first graded participants’
answers and gave a score of 1 for a correct response
or 0 for an incorrect response. In cases where the code
snippet should output two variables, both values needed
to be correct to receive a score of 1. Therefore, each par-
ticipant received a score between 0 (all wrong) and 24
(all correct). From the scores, we then calculated partici-
pants’ accuracy rates.

We separated all questions by atom type in order to
identify any significant differences. Table 2 shows the
breakdown of participant accuracy rates and reaction
times for each of the atoms tested. A paired t-test was
used to determine whether the differences between
obfuscated and clarified questions were significant for
each atom type.

Table 2. Comparison of accuracy rate and reaction time by atom type. Asterisk (*) indicates a significant difference between
obfuscated (O) and clarified (C) questions.

Atom type Accuracy rate Reaction time in ms

O C t(df) p O C t(df) p

Logic as Control Flow 10% 60% −4.7434(9) 0.0011* 39561.4 30319.4 1.2223(9) 0.2526
Type Conversion 25% 85% −4.8107(9) 0.001* 18652.55 37643.65 −6.7386(9) 0.0001*
Preprocessor in Statement 10% 90% −9.798(9) 4.24E−06* 31563.2 16275.35 3.6186(9) 0.0056*
Assignment as Value 15% 75% −4.8107(9) 0.001* 15082.95 21372.15 −1.4184(9) 0.1898
Post-Increment/Decrement 30% 80% −2.7386(9) 0.0229* 23206.5 19788.3 0.578(9) 0.5775
Change of Literal Encoding 0% 90% −13.5(9) 2.81E−07* 16443.2 11343.6 1.2635(9) 0.2382
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As shown in Table 2, participants answered clarified
questions for all atom types with significantly higher
accuracy than their obfuscated counterparts (all p<.05).
For reaction time, participants spent more time solving
four types of obfuscated questions (Logic as Control
Flow, Preprocessor in Statement, Post-Increment/Decre-
ment and Change of Literal Encoding), though only the
reaction time for Preprocessor in Statement was signifi-
cantly different. By contrast, clarified questions in Type
Conversion and Assignment as Value took participants
more time to complete than their obfuscated counter-
parts. For Type Conversion, the time for participants sol-
ving clarified questions was significantly higher than the
time spent on the obfuscated version.

Key Takeaway: Consistent with our previous work
(Gopstein et al. 2017), our participants’ accuracy in sol-
ving clarified questions was significantly better than
when solving obfuscated questions. However, when
reaction time was measured by atom type, only two
registered significant differences. Obfuscated questions
with the Preprocessor in Statement atom took signifi-
cantly more time, while those with the Type Conversion
atom took significantly less time.

5.1.2. Perceived confidence and difficulty levels
We next compared participants’ perceptions as to the
difficulty of the questions and their confidence in their
answers. Table 3 shows the results of paired t-tests by
each atom type. For perceived confidence level, partici-
pants were more confident in answering clarified ques-
tions in all atom types except for Assignment as Value.
Among the remaining five atoms, four showed signifi-
cant differences (indicated by an asterisk after the p
value in Table 3), while Type Conversion showed almost
no difference. For perceived difficulty level, participants
reported higher levels of difficulty for obfuscated ques-
tions in all atoms except Assignment as Value and
Type Conversion. However, only Post-Increment/
Decrement and Change of Literal Encoding exhibited
significant differences.

Based on the data above, the results of two atoms,
Assignment as Value and Type Conversion, seem to
consistently run counter to the data of other atoms.

Clarified questions with these atoms took longer to
solve, and participants were less confident about their
responses, but the snippets were not perceived as
difficult. We address why these atoms might be outliers
in Section 5.2, with the help of physiological data.

Correlation among Performance Measures: To see
the relationships among these variables, we calculated
the correlation between accuracy, reaction time, and
perceived confidence and difficulty. The results are illus-
trated in Table 4. We can draw the following con-
clusions: (a) when participants gave a higher rating in
their confidence, the reaction time tended to be shorter
(r = −0.3426, p , .05), and the accuracy tended to be
higher (r = 0.2235, p , .05), and (b) when a question
was deemed more difficult, the participants spent
more time on it (r = 0.3137, p , .05), felt less confi-
dent in their answers (r = −.7403, p , .05), and were
less likely to answer it correctly (r = −0.2338, p , .05).

Table 5 provides a summary of how atoms affect
accuracy, reaction time, perceived confidence and
difficulty levels. The Exp column indicates whether the
result was expected, e.g. the accuracy of clarified ques-
tions was higher than obfuscated questions. The Sig col-
umn indicates for each measure whether the difference
between obfuscated and clarified questions was signifi-
cantly different. The ideal result for each measure is
[✓, ✓] in both Exp and Sig. However, except for accu-
racy, none of the measures has [✓, ✓] across all atom
types. Furthermore, the results from the accuracy
measure were insufficient to affirm that participants
comprehended clarified questions better than obfus-
cated ones. For example, for Type Conversion, even
though participants answered clarified questions with
higher accuracy, they did not perceive the obfuscated
questions to be more difficult, and they spent signifi-
cantly less time in solving these questions (shown as
[ , ]). Therefore, the performance measures alone
are not sufficient to draw informed conclusions.

Key Takeaway: Among the four performance
measures studied, three – reaction time, perceived
confidence, and perceived difficulty – were not effective
at indicating differences between clarified or obfuscated
code snippets. One possible reason is that the

Table 3. Comparison of perceived confidence and difficulty by atom type. Asterisk (*) indicates a statistically significant difference. O
stands for obfuscated and C stands for clarified.

Atom type Confidence Difficulty

O C t(df) p O C t(df) p

Logic as Control Flow 5.15 6.75 −2.6264(9) 0.0275* 4.25 3.2 1.4198(9) 0.1894
Type Conversion 6.3 6.7 −0.937(9) 0.3732 2.65 2.75 −0.175(9) 0.865
Preprocessor in Statement 5.75 7.15 −2.3515(9) 0.0432* 3.5 2.75 1.6948(9) 0.1244
Assignment as Value 7.7 5.75 1.5735(9) 0.1501 2.25 2.85 −0.8742(9) 0.4048
Post−Increment/Decrement 7.35 8.3 −2.3486(9) 0.0434* 2.4 1.95 2.5861(9) 0.0294*
Change of Literal Encoding 6.45 7.35 −2.7848(9) 0.0212* 2.9 2.35 3.1608(9) 0.0115*
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participants lacked sufficient programming experience
to make informed judgments about the complexity of
the snippets they reviewed. While accuracy rates did
vary as expected, the findings cannot confirm if a correct
answer was the result of a good guess, or if an incorrect
response was simply a typographical error. Either way
this judgement is based solely on participants’ answers,
and therefore not objective. By analysing the physiologi-
cal data gathered from participants, we seek a less sub-
jective dataset that can link the influence of atoms to
measurable differences in brainwaves.

5.2. Physiological-based data analyses

In this section, we analyse EEG data obtained using the
instrument and apparatus described in Section 4 to
understand whether and how atoms can affect brain
activities. Specifically, we wanted to see if brainwave
patterns differed when participants solved obfuscated
snippets. We first introduce the metrics we use and
then answer the three research questions from Section 1.

5.2.1. Measuring cognitive load
We are interested in testing whether obfuscated ques-
tions induce higher cognitive load, as this can help us
better understand why atoms affect comprehension.
Cognitive load was measured based on the

characteristics of neuron oscillation. Neurons oscillate
constantly, whether a human is at rest or is performing
a cognitive task. When neurons oscillate in synchrony
(i.e. same or similar phase), the amplitude of the wave-
form is greater. The degree to which the oscillation of
neurons synchronise can be affected by cognitive
demand (Klimesch 1999; Antonenko and Niederhauser
2010), where higher cognitive demand is correlated with
lower magnitude (desynchronisation). To measure
event-related synchronisation, e.g. desynchronisation
caused by an event such as code comprehension, a
short period of time immediately preceding the task is
normally used as a reference point. During this time,
participants are typically asked to relax. By taking the
average band power from the reference point and com-
paring it to when the participant performs a cognitive
task, the amount of change can be calculated and
analysed.

Event-Related Synchronisation/ Desynchronisa-
tion, or ERS/ERD, presented in Equation (1)
(Pfurtscheller and Da Silva 1999) is commonly used to
model the degree of changes in the magnitude of brain-
wave signals (average band power, or Avg.BP, in the
equation), from a reference period (indicated by sub-
script reference) to a task period (indicated by sub-
script task).

ERS (ERD)% = Avg.BPtask − Avg.BPreference
Avg.BPreference

× 100%. (1)

The reference period in our study is the Relax period
preceding each code snippet while the task period is
the Code Comprehension period that follows (see
Figure 4). The average band power of each period is
acquired by averaging the magnitude of a frequency
band from these two periods separately. When the result
of Equation (1) is positive, or the average band power
during the task period is higher, the result indicates
ERS, i.e. neuron oscillation is more synchronised during
the Code Comprehension period than the rest period.
By contrast, a negative result from Equation (1) indi-
cates ERD, or neuron oscillation is more synchronised
during the rest period than the Code Comprehension
period. ERD has previously been shown to be correlated
to high cognitive load (Klimesch 1999; Antonenko and
Niederhauser 2010), so we used it in this study to mark
which atoms created higher levels of cognitive demand.

In the following, we use our physiological-based data
to answer the three research questions (RQ’s) raised in
Section 1. For each RQ, we first present our null (H0)
hypotheses, then we describe our experiment, results
and takeaway.

Table 5. Summary of the effect of atoms on accuracy, reaction
time, perceived confidence and difficulty levels. Exp means the
result is expected; Sig means the difference between the results
is significant. Unexpected but significant results are in red and
circled, like and .

Atom type Accuracy
Reaction
time Confidence Difficulty

Exp Sig Exp Sig Exp Sig Exp Sig

Logic as Control Flow ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗
Type Conversion ✓ ✓ ✓ ✗ ✗ ✗

Preprocessor in
Statement

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Assignment as Value ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
Post Increment/
Decrement

✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Change of Literal
Encoding

✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Table 4. Correlation between accuracy, reaction time,
confidence, and difficulty levels. Asterisk (*) indicates a
statistically significant correlation.

Accuracy Reaction Time Confidence Difficulty

Accuracy 1
Reaction Time −0.0559 1
Confidence 0.2235* −0.3426* 1
Difficulty −0.2338* 0.3137* −0.7403* 1
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5.2.2. RQ1: can EEG readings be used to distinguish
between obfuscated and clarified questions?
To find an answer to this question, we use the exper-
iment design summarised in Figure 5.

In this experiment, we treat all obfuscated code as the
control group, and all clarified code as the treatment
group. We first calculated the ERS/ERD values for each
code snippet, with Equation (1) applied to alpha and
theta frequency bands in the EEG signals. We refer to
this as the overall result. We then performed a paired t-
test to verify whether the ERS/ERD values were signifi-
cantly different when participants were solving obfus-
cated questions as compared to clarified questions. In
addition, we calculated results from Equation (1) by
grouping the channels into frontal and parietal regions
(Figure 2 in Section 2.2), along with a paired t-test for
both frequency bands within each region. We refer to
this as the results from the frontal and parietal regions.

Our findings are presented in Table 6. First, all values
in ERDobfuscated and ERDclarified columns are negative.
This indicates ERD instead of ERS, i.e. desynchronised
neuron oscillations were detected during the task
period. Since we expected a higher cognitive load during
Code Comprehension, this is consistent with previous
findings (Antonenko and Niederhauser 2010) where a
higher cognitive load was associated with desynchroni-
sation. Second, every p value, including those from
overall and frontal/parietal regions, indicates that the
differences between ERDobfuscated and ERDclarified are
not significant. We further compared the relative
changes in ERD values, or ERDdiff , as follows:

ERDdiff = ERDclarified − ERDobfuscated (2)

We expected that all ERDdiff would be greater than zero; if
all obfuscated snippets cause higher cognitive load, then
ERDobfuscated should be smaller than ERDclarified. The
values of ERDdiff are also shown in Table 6. Results
show that in the alpha frequency band, all ERDdiff values

are positive, but in the theta frequency band two values
are negative. Prior work by Klimesch et al. (1997) showed
that ERD in the alpha frequency band is often associated
with processing semantic information. Therefore, ERDdiff

in the alpha frequency band may be a better indicator of
higher cognitive load during program comprehension.

Key Takeaway: Data from both frequency bands
suggests a higher cognitive load during program compre-
hension. There is, however, no overall evidence that every
obfuscated snippet induces a larger cognitive load than
every clarified snippet. This is particularly troublesome
because several prior studies have shown that stronger
brainwave signals in the theta frequency are associated
with higher cognitive load (Krause et al. 2000; Crk, Kluthe,
and Stefik 2016; Kosti et al. 2018). Our results so far suggest
that either none of the obfuscated snippets correlate with
higher cognitive load or only some do. This propelled us
to take a look at the data by individual atom types.

5.2.3. RQ2: do all atom types affect EEG readings in
a similar way?
A summary of our experiment design is shown in Figure
6. To answer this question, we first separated the ERD
values by atom type and compared ERDdiff in both fre-
quency bands (Section 5.2.3.1). Then we grouped
ERDdiff in all channels into frontal and parietal regions
(Section 5.2.3.2), and, finally, we looked at atoms that
had no effect on ERDdiff .

5.2.3.1 Overall significance:.We first separated the ERD
values by atom type, and compared ERDdiff in alpha and
theta frequency bands. The results are shown in Table 7.
As explained in RQ1, ERDdiff is expected to be greater
than zero, which is shown by a ✓ in the Expected col-
umns in the table. If a paired t-test shows a significant
difference between ERDobfuscated and ERDclarified, this is
indicated by a ✓ in the Significant columns.6 Insignifi-
cant differences are not shown.

Figure 5. Summary of experiment design, RQ1.

Table 6. Comparison of ERD by question types in overall, frontal region and parietal region.
Frequency band Region ERDobfuscated ERDclarified ERDdiff p

Alpha Overall −32.19629 −31.1932 1.00309 0.8852
Frontal −34.2 −32.74 1.46 0.8387
Parietal −35.52475 −33.06558 2.45917 0.7346

Theta Overall −29.6218 −31.90715 −2.28535 0.485
Frontal −32.443 −34.973 −2.529 0.513
Parietal −32.886 −32.557 0.329 0.943
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The results, as summarised in Table 7, show that
three out of six atom types, Logic as Control Flow,
Type Conversion and Preprocessor in Statement, have
a significant ERDdiff in both frequency bands. Surpris-
ingly, for Type Conversion, the clarified questions
incurred a significantly higher cognitive load than the
obfuscated ones in both frequency bands, shown as [

, ] in the Expected and Significant columns. We
next discuss this unexpected result.

Type Conversion. An example snippet pair for this
atom is shown in Figure 7. The obfuscated snippet in
Figure 7(a) requires converting the value of the integer
variable V1 to a type of char. The result is the same as
V1%256 in Figure 7(b), due to overflow. The char type
in C only has 8 bits, therefore a maximum ASCII value
of a character is 255. Since an int variable contains
more bits than a char, any integer greater than 255
will be rounded up to V1%256, or V1%28.

Participants may overlook the fact that in Figure 7(a),
an integer is assigned to a character variable, and thus
they did not perceive the obfuscated question to be

difficult (also seen in Table 3). In turn, they printed
the integer value directly. However, Figure 7(b) requires
computing a modular operation V1%256, which would
incur a higher cognitive load and result in a negative
ERDdiff . Previous studies have associated ERD in the
alpha frequency band with task difficulty (Petsche,
Pockberger, and Rappelsberger 1984; Sterman et al.
1994; Gevins et al. 1997) and attention (Sergeant,
Geuze, and Van Winsum 1987; Kelly et al. 2006). As
Type Conversion also exhibited unexpected significance
in the alpha frequency band, we speculate that partici-
pants underestimated the complexity of the code. As a
result, their level of attention was reduced and so they
did not notice that the code required a conversion.

5.2.3.2 Significance by region:. Next, we grouped ERDdiff

in all channels into frontal and parietal regions. The results
are shown in Table 8. The Exp columns show whether
ERDdiff is greater than zero, as expected. The Sig columns
show if there is a significant difference between
ERDobfuscated and ERDclarified. For ease of reading, insignifi-
cant differences are not shown.7 The results show that the
changes are more pronounced in the alpha frequency
band than in the theta frequency band when cognitive
load is expected to be higher. Cognitive load measures
from two atoms (Type Conversion and Assignment as
Value) are significantly different, but not in the way that
we expected. The differences in cognitive load in two
atoms (Post-Increment/Decrement and Change in Literal
Encoding) were not significant. We explain briefly the
possible reasons below for three of these four atoms, as
Type Conversion has already been discussed above.

Atom with an Unexpected Significant Effect: Assign-
ment as Value. An example snippet pair is shown in
Figure 8. In Figure 8(a), the condition (V1 = 0) in the
if statement is an assignment, and evaluating any
assignment operation always results in a logical true.
In Figure 8(b), the condition if (V1) requires that

Figure 6. Summary of experiment design, RQ2.

Table 7. ERDdiff by atom type. The expected columns show
whether ERDobfuscated is smaller than ERDclarified, i.e. ERDdiff is
positive and thus expected. The significant columns show
whether the difference between ERDobfuscated and ERDclarified is
significant. For ease of reading, insignificant differences are
not shown. Unexpected but significant results are in red and
circled, like and .

Atom type Alpha Theta

Expected Significant Expected Significant

Logic as Control Flow ✓ ✓ ✓ ✓
Type Conversion

Preprocessor in
Statement

✓ ✓ ✓ ✓

Assignment as Value
Post-Increment/
Decrement

Change of Literal
Encoding

Figure 7. Examples of type conversion atom: (a) Obfuscated and (b) Clarified.
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participants evaluate it as if (V1 != 0). The fact that
participants correctly answered only 15% of the snippets
like Figure 8(a), but 75% of the snippets like Figure 8(b),
indicate that most overlooked the condition in if (V1 =
0) and read it as if (V1 == 0). This misinterpretation
is also reflected by an average reaction time of 15.1 s for
obfuscated snippets, but 21.4 s for clarified snippets
(Table 2). Therefore, participants mistakingly perceived
the obfuscated snippets to be easier. This resulted in a
negative ERDdiff .

Atoms with No Significant Effect: In Tables 7 and 8,
Post-Increment/Decrement and Change of Literal
Encoding had no effect on EEG data. For these two
atoms, we offer the following reasoning.

Post-Increment/Decrement. An example snippet pair
is shown in Figure 9. A post-increment operator is used to
increase the value of a variable after the statementhas been
evaluated. In Figure 9(a), variable V1’s initial value 2 is
first used in the expression int V2 = 3 + V1++; and
then increased to 3. In Figure 9(b), V1++ is in a single
statement, so there is no ordering issue that canpotentially
create confusion. From the drastically different accuracy
rates (30% for obfuscated snippets and 80% for clarified
snippets), and the significant differences in participants’
perceived confidence and difficulty levels (Table 3), it is
clear that participants had a hard time solving the

obfuscated snippets, and correctly perceived that level of
difficulty. However, the reaction time does not show a sig-
nificant difference in how much time was spent on the
snippet. The data suggests that the participants were
aware of the ordering issue but were unable to solve the
obfuscated snippets as accurately. They may have realised
the existence of an atom,but lacked theknowledge to solve
it. As a result, their answers were likely educated guesses,
which could explain the insignificant differences in cogni-
tive load in Tables 7 and 8.

Change of Literal Encoding. An example snippet pair
is shown in Figure 10. In Figure 10(a), the integer variable
V1 is assigned an octal value013. However, whenV1 gets
printed in the following statement, it should be displayed
as a decimal value, indicated by %d in printf. In Figure
10(b), the integer variableV1 is both assigned and printed
as decimal. The obfuscated snippet looks very similar to
the clarified one at first glance. In Figure 10(a), partici-
pants might not have been aware of the encoding and for-
matting differences. If participants were not able to
distinguish between the two, the type of code snippet
would have no influence on cognitive load during code
comprehension, as shown by the accuracy rates (90% for
the clarified snippets and 0% for the obfuscated snippets),
and the insignificant differences in Tables 7 and 8.

Key Takeaway: Looking at ERDdiff by atom types
confirms the premise that atoms affect brain activities
differently. Some atoms create significantly different
cognitive load between its obfuscated and clarified ver-
sions. However, there are also atoms where the differ-
ence is not significant, and where EEG data cannot
distinguish between obfuscated and clarified snippets.
It seems the ERD changes in the frontal region is
where the difference is most appreciable.

5.2.4. RQ3: Do EEG readings correlate with
participants’ reaction time, perception of code
difficulty and confidence in responses?
To answer this research question, we use the experiment
design summarised in Figure 11.

This research question looks for the relationship
between performance measures and the physiological

Table 8. ERDdiff by atom type in frontal and parietal regions. The
Exp columns show whether ERDobfuscated is smaller than
ERDclarified, i.e. ERDdiff is positive and thus expected. The Sig
columns show whether the difference between ERDobfuscated

and ERDclarified is significant. For ease of reading, insignificant
differences are not shown. Unexpected but significant results
are in red and circled.

Atom type Frontal Parietal

Alpha Theta Alpha Theta

Exp Sig Exp Sig Exp Sig Exp Sig

Logic as Control Flow ✓ ✓ ✓ ✓ ✓ ✓
Type Conversion fx1
Preprocessor in Statement ✓ ✓ ✓ ✓
Assignment as Value fx2
Post-Increment/
Decrement

Change of Literal
Encoding

Figure 8. Examples of assignment as value atom: (a) Obfuscated and (b) Clarified.
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data. Because ERDdiff between the two question groups
was not significant (RQ1) and there was no significant
difference in reaction time, perceived confidence and
difficulty levels, one might assume that solving the
obfuscated snippets did not increase the cognitive load
of the participants. Yet, the poor accuracy rate for obfus-
cated questions and ERDdiff in some atom types suggest
that at least a few of these questions challenged the cog-
nitive load of participants, even if they were unaware at
the time that they were working harder.

As shown in Table 9, the correlation between the
ERD values and performance measures was only signifi-
cant with reaction time ( p , .05). Specifically, reaction
time had a significant negative correlation (between
−0.7166 and−0.9378) with ERD values across both fre-
quency bands in overall, frontal and parietal regions.
This strong correlation suggests that the more time par-
ticipants spend solving a question, the higher the cogni-
tive load will be.

We further broke down the reaction time by question
types, i.e.obfuscated and clarified, as shown in Table 10.
For obfuscated questions, ERD values were significantly
correlated with reaction time across all frequency bands
in all regions; for clarified questions, however, there was
no significant correlation in either frequency band in the
parietal region. The table also shows that the desynchroni-
sation in the frontal regionwashighly correlatedwith reac-
tion time. The lack of significant correlation in the parietal
region for clarified questions could be attributed to the fact
that the relevant cognitive activities of simple logic and
arithmetic may be localised in the frontal region (Dehaene

and Cohen 1995; Burbaud et al. 1999). As these activities
arenot present in the parietal region, it remains unaffected.

KeyTakeaway:AsERDvalueswere significantly corre-
latedwith reaction time, our results partially reject our null
hypothesis H0. In evaluating these findings, however, it is
important to remember that two of the performance
values, perceived confidence and difficulty levels, are self-
ranked. Given that the participants in our study were stu-
dents whose experience with C was somewhat limited,
these results might suggest an inability to correctly judge
complexity, or that participants had their own criteria for
rating confidence and difficulty levels that differed from
how much time they spent on a question.

5.3. Summary of results

It seems natural to hypothesise that when people are con-
fused or challenged by a problem, they work harder men-
tally to solve the problem. In doing so, we expect to see an
increase in their cognitive load, which should manifest
itself in other ways as well, such as the amount of time
spent on the problem (Haga, Shinoda, and Kokubun
2002). If one looks only at our results from the combined
obfuscated vs. clarified groups (RQ1), however, it does not
support these hypotheses. Despite scoring significantly
lower in obfuscated compared to clarified questions,
there was no significant aggregate difference in reaction
time, self-reported confidence or assessment of difficulty.
Likewise, our physiological data did not support the pre-
mise that ‘all obfuscated snippets are cognitively demand-
ing’ (RQ2).

Figure 9. Examples of post-increment/decrement atom: (a) Obfuscated and (b) Clarified.

Figure 10. Examples of change of literal encoding atom: (a) Obfuscated and (b) Clarified.

Figure 11. Summary of experiment design, RQ3.
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Instead, our results suggest individual atoms will affect
cognitive load in programmers to very different degrees.
Therefore, using performance measures, as we did in our
previous studies, does not provide enough information to
capture the reason why programmers make mistakes.
While the physiological data we gathered suggests that
some atoms might be inherently mentally-demanding,
others may be problematic for other reasons. Given the
experience levels of our participants, we believe they
struggled because they do not have the knowledge or
experience to be aware of the challenges inherent in
these snippets, or know how to address them.

Taken together, our data suggests that understanding
how programmers interpret and understand code can
best be achieved by utilising both approaches. Though
EEG-based physiologicalmeasurement appears to provide
more useful insights than the performance measures, it
would be impossible to understand the psychology of pro-
gram comprehension only from EEG signals. If a partici-
pant cannot discern any difference between an
obfuscated snippet and a clarified one, there would be no
neural signatures for us to discern. Rather than relying
on one strategy, researchers should develop tests that can
use the benefits of both. The performance measurement
tells us whether the participants can perform program
comprehension correctly, and the physiological measures
tell us whether the task is cognitively demanding.

6. Discussion

While our results showed high cognitive load correlated
to poor performance in a few instances, we were a bit
surprised to see this correlation did not hold true in

every case. There were enough instances where per-
formance scores were poor but cognitive load was low
to suggest that other factors, such as a lack of experi-
ence, or flaws in the way participants learned about cer-
tain operations might be the cause. Below are ways both
types of performance barriers can be mitigated, particu-
larly for novice developers.

Avoiding/mitigating atoms that have a high cogni-
tive workload: For certain atoms, a higher cognitive
load seems to positively correlate with higher error
rates. Therefore, designers of programming tools, like
integrated development environments (IDEs) or version
control systems, can utilise this information to help
developers avoid these atoms whenever possible. Mod-
ern IDEs already incorporate real-time notifications
and warnings, so atoms with a high potential for taxing
cognitive load could trigger an alert. The programmer
can then modify the code accordingly.

Leveraging programming experience: Our findings
suggest that novice programmers may have some blind-
spots that they are not even aware of. Modern IDEs
allow users to customise the appearance and layout of
the tools they use. But when it comes to how source
code is constructed, these tools are not designed for
users of all experience levels. Giving students or novice
programmers the freedom to build programs any way
they want could be setting them up to fail. Therefore,
we suggest that designers build programming tools
that account for the skill levels of the programmer by
providing adaptive interfaces that can be made more
flexible as the user gains experience.

Teaching programming languages: Atoms could be
an impediment to a student’s ability to master any new
programming language, therefore it would be wise to
identify what might qualify as an atom in other program-
ming languages, such as Java and Python. Here again,
tests utilising physiological data could help determine
not only if an atom is confusing but also if the cause
might be high cognitive load. Once these types are ident-
ified, programming concepts that include atoms could be
supported for novices through scaffolded instruction.
Students would learn a simpler alternative first and use
that as a building block to mastering the language’s
more cognitively demanding counterparts.

Table 9. Correlation between ERD values and accuracy, reaction time, confidence, and difficulty. Asterisk (*) indicates a statistically
significant difference (p<.05).
Frequency band Region Accuracy Reaction time Confidence Difficulty

Alpha Overall −0.082 −0.7568* 0.3444 −0.2323
Frontal 0.1824 −0.8891* 0.5328 −0.5224
Parietal −0.2386 −0.7238* 0.2557 −0.0788

Theta Overall −0.2024 −0.6727* 0.2619 −0.1954
Frontal −0.0123 −0.7068* 0.28 −0.3676
Parietal −0.3622 −0.6501* 0.249 −0.0539

Table 10. Correlation between ERD and reaction time with
different question types. Asterisk (*) indicates a statistically
significant difference (p<.05).
Frequency band Region Clarified Obfuscated

Alpha Overall −0.7544* −0.9140*
Frontal −0.8440* −0.8533*
Parietal −0.6063 −0.7652*

Theta Overall −0.7157* −0.8079*
Frontal −0.7363* −0.6778*
Parietal −0.4927 −0.7237*
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7. Conclusion

In this paper, we explored the feasibility of using brain-
wave data collected from an EEG device as an alterna-
tive way to understand the code comprehension
processes of programmers. We asked our participants
to predict outputs for small snippets of code that con-
tained ‘atoms of confusion,’ or minimal patterns that
in previous studies had proved confusing to developers.
We found that: (a) measurements of cognitive load are
generally not significantly greater when solving obfus-
cated snippets as opposed to clarified ones, but there
are a few individual atoms where the differences are sig-
nificant, (b) measurements of reaction time, perceived
confidence and perceived difficulty are not consistently
reliable indicators of whether a code snippet should be
labelled as confusing, and (c) readings from the frontal
region of the brain reflect program comprehension-
induced cognitive load better than those from the parie-
tal region.

7.1. Future work

Building on our study, we see several promising
approaches for furthering our understanding of the cog-
nitive processes utilised in programming comprehen-
sion through the use of physiological data. One such
direction could be to use EEG measurements to broadly
categorise atoms by the cognitive activities they require.
Atoms that tend to induce cognitive load could be ident-
ified this way, and then either be removed (e.g. by pro-
viding some type of cues to make the coding issue overt)
or have its effects mitigated (e.g. by suggesting equival-
ent but less cognitively demanding programming fea-
tures). A recent study by Peitek et al. (2018), which
utilised an fMRI device to measure what areas of the
brain were activated as participants completed compre-
hension activities, suggests such a categorisation study
could be effective.

Another approach would be to collect physiological
data from a different modality, such as eye-tracking or
functional magnetic resonance imaging (fMRI), to pro-
vide additional data points for analyses as suggested by
Fritz et al. (2014). Analysing eye-tracking data, along
with data from an EEG device, could help researchers
narrow the source of confusion from a code snippet to
a statement.

Lastly, adding new measurement techniques can help
deepen our overall understanding about program com-
prehension, which is still very limited. While program-
ming style guides provide practical advice for writing
code, the lack of accepted program comprehension
models means there is no way to assess and predict

the readability of a program. As more research studies
harness physiological measurement tools, e.g. Lin et al.
(2016); Fritz et al. (2014); Peitek et al. (2018), the data
that emerges can hopefully be used to build evidence-
based models/metrics that can be used to assess the
readability of program code.

Notes

1. In the study, we use the phrase ‘question type’ when
referring to obfuscated vs. clarified snippets, i.e. code
snippets that contain an atom vs. code with the atom
removed through transformation. We use ‘atom type’
when referring to specific code patterns, such as the
Reversed Subscripts pattern shown in Figure 1.

2. https://www.ioccc.org/
3. To qualify as atoms in our test, the snippets containing

atoms had to be significantly more confusing than their
transformed equivalent. Atom candidates were rejected
if either (1) the atom candidate was not confusing or (2)
the transformation failed to remove confusion.

4. All questions used in the study can be found on our
project page: https://atomsofconfusion.com/2016-
snippet-study/questions.

5. We chose to exclude data from four subjects for two
different reasons. For the first two, we found the brain-
wave recordings contained excessive noise and could
not be used. We corrected this problem by replacing
the laptop used to collect data. Data from two other par-
ticipants were excluded because, for unknown reasons,
the recordings did not have all the expected markers.

6. The raw ERD data that is used to produce Table 7 is
available in Table 1 on http://martinyeh.com/papers/
eeg-appendix.html

7. The raw ERD data are provided in Tables 2 and 3 on
http://martinyeh.com/papers/eeg-appendix.html.
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Appendix. Raw ERD Data

In this section, we present the data that we use to generate the
results in Section 5.2.

Table A1 shows the ERD values of confusing (C) and non-
confusing (NC) questions of each atom type in the alpha and
theta frequency bands, and the p-values of Wilcoxon signed
rank tests. This table helped to create Table 7, where
ERDdiff values in Table 7 were created by taking the differ-
ences between the ERD values of non-confusing and confus-
ing questions in this table.

Tables A2 and A3 helped to create Table 8. They show the
ERD values of confusing (C) and non-confusing (NC) ques-
tions of each atom type, in the alpha and theta frequency
bands, from the frontal and parietal regions, respectively.
They also show the p-values of Wilcoxon signed rank tests.
ERDdiff values in the frontal and parietal regions in Table 8
were created by taking the differences between the ERD values
of non-confusing and confusing questions in Tables A2 and
A3, respectively.

Table A1. ERD values of confusing (C) and non-confusing (NC) questions, and the p values of wilcoxon signed rank tests. An Asterisk
(*) Indicates a Statistically Significant Difference (p<.05). This Table was Used to Create Table 7.

Atom Type Alpha Theta

C NC p C NC p

Logic as Control Flow −68.830204 −47.518116 0.0125* −66.324641 −48.079281 0.0125*
Type Conversion −26.854449 −56.789458 0.0218* −14.198329 −55.035655 0.0166*
Preprocessor in Statement −55.96725 −14.062117 0.0166* −50.577432 −13.48642 0.0125*
Assignment as Value 2.2599107 −29.179533 0.1688 44.377624 −25.499828 0.0469*
Post-Increment/Decrement −43.424223 −42.634 0.9594 −37.90009 −38.784971 0.7989
Change of Literal Encoding 7.4355928 16.747403 0.4446 0.24425831 21.027087 0.0593

Table A2. ERD values of confusing (C) and non-confusing (NC) Questions in the Frontal region, and the p values of wilcoxon signed
rank tests. An Asterisk (*) Indicates a Statistically Significant Difference (p<.05). This Table was Used to Create Table 8.

Atom Type Alpha Theta

C NC p C NC p

Logic as Control Flow −69.28597 −47.41248 0.016605* −66.92232 −49.39089 0.016605*
Type Conversion −26.30449 −57.8885 0.028417* −14.72777 −54.68286 0.028417*
Preprocessor in Statement −58.1835 −15.34719 0.016605* −51.38753 −13.61141 0.012515*
Assignment as Value −1.226459 −29.92357 0.284503 45.47733 −27.61711 0.046853*
Post−Increment /Decrement −43.12748 −39.86822 0.959354 −37.01905 −37.68987 0.798859
Change of Literal Encoding 7.464183 16.86986 0.575062 1.052563 20.01603 0.241121

Table A3. ERD values of confusing (C) and non-confusing (NC) questions in the Parietal region, and the p values of wilcoxon signed
rank tests. An Asterisk (*) Indicates a Statistically Significant Difference (p<.05). This Table was Used to Create Table 8.

Atom Type Alpha Theta

C NC p C NC p

Logic as Control Flow −66.63633 −47.44212 0.010862* −63.14127 −42.85918 0.020879*
Type Conversion −36.06961 −52.93156 0.010862* −20.21382 −57.42015 0.010862*
Preprocessor in Statement −45.55478 −10.91749 0.138641 −46.52172 −14.51278 0.085831
Assignment as Value 11.24293 −26.52273 0.260393 34.71837 −16.21706 0.260393
Post−Increment/Decrement −40.39156 −57.86189 0.173071 −37.04911 −47.41578 0.678402
Change of Literal Encoding 2.936996 7.989058 0.441268 −15.32108 10.15765 0.050612
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