
Trust Evaluation in Mobile Devices:
An Empirical Study

Richard Weiss
The Evergreen State College

Olympia, WA, USA
Email: weissr@evergreen.edu

Andrew Hoffman
Department of Computer Science
Rochester Institute of Technology

Rochester, NY, USA
Email: arh4555@rit.edu

Tao Li
Computer Science and Engineering

New York University
New York, NY, USA

Email: litao.alex@gmail.com

Leon Reznik
Department of Computer Science
Rochester Institute of Technology

Rochester, NY, USA
Email: lr@cs.rit.edu

Darrell Pollard
Department of Computer Science
Rochester Institute of Technology

Rochester, NY, USA
Email: dap2525@rit.edu

Yanyan Zhuang
Computer Science and Engineering

New York University
New York, NY, USA
Email: yyzh@nyu.edu

Albert Rafetseder
Computer Science and Engineering

New York University
New York, NY, USA

Email: albert.rafetseder@univie.ac.at

Justin Cappos
Computer Science and Engineering

New York University
New York, NY, USA

Email: jcappos@nyu.edu

Abstract—Mobile devices today, such as smartphones and
tablets, have become both more complex and diverse. This paper
presents a framework to evaluate the trustworthiness of the
individual components in a mobile system, as well as the entire
system. The major components are applications, devices and
networks of devices. Given this diversity and multiple levels
of a mobile system, we develop a hierarchical trust evaluation
methodology, which enables the combination of trust metrics and
allows us to verify the trust metric for each component based on
the trust metrics for others.

The paper first demonstrates this idea for individual applica-
tions and Android-based smartphones. The methodology involves
two stages: initial trust evaluation and trust verification. In the
first stage, an expert rule system is used to produce trust metrics
at the lowest level of the hierarchy. In the second stage, the trust
metrics are verified by comparing data from components and
a trust evaluation is produced for the combined system. This
paper presents the results of two empirical studies, in which
this methodology is applied and tested. The first study involves
monitoring resource utilization and evaluating trust based on
resource consumption patterns. We measured battery voltage,
CPU utilization and network communication for individual apps
and detected anomalous behavior that could be indicative of
malicious code. The second study involves verification of the trust
evaluation by comparing the data from two different devices: the
GPS location from an Android smartphone in an automobile and
the data from an on-board diagnostics (OBD) sensor of the same
vehicle.

This work was partially supported by NSF grants 1141341, 0834243,
1223588, 1205415, 1241568, and an NYU-AIG (American International
Group) grant. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

I. INTRODUCTION

Android-based mobile devices and smartphones are be-
coming increasingly popular. The number of mobile phones
sold has surpassed the number of laptops, reaching 1.3 billion
in 2014 [1]. Google is reported to have more than a billion
active users of Android-based devices [2]. As their popularity
increases, so does their value as a target for malware. This is
particularly true for low cost smartphones sold in developing
countries. According to [3] some vendors there intention-
ally create conditions facilitating various security violations
on these devices. There are many possible risks associated
with using compromised devices. Nowadays due to universal
interconnectivity and interdependence between devices and
networks, the possible compromise of a mobile device will
affect not only applications on it and its users, but all other
networked computers and communication infrastructure. With
the development of the mobile communication platforms that
share different devices resources, applications and data, vul-
nerabilities and security threat will become more wide-spread.

For mobile devices to communicate with each other and
download apps securely, it is desirable to compute trust metrics
among them. Trust can be modeled at multiple levels, e.g. at
the application level, on a device (hardware and software),
or among a network of devices. Ultimately, our goal is to
integrate these metrics into a single conceptual framework
so that we can reason about complex systems at a higher
level, and we can also use them to verify trust for individual
components. The trust evaluation could be applied to optimize
data collection and communication schemes in order to satisfy
multiple criteria such as data quality, overall system perfor-
mance and/or resource consumption, subject to the constraints

based on security and privacy requirements. Also, the user of a
device may benefit from the trust evaluation as it might provide
useful information about areas in need of improvement. The
trust evaluation could also be combined with other techniques
for non-signature based intrusion detection.

The more sophisticated mobile devices become, the more
complex the threat model is, and the more opportunities there
are for vulnerabilities to appear. Trust evaluation should be
sensitive to the detection of viruses and other malicious agents
in a system. However, finding viruses and other malware
using software signatures is less likely to work. Signature
based intrusion detection systems have to be complemented
with a system-wide approach that involves assessing trust for
the different components by detecting anomalies in sensor-
originated data.

The concepts of trust and trust evaluation have been
discussed by many others [4], [5], [3]; however, it seems that
the problem of quantification is largely unsolved, especially
with respect to complex systems. Yet, the nature of our work
points to ways in which this could be used to produce secure
or trustworthy systems. This paper presents the development of
the novel hierarchical model that enables the evaluation of trust
for a network of mobile devices. Trust evaluation depends on
numerous factors. The hierarchical or umbrella structure allows
for the inclusion of various trust evaluation systems used to
assess diverse trusted components as well as their integration
in order to produce a cumulative trust score. Also, it allows
for extending the framework by inclusion of new trust metrics
and facilitates both self-evaluation for a particular device as
well as the collaborative evaluation of diverse devices and
applications. The paper describes the version developed for
Android-based devices.

The rest of this paper is organized as follows. Section II
describes the framework design principles and an overall
architecture. Also, this section briefly describes a few of the
trust evaluation metrics developed for individual apps and
smartphones that are included in the current implementation.
Details about a few of the trust evaluation metrics are provided
in Section III–V. In particular, Section III discusses metrics for
individual apps based on measuring resource utilization such
as battery voltage, CPU and network bandwidth usage, which
can be done on the smartphone. Section IV describes metrics
based on multiple sensors that impact the level of privacy
supported, and how privacy-enhancing tools can interact with
trust evaluation. Section V discusses the possible ways in
which trust evaluation can be verified and adjusted, based
on multiple sources of data. We show that data collected
simultaneously from a smartphone and on-board diagnostics
(OBD) sensor of an automobile can be used in trust evaluation.

II. FRAMEWORK UMBRELLA ARCHITECTURE AND
DESIGN

A hierarchical trust analysis can look at the entire system
and combine measurements from multiple sources, making it
more powerful than measuring a single component or layer.
The components include smartphone and other mobile devices,
which themselves are composed of applications, OS, and
hardware. The networks of mobile devices form another layer

in the hierarchy. The hierarchical trust analysis includes both
interactions among components at the same level, as well as
interactions across adjacent levels. We could use the term
umbrella because the structure is not a strict containment
hierarchy. For example, an application could be installed on
multiple devices and thus not contained by only one. This
section discusses a comprehensive mechanism that provides
a scalable and extendable methodology of trust evaluation
and analysis, which has been implemented on Android-based
mobile devices.

Trust evaluation of a mobile smartphone device is a com-
plex subject, which depends on multiple characteristics, e.g.
sensor accuracy, the rate at which messages can be encrypted,
and/or the probability of a system’s breakdown over a given
period of time. Its evaluation should integrate various metrics
ranging from the accuracy and reliability of the data sources
to the security of the procedures and tools used. The major
research challenge of the framework design is integrating the
numerous metrics needed to characterize a device’s trustwor-
thiness while working with limited resources and processing
power.

We address this challenge by hierarchically structuring
the composition of trust metrics as well as by designing a
specialized calculus to evaluate the overall trust metric. There-
fore, the major innovative aspect of our framework design
is the integration of a wide variety of indicators and their
evaluation procedures. The framework procedures output the
overall trust evaluation indicators and additionally calculate
the individual metrics characterizing system features, which
could then be used to produce recommendations for improve-
ment. The trust evaluation will facilitate decision-making,
improve performance and increase accountability through the
collection, analysis, and reporting of relevant performance-
related data. This design facilitates the framework extension
through the inclusion of other metrics, as well as the ease
of modification and improvement, as shown in Figure 1.
The current implementation of this framework includes the
following measures and functionality:

1) The analysis of the installed applications through
the application-specific meta-data provided by the
Play store. Applications represent the largest security
and privacy risk to a device and user’s data. The data
provided by the Play store leverages the experiences
of millions of users and holds all data associated with
the distribution of an application including its asso-
ciated documentation. The Play store also provides
meta-information about applications that gives useful
characteristic data about an application. These data
can be used to assess an individual application’s risk.
Rules can be generated to classify each application
into an impact class based on this meta-data. The
combined trust classes of all applications installed on
a device would be used to create a security risk rating
for the device.

2) The usage of security tools embedded into the
operating system and proper preventative secu-
rity practices. Android provides users with many
different tools which increase the security and privacy
of their devices in addition to updates that patch
exposed vulnerabilities. When properly used, these

Fig. 1. Framework operation and architecture.

tools improve the security of the devices. They are
intended to gather a comprehensive overview of the
software running on a mobile device by analyzing
the operating system version and user settings. First,
the operating system is checked to confirm that it is
running the most recent version available. Second, the
personal security settings on the device are examined
to determine if the user is utilizing the appropriate
tools to secure the device. These operating system
verification checks are combined to generate a score,
which is the output of the framework operation.

3) The evaluation of trust based on the level of
privacy provided. The greater the level of privacy
provided by a device, the more trustworthy the de-
vice is. An anomalous value of a device’s internal
sensors can sometimes indicate the existence of a
privacy or security problem that would otherwise be
missed by the other metrics. Most mobile devices
now come equipped with a variety of sophisticated
sensors which are capable of measurements of their
surrounding environment. As the data from these
sensors are used in more security critical applications,
the importance that these data remain accurate and le-
gitimate should not be underestimated. For example,
data from the GPS sensor can be verified to be trust-
worthy and assigned a trust rating. The combination
of ratings from all sensors would produce the device’s
sensor trust score.

The result of applying these metrics is to assign a trust
level to an application based on usage patterns (this is a part
of the overall trust evaluation hierarchy). The classifications
are:

1) Low trust: These applications are considered to have

a low trust evaluation and a high probability of its
negative impact on the overall device security;

2) Moderate trust: These applications are evaluated to
have less negative impact on the overall device secu-
rity;

3) High trust: These applications are considered to have
a high trust evaluation or a low probability of negative
impact on the overall device security.

Unlike other available tools, our framework has an um-
brella structure that allows for integration of diverse trust
evaluation mechanisms by means of a rule-based classification
system. This open architecture can also be extended to include
self-learning capabilities to allow for its optimization towards
a particular device and a criteria set. Each of these procedures
given above generates a rating, which is then integrated into
the umbrella framework. This framework takes into account
the varied landscape of mobile devices and is designed to be
flexible and easily adaptable to a changing security environ-
ment. Based on this design, the contribution of each of the
procedures can be adjusted depending on the target.

We evaluate overall trust based on a separate analysis
of each application. The first step lists all of the applica-
tions installed on the device. After that the manifest file for
each application installed is analyzed in order to fetch the
application name, package name, required features, version,
required permission, path info, date on which the application
was installed and the target SDK version. This information is
used to evaluate trust according to the classification. However,
this is refined using application category. This information
could be retrieved from the Google Play store. The Google
Play store holds all data associated with the distribution of an
application including its APK file and associated documenta-
tion. Following features can be retrieved from the meta-data:

• Number of installs: Total number of installs across the
apps life;

• Number of reviews: Total number of reviews from
unique users;

• Score: User rating of 1.0 to 5.0;

• Developer: Name of the developer;

• Permissions: Which resources can be accessed by the
app.

The first three fields can be used to find an applications
popularity that, when matched with a history of values, shows
user trend information. Although it may not be possible to
determine if an application has a security risk based on this
information, data from a large number of users could be very
reliable, and they can be used in rules in combination with
other data [4].

Here are some examples of rules that are used:

• If number of downloads were low and had low ratings,
the application was classified as low trust.

• If the number of downloads were low and the appli-
cation score was good, the application was classified
as moderate trust.

• If the application had lower recent score in compar-
ison against the previous scores, it was classified as
moderate trust, stating that there was something wrong
with the latest patch released by the developer.

• If the application was from a unknown publisher
with low score and low number of downloads, it was
classified as low trust.

• If the application was from an unknown publisher
with high number of downloads and high score, it was
classified as moderate trust.

III. TRUST EVALUATION METRICS BASED ON
TECHNOLOGICAL PARAMETERS

Anomalous misbehavior of a smartphone may be due to
malicious exploit of an application, the operating system, or
the hardware. In order to detect these anomalies, we first need
to establish baseline measurements for normal behavior. In this
paper, we complement the standard debugging and anomaly
detection techniques and focus on metrics that could be ob-
tained without inspection of the apps source or binary code
due to the very sophisticated obfuscation techniques that will
continue to be developed. We have enhanced some existing
debugging techniques with additional parameter measurements
to inspect app behavior. The three measurements that we chose
are battery voltage, CPU usage, and network usage, which are
easy to collect. The following subsections describe how these
three measurements can be linked to specific applications and
can be used to monitor their behavior and, therefore, adjust
their trust evaluations.

A. Battery voltage

The battery voltage is a proxy metric for the amount of
remaining energy in the battery. Any kind of activity on the

TABLE I. A COMPARISON OF BATTERY USE WITH ANOMALOUS
ADWARE COMPARED WITH NORMAL. THE AD WAS 15 SECONDS.

Time 15s 60s
% of total battery use with ads (avg) 81.4% 53.0%
% of total battery use with ads (max) 86.0% 61.5%

device will result in a change of battery voltage, but the
resolution of readings (both in time and in voltage) only
allows for coarse, averaged measurements under general, non-
lab conditions. If the circumstances can be controlled tightly,
then approaches like Eprof [6] can be used to estimate energy
consumption of individual activities and assign credit to likely
originators.

In the following experiment, the battery voltage was mea-
sured both with and without video ads. The battery voltages
were used to deduce the current being drawn from the battery,
and the data are reported in units of current. The baseline is the
battery consumption for a music app. This was recorded for 15
seconds and 60 seconds, respectively. Then, the measurement
was repeated with both video ads and the music app. The video
ads were only running for the first 15 seconds. The smartphone
consumes only 31.5 mA with no apps running, and 56.5 mA
with the music app running. However, when playing a video
ad, the consumption is 169.5 mA. In the experiment, the video
ad lasted 15 seconds. Over the first 15 seconds, the average
battery use attributed to the video ads was 81% of the total
battery use. This is very significant and would be difficult to
disguise. The data is shown in Table I.

B. CPU usage

Similar to battery voltage, monitoring the overall CPU
usage (which is an operation requiring no special privileges
on Android) can be used to get a coarse-grained overview
of resource utilization. However, the existing debugging and
tracing interfaces permit finer-grained views as well. Assuming
an app is not designed to evade or complicate debugging
deliberately, the Dalvik Debug Monitoring Service (DDMS)
provides insight at the system call level1.

Figure 2 shows a typical session in Traceview, an execution
log viewer of the Android platform. The main thread is doing
almost all of the work and making system calls to request
resources from the operating system. Figure 3 shows what
happens when a video ad starts executing. There is a dramatic
change in activity and the main app thread is no longer the
primary, uniform consumer of CPU cycles. The app under
scrutiny comprises several threads with different temporal
activity patterns. Some threads bear names indicative of their
performed functions. Colored bars in the threads’ activity
timelines further detail system-call-level interactions with app
and system libraries, with the height of sub-bars proportional
to the frequency of specific calls. Other log views (not shown)
list all of an app’s threads, show the call stack for each, and
display cumulated and individual CPU time consumption, and
relative usage.

1In computing, a system call is how a program requests a service from
an operating system’s kernel. This may include hardware-related services
(for example, accessing a hard disk drive), creation and execution of new
processes, and communication with integral kernel services such as process
scheduling [7].

Fig. 2. The Traceview log shows that the WebViewCoreThread is busy, but main thread’s workload is very light. main is responsible for the user interface, in
general. WebView is responsible for rendering ads using the webkit library.

Fig. 3. A trace of the same App with anomalous Ads. Notice that main is doing much more work and there are other threads that are getting significant CPU
time.

C. Network usage

Android provides a number of built-in features that al-
low the observation of a device’s network conditions for
any app granted the ACCESS_NETWORK_STATE permission.
This permission allows applications to access information
about networks. The ConnectivityManager class, an
Android class that answers queries about the state of network
connectivity and network connectivity changes, lets an app
discover the current connectivity status and type (WiFi, 3G,
Bluetooth, Ethernet) [8]. For cellular access such as LTE or
3G, the Android TelephonyManager class provides access
to information about the telephony services on the device and
thus makes further details available. The stateful nature of
cellular data connectivity is reflected by various indicators of
data activity, thereby allowing any app to detect when other
apps transfer data over the cellular interface. The Application
Resource Optimizer project (ARO [9]) and [10] provide further
insights into what is essentially radio resource control (RRC-
based type of diagnostics).

If the device is rooted (i.e., system-level administrator
privileges are granted to the user launching an app), standard
packet tracing tools such as tcpdump can be used to record
the exact data transferred across network interfaces. However,
the precondition is not met on almost any commercial stock

firmware.

When packet-level tracing on the device is infeasible, the
network connection of the device might be tapped instead.
A natural place for this would be a WiFi router acting as the
device’s gateway. Neither on-device nor on-path packet tracing
allow decryption of HTTPS and other encrypted network
traffic. However, at least for HTTPS implementations using
the system libraries, deliberate man-in-the-middle (MITM)
attacks on traffic may be attempted by adding a self-provided
certificate to the system’s certificate storage, and redirecting
outgoing HTTPS traffic to a local proxy server using that
certificate.

IV. TRUST EVALUATION METRICS BASED ON THE
SUPPORTED PRIVACY LEVEL

Privacy is part of trust evaluation. The greater the level of
privacy that an application or device can provide, the greater
its trust evaluation would be. A privacy enhancing system
such as BlurSense [11] can improve the trustworthiness of
an Android device by filtering or restricting the sensor data
that an application can access. In addition, one can apply trust
metrics to automate the application of BlurSense itself. For
example, if an app has a low trust evaluation, then BlurSense
can restrict the sensor data that the app has access to.

A. Motivation

Although the sensing capabilities of smartphones enhance
the convenience of user interfaces and application usefulness,
they also raise serious privacy concerns [5]. For instance,
through accessing sensor data, malicious applications could
retrieve sensitive information about the mobile phone users,
such as location, passwords, and credit card numbers [12],
[13], [14], [15]. They even might be able to send sensitive
information to remote attackers [16], [17]. There has been
alarming news about privacy breaches of personal data on
smart devices: 25% of Android apps in Google Play can
access user’s personal data [18]; an iOS app can auto-post
false piracy accusations on users’ Twitter accounts [19]; apps
could steal sensitive information like passwords using the
smartphone’s motion sensors to determine key taps [12]; and
a huge botnet was discovered that was collecting sensor data
on more than a million end user smartphones [20]. The
Federal Trade Commission (FTC) even recommended that
mobile platforms should provide in-time disclosures to users
of accessing sensitive content on smart devices [21].

B. Applying Trust Metrics to BlurSense

Trust metrics can also be used by privacy enhancing tools
such as BlurSense to limit access to sensor data. The current
access control to the smartphone resources, such as sensor
data, is static and coarse-grained. Take the Android platform
as an example, the access permissions are either granted or
denied completely during the installation of applications based
on a request XML manifest file. As a result, applications
may ask for more permissions than are actually required for
operation. Having been granted the requested permissions,
applications have access to those resources permanently. A
trust metric could be used during installation of an app to
decide whether or not to deny access specified in its manifest
file. A better approach is to restrict access to sensor data in a
dynamic and fine-grained framework. Some systems that have
been proposed to address this issue require modifications to
the Android platform [22], [23]. This increases the cost of
maintenance, is less flexible and cannot be used in legacy
systems. In addition, the user would need to trust that the new
operating system is not malicious and is not more vulnerable
than the standard one.

The BlurSense project deals with this problem of fine-
grained control of sensor data by requiring that all untrusted
apps be installed through an app that filters sensor data through
a reference monitor [11], as shown in Figure 4. The policy
for filtering can be set by the user based on a trust metric.
The reference monitor can exercise fine-grained control to
degrade the accuracy of the sensor data, render it completely
meaningless, or pass it through unchanged. In the case of
geolocation, GPS measurements can be set to the center of
the nearest large city or random noise can be added. Another
approach would be to allow the user to decide whether to
install the app or not, based on the trust evaluation. The
reference monitor approach poses less risk than others; the
worst that can happen is that the app will have the same
access to the sensor data that is permitted by the manifest
file. In the best case, BlurSense would limit the access to
sensor data based on a combination of trust metrics for the app.
BlurSense is currently able to filter data on battery level, CPU

Kernel Space

Android Platform

User Space

App 1 App 2

Accelerometer Gyroscope

Android Permission Check Reference
Monitor (First Defensive Line)

User Interface

Policy Management

Reference Monitors
(Second Defensive Line)

(1)

(2) (3) (4)

(1)-request is blocked by Android RM
(2)-returned data are blurred by our RMs
(3)-returned data pass through our RMs
(4)-request pass through Android RM,
 but blocked by our RMs

Fig. 4. System architecture based on reference monitors.

usage, geolocation (latitude, longitude, altitude, accuracy, and
speed if available), and network related measurements such as
mobile network type and operator, nearby WiFi access point
and Bluetooth devices.

V. TRUST EVALUATION TESTING AND VERIFICATION

Another form of trust evaluation is verification based on
the use of sensors on multiple devices [24]. For example, a
smartphone may communicate directly with a smart watch or
on-board diagnostics (OBD) sensor on an automobile. These
other devices have sensors with the same functionality as some
of the sensors on the smartphone. If there is a discrepancy in
the sensor measurements, the trust evaluation of the device can
be reduced unless it can be determined that the trust metric
for the external sensor data is low. We introduce a case where
smartphones communicate with an in-vehicle OBD sensor to
get geolocation information, such as speed, engine RPM, fuel
consumption, etc.

A. Vehicle data collection

Vehicular data collection consists of a process on a mobile
device that directly communicates with in-vehicle sensors and
collects sensor data [25]. Data can be encrypted and transferred
to a centralized server for permanent data storage. To deploy
such a process on a mobile device, a device owner first installs
an app [26] on their device2. Since we are interested in
vehicular data, the target group of device owners are also the
vehicle owners. An owner simply inserts a WiFi OBD [27]
sensor into the car’s OBD port (located under the steering
wheel), and connect a smartphone or tablet to the sensor,
which also runs as a WiFi access point [28]. Note that OBD
systems are available in most cars and light trucks on the road
today [29]. Trust evaluation could be used to determine if the
phone should trust the car, or vice versa, as well as whether
the user should trust the combined system.

The vehicular data is uploaded to a remote server by the
app which runs in the background of the mobile device and

2Currently, Android smartphones and tablets are supported.

TABLE II. SPEED COMPARISON: GPS SPEED COMPARING TO
OBD SPEED.

GPS speed Vehicle speed Speed difference
Med 53.0 kph 54.9 kph 2.15 kph
STD 12.79 kph 13.61 kph 4.57 kph

Fig. 5. Speed difference and accuracy.

communicates with an in-vehicle OBD sensor. The device
owner need not worry about having to interact with the app
or about being interrupted while using the smartphone. Note
that all code runs in a secure sandbox in our app [26], which
limits the amount of storage, network, memory, battery, and
CPU resources used by that code [30]. To protect the end
user’s device from malicious attackers, the sandboxed code is
securely isolated from other programs on the same device. Any
bugs in the code will be contained in the sandbox, and will
not affect the rest of the user device [30].

At the remote server, the vehicular sensor data collected
from multiple end user devices is stored in a non-relational
database. The collected data is stored in JSON format. The
collected data set can be visualized on Google Maps to
identify fuel efficient routes, routes with higher traffic activity.
Furthermore, the data set could also be used to detect reckless
or illegal driving behaviors, in which case trust metrics would
be significant.

B. Geolocation data analysis

Using the aforementioned measurement, we collected
speed data from both GPS on the smartphone inside a vehicle,
and the speed via the OBD sensor. The data from these
two sources can corroborate to verify normal or abnormal
geolocation data. Table II shows the median and standard
deviation of the speed measured by GPS and OBD sensor, over
58 data samples collected. The overall statistics do not show
any anomaly in speed. However, when plotting individual data
samples, we can see a data outlier in Figure 5. Excluding this
point, the rest of the data samples roughly follow a Gaussian
distribution. This outlier seems to be due to the initialization
of the GPS sensor. Initially, the GPS parameters are under-
constrained, leading to a large geolocation error that is then
rapidly reduced as more measurements are made.

Fig. 6. The difference between the OBD sensor speed and GPS speed
decreases slightly as vehicle speed increases.

Fig. 7. After the initialization of the GPS sensor, the difference between the
OBD sensor speed and GPS speed remains between 0 and 12 kph.

To further investigate the speed data, we plot the differ-
ences between vehicle speed and GPS speed, and compare
the differences against the varying vehicle speed. As shown in
Figure 6, the speed differences vary linearly with the vehicle
speed (other than the outlier), i.e., the higher the vehicle speed,
the smaller difference between vehicle speed and GPS speed.
A minimum mean square error (MMSE) linear fit is shown in
the figure.

We also investigate the vehicle and GPS speed differences
over time, as shown in Figure 7. From the figure, we can
conclude that excluding the outlier, the differences between
vehicle speed and GPS speed fluctuate around a constant value
over time.

VI. CONCLUSION

With the growing number of mobile devices owned by or-
dinary citizens all around the world and an increase in network
connectivity and data provided, the problem of evaluating trust
becomes more complex. The risks to the quality and security
of data and devices become greater and more important to

investigate and evaluate. The umbrella trust evaluation frame-
work that we have developed includes procedures and tools to
evaluate trust in mobile devices and applications, in particular
in Android-based smartphones. The hierarchical structure of
the framework allows for incorporating multiple diverse factors
affecting trust evaluation as well as facilitating its extension.
The current framework version includes evaluation procedures
based on the analysis of the following factors: the applications
installed and executed, the devices operating system settings
and configuration, the level of privacy supported by the devices
and applications, the patterns of the battery drain and CPU and
network bandwidth usage, and the corroboration of sensor data
by external sensors.

This empirical study demonstrates a significant difference
between the change of voltage in the cases of an execution of
normal applications and the same applications with embedded
advertisements. Additional observations produced distinctive
patterns of the CPU and network use. The framework includes
not only the trust metrics but also the rules for their combina-
tion into a trust evaluation and the methods of its verification.
Trust verification and adjustment could be performed through
comparison of data received from different data sources on
the same device as well as by comparing the data originated
from various devices. A significant discrepancy between data
originated from various sources should result in decreasing
trust assessment for the corresponding data sources and de-
vices. In the paper, we have described a comparative study
of the speed measurements obtained from a vehicle on-board
diagnostics (OBD) sensor and the speed calculated with the
GPS location sensor measurements. This illustrates how the
framework could be employed not only for trust evaluation
but also for detecting various anomalies, which might reflect
malicious attacks against the mobile devices.

REFERENCES

[1] “Smartphone OS Market Share, Q4 2014.” http://www.idc.com/
prodserv/smartphone-os-market-share.jsp. Accessed: June 29, 2015.

[2] “Google: We Have 1 Billion Monthly Active
Android Users.” http://www.businessinsider.com/
google-we-have-1-billion-monthly-active-android-users-2014-6.
Accessed: June 29, 2015.

[3] M. Zheng, M. Sun, and J. Lui, “Droidray: a security evaluation system
for customized android firmwares,” in Proceedings of the 9th ACM
symposium on Information, computer and communications security,
pp. 471–482, ACM, 2014.

[4] Y. Jing, G.-J. Ahn, Z. Zhao, and H. Hu, “Riskmon: Continuous and
automated risk assessment of mobile applications,” in Proceedings of
the 4th ACM Conference on Data and Application Security and Privacy,
pp. 99–110, ACM, 2014.

[5] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer,
“Google android: A comprehensive security assessment,” Security &
Privacy, IEEE, vol. 8, no. 2, pp. 35–44, 2010.

[6] A. Pathak, Y. C. Hu, and M. Zhang, “Fine grained energy accounting
on smartphones with eprof,” EuroSys’ 12, 2012.

[7] “System call.” https://en.wikipedia.org/wiki/System call. Accessed:
June 29, 2015.

[8] X. Che, X. Ju, and H. Zhang, “The case for addressing the limiting
impact of interference on wireless scheduling,” in Network Protocols
(ICNP), 2011 19th IEEE International Conference on, pp. 196–205,
IEEE, 2011.

[9] “Application Resource Optimizer (ARO).” https://github.com/
attdevsupport/ARO. Accessed: June 29, 2015.

[10] F. Ricciato, A. Coluccia, and D. A., “A review of dos attack models
for 3g cellular networks from a system-design perspective,” Computer
Communications, vol. 33, no. 5, pp. 551 – 558, 2010.

[11] J. Cappos, L. Wang, R. Weiss, Y. Yang, and Y. Zhuang, “Blursense:
Dynamic fine-grained access control for smartphone privacy,” in Sensors
Applications Symposium (SAS), 2014 IEEE, pp. 329–332, IEEE, 2014.

[12] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs on smart-
phone touchscreens using on-board motion sensors,” in Proceedings
of the fifth ACM conference on Security and Privacy in Wireless and
Mobile Networks, pp. 113–124, ACM, 2012.

[13] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury,
“Tapprints: your finger taps have fingerprints,” in Proceedings of the
10th international conference on Mobile systems, applications, and
services, pp. 323–336, ACM, 2012.

[14] N. Xu, F. Zhang, Y. Luo, W. Jia, D. Xuan, and J. Teng, “Stealthy
video capturer: a new video-based spyware in 3g smartphones,” in Pro-
ceedings of the second ACM conference on Wireless network security,
pp. 69–78, ACM, 2009.

[15] L. Cai and H. Chen, “Touchlogger: inferring keystrokes on touch screen
from smartphone motion,” in Proceedings of the 6th USENIX conference
on Hot topics in security, pp. 9–9, USENIX Association, 2011.

[16] R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia, and
X. Wang, “Soundcomber: A stealthy and context-aware sound trojan
for smartphones.,” in NDSS, vol. 11, pp. 17–33, 2011.

[17] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp) iphone:
decoding vibrations from nearby keyboards using mobile phone ac-
celerometers,” in Proceedings of the 18th ACM conference on Computer
and communications security, pp. 551–562, ACM, 2011.

[18] “More Than 25% of Android Apps Know Too Much
About You.” http://yro.slashdot.org/story/12/11/02/1316238/
more-than-25-of-android-apps-know-too-much-about-you. Accessed:
June 29, 2015.

[19] “App Auto-Tweets False Piracy Accusations.” http://yro.slashdot.org/
story/12/11/13/2249203/app-auto-tweets-false-piracy-accusations. Ac-
cessed: June 29, 2015.

[20] “China mobile users warned about large botnet threat.” http://www.bbc.
co.uk/news/technology-21026667. Accessed: June 29, 2015.

[21] “US Wants Apple, Google, and Microsoft To Get a Grip On
Mobile Privacy.” http://yro.slashdot.org/story/13/02/02/2124204/
us-wants-apple-google-and-microsoft-to-get-a-grip-on-mobile-privacy.
Accessed: June 29, 2015.

[22] M. Conti, V. Nguyen, and B. Crispo, “Crepe: Context-related policy
enforcement for android,” Information Security, pp. 331–345, 2011.

[23] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: retrofitting android to protect
data from imperious applications,” in Proceedings of the 18th ACM
conference on Computer and communications security, pp. 639–652,
ACM, 2011.

[24] X. Ju, H. Zhang, and D. Sakamuri, “Neteye: a user-centered wireless
sensor network testbed for high-fidelity, robust experimentation,” Inter-
national Journal of Communication Systems, vol. 25, no. 9, pp. 1213–
1229, 2012.

[25] “Sensibility Testbed.” https://sensibilitytestbed.com/. Accessed: June
29, 2015.

[26] “Sensibility Testbed, Google Play Store.” https://play.google.com/store/
apps/details?id=com.sensibility testbed. Accessed: June 29, 2015.

[27] “On-board diagnostics.” http://en.wikipedia.org/wiki/On-board
diagnostics. Accessed: June 29, 2015.

[28] M. Reininger, S. Miller, Y. Zhuang, and J. Cappos, “A first look at
vehicle data collection via smartphone sensors,” in Sensors Applications
Symposium (SAS), 2015 IEEE, IEEE, 2015.

[29] “Does My Car Have OBD-II?.” http://www.obdii.com/connector.html.
Accessed: June 29, 2015.

[30] J. Cappos, A. Dadgar, J. Rasley, J. Samuel, I. Beschastnikh, C. Barsan,
A. Krishnamurthy, and T. Anderson, “Retaining sandbox containment
despite bugs in privileged memory-safe code,” in Proceedings of the
17th ACM conference on Computer and communications security, CCS
’10, (New York, NY, USA), pp. 212–223, ACM, 2010.

