HANDS-ON INTERNET WITH SEATTLE AND COMPUTERS

FROM ACROSS THE GLOBE’

Scott A. Wallace Monzur Muhammad
Washington State University — Polytechnic Institute of New York
Vancouver University
Vancouver, WA 98686 Brooklyn, NY 11201
wallaces@vancouver.wsu.edu monzum@cs.washington.edu

Justin Cappos

Jens Mache Polytechnic Institute of New York
Lewis & Clark College University
Portland, OR 97219 Brooklyn, NY 11201
jmache@lclark.edu Justinc@cs.washington.edu
ABSTRACT

The Internet Connectivity module is a short assignment covering distributed
computing and networking. The Internet Connectivity module is part of the
curriculum created for the Northwest Distributed Computer Science
Department and is built upon the Seattle distributed computing platform. In
this paper, we describe the module and illustrate how Seattle facilitates
networking projects and experiments that use computers/resources from across
the globe. In addition, we describe how the Internet Connectivity module was
used in two courses, provide some comments on students' reactions to the
project, and conclude with suggestions for faculty considering how to use this
module in their future courses.

INTRODUCTION

Designing an innovative course curriculum is a time-consuming and challenging
task for faculty anywhere. At smaller institutions, the resources of both faculty and

" Copyright © 2011 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

137

JCSC 27, 1 (October 2011)

departments are often limited. Yet smaller institutions play a significant role educating
over 50% of the computing undergraduates nationwide [2].

"The Northwest Distributed Computer Science Department" (NWDCSD) [3] was
formed to help address some of the resource challenges faced by Computer Science
faculty at small institutions. This community now involves 19 active participants (those
attending 3 or more events) from 14 institutions that have been working together to build
and share reusable course projects that are compelling to students and that can be adopted
by faculty without a major curricular change.

Over the past three years, the community has developed a number of curriculum
modules (16 at the time of writing) that target students in one of two ways. For those
already in the major, modules intend to bring interesting and contemporary projects into
the classroom with relatively low barriers of entry for instructors. For non-computer
science students, modules aim to introduce one or more aspects of computational thinking
and to provide students with a better-developed view of the field.

In this paper, we discuss a short (one or two hour) curricular module targeted toward
computer science students and focused on Internet connectivity issues. In the following
section, we describe the Internet Connectivity module and the Seattle platform upon
which it is built. Next, we describe briefly how it was used in two different classes over
the last two years and comment on both student and faculty perceptions from those two
years of usage. Finally, we conclude with suggestions for future use.

THE INTERNET CONNECTIVITY MODULE & SEATTLE

The Internet is stitched together by diverse network technologies. Due to this
diversity, some properties of the Internet simply cannot be observed or simulated with a
local-area network (LAN). The Internet Connectivity (IC) module lets the students
experience first hand interesting characteristics about the connectivity of the Internet.
Participants will become familiar with network properties such as non-transitive
connectivity, forwarding and routing, Internet WAN latencies, and NAT (network address
translation).

The IC module is part of a larger networking/distributed systems research and
educational platform called Seattle [1]. Seattle is a peer-to-peer platform upon which
students and researchers can run their own code on end-user devices distributed across
the world. Since these are real everyday devices that are used by the community, Seattle
users are able to observe real Internet behavior when running software on the Seattle
testbed. Users are able to experience the exact behavior that a device on the Internet has
rather then just a simulation. Seattle allows users to donate, share and obtain resources
in order to run various experiments in a secure and scalable manner. Similar platforms
such as PlanetLab [4] provide users high end VM machines spread across the world but
they do not provide the level of diversity that Seattle provides. Unlike PlanetLab, which
runs on dedicated machines, Seattle can and does run on a diverse set of devices.
Specifically, Seattle provides users with nodes that include laptops and mobile phones
as well as devices that lay behind NATs. Thus, the systems involved in a Seattle
experiment at any given time are likely to encompass many different device types,
operating systems and connectivity bandwidths.

138

CCSC: Northwestern Conference

In this paper, we focus our attention on the Internet Connectivity module-a short
assignment that can be completed in one or two hours. The Internet Connectivity (IC)
module walks participants through a series of steps that involve acquiring
resources/computers from around the world, executing programs on these machines, and
logging information from the runs. The IC module includes a program that students run
to create a matrix of ping times between all the machines involved in the experiment.
Below, we describe the module in more detail and provide command-line segments
showing how some of these tasks are performed with Seattle.

Getting Up And Running With Seattle

Students using Seattle for the first time begin by creating an account on
SeattleGENI, a public portal used to manage Seattle resources. From here, students can
acquire resources/machines from the network that can be used to run experiments. The
portal also maintains a user's public key which is used to ensure the integrity of
commands and data sent between machines.

Once resources are acquired through SeattleGENI, students can access these
network nodes using a few simple commands within the Seattle Shell (Seash) [5]. Seash
is a shell specifically designed to communicate and interact with resources that users have
acquired. The following three command lines illustrate the process of: 1) loading a
keypair; 2) informing Seash to perform actions with a specified identity; and 3) searching
for acquired network resources:

!> loadkeys wallaces

!> as wallaces

wallaces@ !> browse

['192.138.213.236:1224"', '129.187.143.100:1224",

'204.85.191.10:1224"', '128.193.33.8:1224"]

Added targets: %1(204.85.191.10:1224:v22),

$2(192.138.213.236:1224:v4), %3(129.187.143.100:1224:v8),

%4(128.193.33.8:1224:v20)

Added group 'browsegood' with 4 targets

In the segment above, only the browse command produces output. Here, we see the IP
addresses of the four available machines that are now ready to run our programs. The
remaining output indicates that we can refer to each machine with a specific alias (%1,
%2, %3 and %4) or address all four target machines with the group name "browsegood".

Performing Tasks on Remote Machines

The Seattle platform executes programs written in a restricted Python language
called Repy [5]. The Repy programming language was developed to provide a certain
amount of security as not to allow any rogue program to access the host system directly.
The language also provides a broad set of API calls that allow a beginning user to quickly
write networking code. This allows the programmer to focus on concepts without getting
lost in the complexity of the socket API. In Seash, executing a Repy program on a
remote machine is a simple one line command:

wallaces@ !> on %1 run helloworld.repy

wallaces@ !> on %1 show log
Log from '204.85.191.10:1224:v22"':

139

JCSC 27, 1 (October 2011)

Hello World

The output from the sample program is stored in a log file that we can retrieve and
display as in the second command above. In addition to addressing a single machine, the
"on" command can be used to address a group by substituting the group name for the IP
address or alias. Seattle also allows users to easily kill remote processes using the "stop"
command.

Measuring Latency Between A Group of Machines

Next, students examine the ping times between remote machines by running the
"allpairsping.repy" program. The program builds (and updates) a matrix of ping times
between each machine running the program as in the following table:

192.138.213.236 04.85.191.10 128.193.33.8 129.187.143.100
192.138.213.236 0.00s D.17s P.09s D.10s
204.85.191.10 0.03s 0.00s 0.09s D.51s
128.193.33.8 0.09s 0.09s P.00s D.19s
129.187.143.100 0.29s D.11s P.40s D.00s

While measuring the connectivity between machines, students may notice a pair of
machines that are unable to communicate with each other. This often occurs when two
machines are unable to directly communicate with each other due to some network
misconfiguration. However there may be an intermediate node that can communicate
with both the nodes that are unable to communicate with each other. This is known as
non-transitive connectivity. Later parts of the IC module illustrate how to overcome this
problem by setting up a packet forwarder so the two nodes that are unable to
communicate directly, can now communicate through the intermediate node.

Packet Forwarding , NATs and Beyond

The IC module further teaches the participants about network address translator
(NAT) nodes and the problems that users may run into when running a network code on
amachine that may be behind a NAT. By the end of the assignment the participant should
know about latency, non-transitive connectivity, packet forwarding and NAT nodes.

The Seattle webpage has an educators portal that provides several other assignments
in addition to the Internet Connectivity module presented here. These assignments cover
more advanced networking concepts such as peer to peer routing and reliable messaging.

TWO YEARS, TWO COURSES

The brevity of the Internet Connectivity module helps to make it a relatively easy
addition to a course whose curriculum is already well established. At the same time, the
resources provided by the Seattle platform allows students (or instructors) to pursue more
advanced distributed computing assignments over the course of multiple weeks.

In 2009, one of us (Mache) offered an information security course to a class of 7
undergraduates (mostly juniors and seniors) at Lewis & Clark College. The instructor
devoted one hour-long class to the IC module in the 8th week of the semester. During this

140

CCSC: Northwestern Conference

period, the instructor demonstrated how to get started with Seattle and the first few steps
of the assignment. Students then completed the module as a homework assignment.

The following year, in 2010, Professor Mache offered a networking/web-based
application development course to 24 undergraduates (again mostly juniors and seniors).
Again, the instructor devoted a one hour-long class (here, in the 11th week) to the IC
module. Unlike the previous year, however, this time students only worked on the module
during course time (in the lab). Due to other pending projects, it was not assigned as
homework. Rather, the IC module was used with the hope that it would encourage some
students to explore the Seattle platform in more depth for their semester project.

In both the 2009 and 2010 courses, we asked students a brief set of seven knowledge
questions before they engaged in the IC module. These questions were intended to obtain
a baseline of student understanding with respect to the concepts that lay at the core of the
module. Our survey asked questions on three areas: symmetry/transitivity; latency; and
network address translation.

We pooled responses from 2009 and 2010 since response sizes were small (7 and
18 students respectively). A good fraction of students demonstrated a priori networking
knowledge by answering at least some of our knowledge questions correctly: one
question on network symmetry (10 of 25), one question on network transitivity (18 of
25), three questions regarding latency (17 of 25, 16 of 25, and 16 of 25 respectively), and
two questions on network address translation (16 of 25, and 3 of 25 respectively). While
these results do demonstrate some clear a priori understanding of the networking
properties covered by this module, there is obvious room for improvement. On average,
students scored only 54% on the pre-module knowledge test. Moreover, even on the
question with the highest correct score, nearly 30% of the students answered incorrectly.
Overall, we feel that this pre-module knowledge assessment demonstrates that while
these networking concepts are not entirely new to students, there is a need for
assignments or projects to help solidify the student's knowledge and understanding.

We had intended to follow up the pre-module knowledge survey with an identical
survey issued after the IC module was completed. However, due to a mix up in 2010, we
only obtained post-test survey results from 2 of the students who took the pre-test. While
our efforts were more fruitful in 2009 (where we obtained post-test results from all 7 of
the pre-test takers), the combined results from all 9 respondents that took both pre and
post tests show only a very modest improvement in test score. Average score increases
slightly from 54% to 59% across the 9 respondents. We expect that we might see more
robust improvements with a larger sample size and hope to be able to explore this more
fully in fall 2011.

Student Perceptions

From the instructor's perspective, it seemed clear that students liked the IC module.
When asked after the fact about the best part of the assignment, responses were varied,
but a prevailing theme involved students actually being able to run code interactively on
resources across the world. This comment typifies the theme:

"I really liked learning about distributed computing in this fashion. It was cool
to see a program [initiated running on 10 foreign machines."

141

JCSC 27, 1 (October 2011)

CONCLUSION AND THOUGHTS ON FUTURE USAGE

The Internet Connectivity module offers a very short introduction to distributed
computing and helps illustrate some core networking concepts. For the instructor, setup
is relatively simple as Seattle requires only python 2.5/2.6 which is standard on most
Linux distributions and comes pre-installed on Mac OS 10.5/10.6.

While both of the course offerings discussed in this paper used the IC module
toward the middle/end of the semester, the authors agree that the IC module is equally
well suited to use at the beginning of the semester. Since the module requires no
programming, it could be used before students have any significant understanding of
networking to illustrate interesting (and perhaps non-obvious) features of the Internet
(e.g., lack of symmetry / transitivity). Used in this manner, the IC module may provide
a hands on illustration of the Internet at work that could help to motivate more
discussions and projects that deal with more advanced networking and distributed
systems concepts. For interested instructors, this would dovetail well with existing Seattle
resources. These modules teach students about more advanced networking and help them
develop real world applications.

ACKNOWLEDGEMENTS

This work is supported in part by the National Science Foundation (NSF) under
award CNS-0829651 and CNS-0834243. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation, GPO Technologies,
Corp., or the GENI Project Office.

REFERENCES

[1] Cappos, J., Beschastnikh, 1., Krishnamurthy, A., Anderson, T., Seattle: A
Platform for Educational Cloud Computing, Proc. of the 40th Technical

Symposium of the ACM Special Interest Group for Computer Science Education
(SIGCSE '09), 111-115, 2009.

[2] Vegso, J., Drop in CS Bachelor's Degree Production, Computing Research News,
18 (2), 2006.

[3] Wallace, S. A., Bryant, R., Orr, G., The Northwest Distributed Computer Science
Department, Journal Computing Sciences in Small Colleges, 25 (1), 143-148,
2009.

[4] Peterson, L., Anderson, T., Culler, D., Roscoe, T., A Blueprint for Introducing
Disruptive Technology into the Internet, Proc. of the First ACM Workshop on
Hot Topics in Networks (HotNets-1), ACM SIGCOMM Computer
Communication Review, 33 (1), 59-64, 2003.

[5] Seattle: Open Peer-to-Peer Computing, 2011, seattle.cs.washington.edu,
retrieved April 20, 2011.

142

