
Bootstrapping Trust in Community
Repository Projects

Sangat Vaidya1(B), Santiago Torres-Arias2, Justin Cappos3,
and Reza Curtmola1

1 New Jersey Institute of Technology, Newark, NJ, USA
{ssv33,crix}@njit.edu

2 Purdue University, West Lafayette, IN, USA
santiagotorres@purdue.edu

3 New York University, New York, NY, USA
jcappos@nyu.edu

Abstract. Community repositories such as PyPI and NPM are
immensely popular and collectively serve more than a billion packages
per day. However, existing software certification mechanisms such as code
signing, which seeks to provide to end users authenticity and integrity for
a piece of software, are not suitable for community repositories and are
not used in this context. This is very concerning, given the recent increase
in the frequency and variety of attacks against community repositories.
In this work, we propose a different approach for certifying the validity
of software projects hosted on community repositories. We design and
implement a Software Certification Service (SCS) that receives certifica-
tion requests from a project owner for a specific project and then issues
a project certificate once the project owner successfully completes a pro-
tocol for proving ownership of the project. The proposed certification
protocol is inspired from the highly-successful ACME protocol used by
Let’s Encrypt and can be fully automated on the SCS side. It is, how-
ever, fundamentally different in its attack mitigation capabilities and in
how ownership is proven. It is also compatible with existing commu-
nity repositories such as PyPI, RubyGems, or NPM, without requiring
changes to these repositories. To support this claim, we instantiate the
proposed certification service with several practical deployments.

Keywords: Software certification · Trust establishment

1 Introduction

Community repositories such as PyPI [34], RubyGems [36], and NPM [32] are
among the most popular and accessible ways of publishing and distributing open
source software. Their immense popularity is illustrated by the large number
of downloads: PyPI, the Python package manager, sees more than 600 million
downloads per day [35]; npm, the Javascript package manager, more than 700 K
downloads a day [33]; RubyGems, the public repository of Ruby packages, has
seen more than 107 billion downloads since its creation (as of August 2022).
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023
Published by Springer Nature Switzerland AG 2023. All Rights Reserved
F. Li et al. (Eds.): SecureComm 2022, LNICST 462, pp. 450–469, 2023.
https://doi.org/10.1007/978-3-031-25538-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25538-0_24&domain=pdf
https://doi.org/10.1007/978-3-031-25538-0_24

Bootstrapping Trust in Community Repository Projects 451

Due to their popularity, attacks against community repositories have been on
the rise in the recent past [1,3,4,7,10,13,15,16,37]. For instance, in July 2021, a
PyPI package containing a backdoor was downloaded almost 30,000 times before
the breach was detected [10]. In April 2020, a supply chain attack on RubyGems
used packages with names similar to popular packages to infect the end user’s
system [37]. Similar types of supply chain attacks have become a rising concern
for users of NPM as well [1,3,7,13].

This increase in frequency and variety of attacks against community reposi-
tories makes it necessary to improve the overall security stance of these popular
custodians of open-source software. In this work, we focus on a fundamental
question: How can end users retrieve an authentic version of a community repos-
itory project, as intended by the project owner? Trust in a software project can
be bootstrapped by ensuring that what is retrieved is what the project owner
intended. When a software project is digitally signed, this question becomes:
How can end users obtain an authentic version of the project owner’s public
key?

Looking at existing mechanisms to certify software, we realized that they
may not be appropriate in the context of community repositories. While code
signing certificates [24–26] ostensibly provide a means to validate the identity
of the software publisher, apart from a few large companies, they are rarely
used in practice. This sort of certification often requires out-of-band verification
and cannot be easily automated. As a result, unfortunately, the effort required
to obtain a certificate is prohibitive, making these unsuitable for all types of
software projects. We elaborate more in Sect. 3 on the limitations of existing
certification mechanisms, including code signing.

In this work, we propose a different approach for certifying the validity of
software projects hosted on community repositories. To leverage the existing PKI
model of trust, our goal is to provide a way to bootstrap trust using this mech-
anism. In the PKI model, a certification authority binds a domain owner and a
domain name to a public key. The domain owner provides proof of ownership in
order to get the X.509 domain certificate. Similarly, we propose a solution where
the software project owner proves the ownership of the project and gets a digital
certificate that binds the project owner and the project name to a public key.
We design and implement a Software Certification Service (SCS) that receives
certification requests from a project owner for a specific project and then issues a
project certificate once the owner successfully completes a procedure for proving
project ownership. This project certificate validates a public key for the project.

Unlike in the code signing model, which seeks to establish trust in the identity
of the software publisher using a cumbersome procedure, the proposed Software
Certification Service relies on a certification protocol with the project publisher
to establish ownership of the software. The proposed certification protocol is
inspired from the highly-successful ACME protocol [2] used by Let’s Encrypt [30]
and can be fully automated on the SCS side. It is, however, fundamentally differ-
ent in its attack mitigation capabilities (i.e., compromise resiliency) and in how
ownership is proven (e.g., how to account for the specifics of software naming as

452 S. Vaidya et al.

opposed to domain names). It is also compatible with community repositories
such as PyPI, RubyGems, NPM, without requiring changes to them.

In the ACME protocol, the owner of a domain proves ownership of that
domain by provisioning a specific HTTP resource (e.g., random token chosen
by the Let’s Encrypt CA) at a specific URL at that domain. In our approach,
the project publisher proves ownership over a project by executing a certification
protocol with the SCS, which requires the publisher to answer SCS challenges by
provisioning certain HTTP resources (e.g., random tokens chosen by the SCS) at
a specific location on the project’s webpage. The ability to answer SCS challenges
proves control over the project’s repository. After successfully completing the
certification protocol, the project owner gets a project certificate which binds a
public key to a (project ID, project owner) tuple. The project owner signs the
software project with the corresponding private key for distribution to end users.

The SCS certification protocol includes safeguards to provide resiliency
against an adversary who is able to gain control of a project repository (e.g.
by compromising the project repository credentials). First, the certification pro-
tocol is designed to last over an extended period of time. We raise the bar to
adversaries who must maintain control over a project for a prolonged period of
time, which is arguably more difficult to achieve while going undetected. Second,
the SCS protocol requires that the response to a challenge must be placed on
the project’s repository in a publicly visible way (i.e., the project’s webpage).
This will prevent an adversary to execute the certification protocol in a stealthy
manner.

Finally, we instantiate the proposed service with several practical deploy-
ments. First, we use the service to automate the certification of community repos-
itories projects. Our deployments include several popular community reposito-
ries: PyPI, RubyGems, and NPM. Second, we use the service to automate the del-
egation process in community repositories that rely on systems like TUF [12,18]
to provide compromise resilience. We are actively working with Google and PyPI
on integrating our service into existing cloud security frameworks.

2 Background on the ACME Protocol

The software certification protocol proposed in this paper is modeled after the
Automatic Certificate Management Environment (ACME) protocol [2], which
can be used by a certificate authority (CA) and an applicant to automate the
process of verification and HTTPS certificate issuance. Certificate issuance using
ACME resembles a traditional CA’s issuance process, in that a user creates an
account, requests a certificate for a domain, and proves control of the domain in
that certificate in order for the CA to issue the requested certificate.

The entities interacting in the ACME protocol are the ACME client (i.e.,
the applicant for the HTTPS certificate) and the ACME server (i.e., the CA
who issues HTTPS certificates). To begin the process of certificate issuance,
the ACME client generates a key pair whose public key will be included in the
HTTPS certificate to be generated by the CA. The client proves knowledge of
the corresponding private key by signing a CSR (certificate signing request).

Bootstrapping Trust in Community Repository Projects 453

The client then engages in a protocol with the ACME server to prove control
over the requested domain. For this, the client needs to complete a challenge
issued by the ACME server. Once the validation is successful, the client sends a
certificate signing request (CSR) just like in the traditional certificate issuance
process. On receiving the request, the CA issues the certificate.

The ACME protocol is similar to a traditional certificate issuance protocol.
However, the major difference lies in the step where the client proves control over
the domain. For a traditional CA, this step requires human intervention. Instead,
ACME automates these processes. Let’s Encrypt [30] is a free, automated, and
open CA which relies on ACME to issue domain certificates. Since its debut in
September 2015, it has grown rapidly to become the largest CA on the web.

3 Existing Software Certification Mechanisms

3.1 Code Signing

The code signing model mirrors the PKI model used to issue domain validation
TLS X.509 certificates. A software publisher applies for a publisher certificate
with a Certificate Authority (CA) and proves its identity in the process. Having
verified the publisher’s identity, the CA issues a code signing certificate which
binds the identity of the software publisher to a public key. The publisher then
signs the software using the private key corresponding to the public key in the
certificate. Finally, the user downloads the signed software, verifies the signature,
and validates the publisher’s certificate.

Code signing provides the following two guarantees: (1) Validation of the
software publisher, i.e., the software comes from a known publisher, and (2)
Software integrity (i.e., it has not been modified since it was signed and released
by the publisher). The code signing certificate that accompanies the software
provides a guarantee that certain checks were done by the CA about the identity
of the publisher. As such, it fits best scenarios in which end users need to establish
the trustworthiness of the publisher.

Unfortunately, to have its identity verified by the CA, the software publisher
needs to go through a very cumbersome process. In addition to verifying that the
publisher controls the domain name(s) listed on certificate, the CA need to verify
the legal, physical and operational existence of the publisher’s business before
issuing the certificate. This requires the publisher to provide relevant documents
and answer phone calls to complete validation. The CA must also verify the
name, title, authority and signature of the person(s) requesting the certificate.

Given this manual and lengthy validation process, code signing certification
cannot be automated and imposes large operational costs for the CA. The current
code signing model is not suitable for all types of software, as it might be difficult
for small businesses, start-ups, independent developers and freelancers to afford
a code signing certificate (which few users will validate) that incurs significant
costs. Another direct consequence of the cumbersome and intrusive certification
process is the low adoption rate for code signing certificates. Besides limited use
cases inside closed ecosystems such as Microsoft (for the Windows ecosystem

454 S. Vaidya et al.

and MS Office objects), Apple (for software developed using Xcode), and Adobe
(for Adobe Air applications), code signing remains largely unused for the large
majority of software, including open source software.

3.2 Package Signatures

Some community repositories allow their packages to be cryptographically signed
with a private key so that end users can verify the packages with a public key.
There are generally two types of package signing:

Signed-By-Repository: In community repositories such as NPM [32], the
repository signs uploaded packages with a repository private key. The corre-
sponding public key is publicized on Keybase [29] and is used by end users to
verify downloaded packages. The repository private key is kept online to ensure
that new packages can be signed as soon as possible. This results in a coarse-
grained security guarantee. A compromise of the repository invalidates the secu-
rity of all its packages. If, on the other hand, the repository private key remains
secure, a package signature guarantees that the package uploaded to the reposi-
tory is the package that an end user downloads. This in itself does not account for
the possibility that an individual project’s credentials were compromised (even
for a brief amount of time) and a malicious version of a package was uploaded
to the repository.

Signed-By-Author: In community repositories such as RubyGems [36], a
package is signed by its author before being uploaded. The private key used
for signing is kept offline. In turn, end users verify the end-to-end authenticity of
the downloaded packages based on the corresponding public key. The problem
with this model is that end users must discover the correct key by using out-
of-band channels, a manual process that is vulnerable to fake key distribution
attacks. Alternatively, the authenticity of a public key can be established using a
PGP decentralized “web of trust”, in which authors vouch for each other’s GPG
keys.

Some repositories, such as RubyGems, allow the project owner to upload a
public key in a dedicated location of the repository – this is a mechanism that can
be used to distribute the owner’s public key. However, this solution is vulnerable
to an attacker that gains control over a project’s repository and replaces the
owner’s authentic public key. The solution we propose provides better resiliency
against attackers that gain control over a project’s repository.

4 System and Threat Model

4.1 System Model

Figure 1 describes the general architecture of the proposed software certification
service. At a high level, our approach is similar to the model employed by code

Bootstrapping Trust in Community Repository Projects 455

Software Certification
Service (SCS)

(1)
request
project
certificate;
prove project
ownership

(2)
issue
project
certificate

Software Publisher

Project certificate

(3) sign
software
project

Private key

End User

(4)
deliver
signed

software
project

(5) check
signature and
certificate;
install software

Fig. 1. The software certification architecture.

signing. A software publisher contacts the Software Certification Service (SCS)
requesting a project certificate for a software project that it owns (e.g., a Python
package hosted on the PyPI community repository). The software publisher then
proves ownership of the software project by executing a software project certifica-
tion protocol with the SCS (Step 1). Once the certification protocol is completed
successfully, the SCS issues a project certificate that binds together a certificate
public key to a (project ID, project owner) tuple (Step 2). The software publisher
then uses the corresponding private key to sign the software project (Step 3) for
distribution to end users (Step 4). Finally, end users can verify the integrity of
the retrieved software by checking the signature on the software and can get
assurance that the software is authentic and originates with the project owner
by checking the project certificate (Step 5).

The main difference from the code signing model is in Step 1. Whereas code
signing seeks to establish trust in the identity of the software publisher based on
a manual procedure that requires human intervention, our approach relies on a
certification protocol that requires the software publisher to establish ownership
of the software – a protocol designed to be fully automated on the SCS side.

Software publishers that wish to apply for a project certificate need to estab-
lish an account with the SCS. This account will be used by the SCS to track
interactions with the software publisher. During the software certification pro-
tocol, messages sent by a software publisher to the SCS server are authenticated
using the publisher’s SCS account key. Software publishers use a different set of
credentials to manage projects hosted on a community repository, referred to as
a repository key (e.g., a password used to log into the community repository).

Community Repository. We describe the salient features of a community
repository, which hosts and distributes third party software that represents the
main target for the proposed certification service. A community repository is a
collection of individual projects which, usually, are open source and are developed

456 S. Vaidya et al.

using the same programming language. For example, PyPI [34] (the Python
package index), RubyGems [36] (the Ruby package manager), NPM [32] (the
JavaScript package manager), or CPAN [27] (the Perl module manager).

Each project has a web-based homepage with a standard format that is uni-
form across all projects hosted on the same community repository. Typically, a
project’s homepage contains several sections that can be edited by project owner,
such as the project name, owner details, project description, and download links.
The proposed certification service leverages the project description section of a
project’s homepage during the protocol used to prove ownership over a project.

4.2 Threat Model and Security Goals

We assume that the SCS service will face adversaries that fit the following threat
model. The SCS service (i.e., the SCS server) is trustworthy and the private key
used by the SCS service for signing project certificates is out of the attacker’s
reach. We assume that a software publisher is able to protect her certificate
signing key (this is the private key corresponding to the certificate public key).
For example, this key can be stored offline, and only be used to sign new project
releases. The communication between the SCS server and software publishers
(acting as clients) happens over a secure channel (for example using SSL/TLS).
We also assume that standard cryptographic primitives can be deployed, such
as digital signatures that guarantee integrity and authenticity.
We consider the following types of adversaries:

A1: An attacker who gains access to the client’s SCS account. This means that
the attacker controls the SCS account key that is used to authenticate a
publisher’s messages to the SCS server. In this case, the attacker is able to
impersonate a software publisher to the SCS service.

A2: An attacker who gains access to the project’s repository account. This
type of attacker controls the credential used by the project owner to man-
age the project on the community repository (e.g., a password). This allows
the attacker to arbitrarily change content in the project repository, includ-
ing modifying the project description, adding/deleting project versions, or
modifying the project files.

A3: An attacker who executes a network MITM attack between the SCS client
and the SCS server. This type of attacker may be a nation state that has the
ability to tamper with messages exchanged between the publisher and the
SCS service as part of the software certification protocol.

Although an A2-type adversary may gain access to a project’s repository
account, we assume that the attacker does not control the entire infrastructure
of the community repository. As such, the attacker cannot cause the community
repository to provide different views of the project repository to different sets
of clients. In addition, as our goal is to ensure the security of the certification
protocol, we assume that the following attacks are outside the scope of this work:

– An attacker modifies the software package directly in the community repos-
itory, or its source code in the corresponding version control system (e.g., a

Bootstrapping Trust in Community Repository Projects 457

GitHub repository), and this goes unnoticed by the project owner/maintainer.
We assume that proper checks are in place before a community repository
project is signed for release.

– Name typosquatting attacks, in which the attacker registers a package with
a similar name as a target package.

Attacker Goals: The attacker seeks to obtain a valid signed project certificate
that binds a tuple (project ID, project owner) to a public key PK, such that
the attacker is not the owner of this project and it possesses the private key
corresponding to PK. This will allow the attacker to sign arbitrary versions of
the project (e.g., a malicious version that has a backdoor embedded).

Security Goals. Only the legitimate owner of a project should be able to
complete a certification protocol for that project. Still, we need to account for
occasional events when an attacker gains control over a project’s repository, i.e.,
we need to provide compromise resilience.

Of particular interest are adversaries that can gain control over a project for a
short amount of time, during which they may try to obtain a project certificate by
executing the certification protocol stealthily. If, on the other hand, adversaries
must maintain control over a project for a prolonged period of time in order to
successfully complete the certification protocol, this is arguably more difficult to
achieve while going undetected. This is especially true if the certification protocol
produces artifacts that are publicly visible on the project’s webpage.

Concretely, we aim to achieve the following security goals:

SG1: Only an entity that controls an identifier should be able to successfully
complete the certification for that identifier (by completing the given chal-
lenge). In particular, only the owner of a software project should be able to
complete the certification protocol for that project.

SG2: Messages generated during one execution of the certification protocol for
one account (i.e., between the SCS server and one client) cannot be used
towards obtaining authorizations for other accounts.

SG3: Attackers that gain control over a project’s repository for a short period
of time should not be able to successfully complete the certification protocol.
This prevents such attackers from obtaining a project certificate unbeknownst
to the project owner.

SG4: Anyone who can access a project’s webpage should be able to know whether
an instance of the certification protocol is currently running for that project.
In particular, the project owner should be able to tell if someone other than
the project owner is trying to obtain a certificate for the project.

5 Software Certification Service

5.1 Preliminaries

General Terms. During the course of execution of the proposed protocol for
software certification, we make use of the following terms:

458 S. Vaidya et al.

– SCS server: The server software run by the Software Certification Service
(SCS) acting as a Certification Authority (CA) that issues project certificates
upon request by software publishers.

– SCS client: The client software run by a software publisher that interacts with
the SCS server in order to obtain a project certificate for a project owned by
that publisher.

– Project Repository: The repository used for hosting the project. This refers
to an individual project repository hosted on a community repository.

– Project: The project/package for which the certificate is requested.
– Project Owner: The software publisher who owns the project for which cer-

tification is requested. The project owner controls the SCS client and the
project hosted on the repository.

– End Users: The users that download the project distribution from the project
repository for installation and use.

Keys. The SCS server has a CA key pair, and uses the CA private key to sign
project certificates. The CA private key has high value and its compromise can
have serious consequence for the security of the SCS service. As such, it must be
kept offline, or protected using dedicated hardware (e.g., HSMs).

The following types of keys are used by the project owner:

– SCS account keys (public/private key pair): Used to authenticate an SCS
account holder (acting as a client) to the SCS server. Specifically, the client
uses the SCS account private key to sign the messages sent to the SCS server
while executing the SCS certification protocol. There is only one SCS account
key pair per client, generated by the client. Once registered with the SCS
server, an SCS account key can be used to obtain multiple project certificates
for multiple projects owned by the client.

– certificate keys (public/private key pair): This key pair is generated by the
client (acting as a project owner) and its public key is included in the project
certificate generated by the SCS. The corresponding private key will be used
by the project owner to sign a software project.

– repository key : This is the credential used by a project owner to manage the
project on the community repository. For example, it can be the password
used by the project owner to log into her account with community repositories
such as PyPI, RubyGems or NPM.

High-Level Details. As our proposed protocol is inspired from the ACME
protocol, we reuse several of ACME’s protocol design choices. We mention these
details here, so as not to overload unnecessarily the actual protocol description.

JSON Objects and Signatures. Information exchanged between the SCS server
and clients is encapsulated in objects encoded as JSON messages [14] carried
over HTTPS. Typically, the client sends to the SCS server a stub object, and
the server returns the object where various fields have been filled.

Bootstrapping Trust in Community Repository Projects 459

Software Certification
Service (SCS)

Software
Publisher

certificate order

Authorization URL, Finalize URL

Authorization URL
request identifier auth

Challenge URL, token

Community Repository
Project

Challenge Response
(by Software Publisher)

Challenge URL
challenge complete

Verify
challenge

Finalize URL
finalize order (CSR request)

project certificate

Fig. 2. SCS protocol overview (Phase 2: Obtaining a project certificate).

Messages sent by the client to the server are signed using the private key of
the client’s SCS account key pair. The server uses the corresponding public key
to verify the authenticity and integrity of messages from the client.

Nonces Against Replay Attacks. To ensure protection against replay attacks, the
protocol uses an anti-replay mechanism based on nonces: The server maintains
a list of nonces issued to clients, and any signed request from the client must
include a nonce. The server verifies that the nonces it receives from clients are
among those that it has issued to clients, and ensures that nonces can be used
at most once by clients.

5.2 Certification Protocol Description

We now describe the protocol used by the SCS to issue a software project certifi-
cate. The protocol has two major phases: 1) Register an account with the SCS
server; 2) Request a project certificate. Phase 1 is carried out only once, when
the publisher is communicating with the server for the first time. Each publisher
creates an account with the SCS server, so that the SCS server can keep track of
its interactions with different publishers. The same account can then be used to
get certificates for multiple projects owned by the publisher. Phase 2, illustrated
in Fig. 2, is carried out every time the publisher needs a certificate for a project.
Appendix A provides a security analysis of the proposed certification protocol.

SCS Account Registration. The protocol execution is initiated by the pub-
lisher (i.e. project owner) using the SCS client. To register an account with the
SCS server, a publisher emgages in the following protocol with the SCS server:

1. The client generates a fresh pair of SCS account keys (public/private keys).
2. The client sends to the SCS server a registration request that contains the

following information: the contact details of the client (email address), the
SCS account public key, and a signature over the entire registration request
using the SCS account private key.

460 S. Vaidya et al.

3. The SCS server verifies that the signature is valid and that no account is
already registered under this SCS account public key. The server then creates
an account and stores the SCS account public key used to verify the registra-
tion request. This SCS account key is used to uniquely identify the account
and will be used to authenticate future requests from this account.

4. The SCS server informs the client that the account was successfully created.

Obtaining a Project Certificate. To obtain a project certificate, a publisher
who has previously registered an SCS account, takes the following four steps:

(1) Submit a project certificate order. The client sends to the SCS server a project
certificate order request that contains the software project identifier for which the
certificate is requested (e.g., project URL), and the certificate expiration date.
Upon receipt of the order request, the SCS server performs some basic checks
regarding the project identifier, such as checking the validity of the project URL.
The server may also check if the project URL matches one of the participating
community repositories.

The SCS server then informs the client that the order is created, together
with an “expires” time by when the client needs to complete authorization of the
requested project identifier. The server’s response also contains an Authorization
URL (a location on the server where the server makes available an identifier
authorization resource associated with this new order request) and a Finalize
URL (a location on the server where the client will inform the server that it has
completed the project ownership proof requirement).

(2) Obtain authorization over the project identifier. The project identifier autho-
rization process establishes that an SCS account holder is authorized to manage
project certificates for a given project identifier. For this, the client must prove
ownership over the project by completing multiple validation challenges chosen
by the SCS server. To complete a validation challenge, the client provisions the
challenge response on the project’s repository (more details in Sect. 5.3). The
following steps are executed in order to complete a validation challenge:

1. The client sends a request to the Authorization URL and the SCS server
responds with an Authorization object that contains the project identifier
(i.e., the project URL), the Challenge URL, and a validation token for this
challenge. The validation token is a string randomly generated by the SCS
server for this challenge. The Challenge URL is a location on the SCS server
where the client will notify the server that the challenge has been completed.

2. The client completes the challenge by provisioning the challenge response on
the project’s repository.

3. The client notifies the SCS server that the challenge was completed by sending
a request to the Challenge URL.

4. The SCS server verifies that the challenge was completed.

To address the threat model described in Sect. 4.2, the SCS certification
protocol requires a client to respond to multiple challenges spread over time,

Bootstrapping Trust in Community Repository Projects 461

and the SCS server to check that the client’s response to the challenges remains
persistently visible on the project’s repository. In Sect. 5.3, we provide details on
how challenges are completed by the client and verified by the SCS server.

(3) Finalize the order by submitting a CSR. Once the client completes the server’s
requirements for this project certificate order, it generates a certificate key pair
(public/private keys). It also creates a Certificate Signing Request (CSR) and
requests to finalize the order by sending the CSR to the Finalize URL. The CSR
contains the software project identifier for which the certificate is requested
(e.g., project URL), the certificate public key, the project owner details (name,
email address), temporal information (valid from date, expiration date), and a
signature over the entire CSR using the certificate private key.

If the request to finalize the order is successful, the SCS server issues the
project certificate, which is signed with the server’s CA private key. The SCS
server then responds to the client with a Certificate URL.

(4) Download the project certificate. The client downloads the project certificate
by sending a request to the Certificate URL, located on the SCS server.

5.3 Identifier Authorization

An attacker who gains control over the project’s repository for a brief period of
time may be able to provision the challenge response on the project’s repository,
notify the server to validate the challenge, and then quickly remove the challenge
response from the project’s repository. In order to achieve security goal SG3
and mitigate attackers that can take control of the project repository for a
brief period of time, we design the identifier authorization step to last over an
extended period of time. In this way, a successful attacker needs to maintain
control over the project repository for a longer period of time, which is arguably
more difficult to achieve while going undetected.

Specifically, to obtain authorization over a project identifier, a project owner
acting as a client in the certification protocol must complete not just one chal-
lenge, but multiple validation challenges spread over an identifier validation win-
dow of time. Additionally, for each challenge, the client must not only provision
the challenge response on the project’s repository, but must also maintain per-
sistently this challenge response on the project’s repository over a challenge
validation window of time. For example, we may consider a 7-day identifier val-
idation window1 during which the server will send a new challenge every 24 h
for 7 d in a row. For each challenge, the server will check the persistence of the
challenge answer on the project’s repository multiple times randomly during the
24-hour challenge validation window.

The project identifier authorization process establishes that an SCS account
holder is authorized to manage project certificates for a given project identifier.

1 We picked 7 d based on previous repository breaches, which were detected as early
as a few hours in some cases or it took 5–7 d in other cases [21–23].

462 S. Vaidya et al.

Validation of individual challenges. For each validation challenge, the client must
provision a challenge response on the project’s repository. In order to achieve
security goal SG4 and deal with long-term adversarial presence, the validation
requires that the response to a challenge must be placed on the project’s repos-
itory in a publicly visible way. This will prevent an adversary to execute the
certification protocol stealthily, as the legitimate project owner and/or other
project maintainers will notice that a certification protocol is ongoing.

Specifically, to complete a challenge, the client must provision the challenge
response in the project description section of the project’s homepage. To preserve
the functionality of the project description section and reduce confusion for
the casual user who browses that project’s homepage, the challenge response
is placed at the end of the project description, using delimiters that make it
clear they are not part of the actual project description. Placing the challenge
response in the project description meets our requirement that the certification
protocol must generate artifacts that are publicly visible.

The client generates the challenge response as a Base64-encoded string of
characters generated by concatenating the validation token for the challenge
with a key fingerprint, separated by a"." character:
Response = token || "." || base64(fingerprint(SCS account key)),

where "||" denotes concatenation of strings, and the fingerprint is computed
as a SHA-256 digest of the SCS account key. The response is placed at the end
of the project’s description, using clear delimiters.

After notifying the server about completion of the challenge, the client needs
to maintain the challenge response on the project homepage during the challenge
validation window. The server checks the existence of the challenge response
multiple times at random times within this window. If all the server checks during
the challenge validation window are successful, the server deems the challenge
as successfully completed, and generates the next challenge for the client.

6 Deployments

6.1 SCS Implementation Details

The SCS service has two components, the server and the client. We implemented
the SCS server on top of Boulder [39], which is an open-source ACME-based CA
built for Let’s Encrypt and written in Go. We have adapted the code to process
the Project ID (the project repository URL) instead of the domain names. For
example, when the client requests a project certificate, the server verifies that the
project URL comprises of a valid set of characters and that the URL belongs
to one of the community repositories that the SCS service has been deployed
to. We also implement the challenge-response protocol used for proving project
ownership. The SCS server is engages by keeping track of the challenge-response
process and how far the client is in the proof of ownership process. The process
on the server side is automated and does not require manual intervention.

We implemented the SCS client on top of Lego [31], which is an ACME client
implementation for Let’s Encrypt, written in Go. The SCS client is responsible

Bootstrapping Trust in Community Repository Projects 463

for initiating the certificate issuance process, by placing a request to the server.
The client is also responsible for participating in the challenge-response protocol
and for fulfilling the challenge issued by the server. The project owner gets
the challenge response from the SCS client and provisions it on the project
homepage. This is the only step that requires manual intervention during the
challenge-response SCS protocol execution.

6.2 Deployment to Community Repositories

We deployed the SCS service to several community repositories to automate the
issuance of certificates for the projects hosted on these repositories. By design,
the SCS service does not require any changes to these community repositories,
which makes it deployable right away and serves as an incentive for adoption.

The SCS service can be deployed to community repositories where each indi-
vidual project has a dedicated webpage containing a project description section.
Most community repositories fit this scenario, with the project description being
normally used to provide basic information about the project. Although every
community repository may have a different web layout for the project descrip-
tion, all the projects that are hosted on the same community repository have
the same layout for the project description.

During the SCS protocol execution, the project owner provisions on the
project description webpage the responses to challenges issued by the SCS server.
To preserve the functionality of the project description field and reduce confusion
for the casual user who browses the project’s webpage, the challenge responses
are placed at the end of the project description, using delimiters that make it
clear they are not part of the actual project description (see Sect. 5.3). As shown
in Fig. 3, the challenge response will be publicly visible on the project’s webpage.

SCS for PyPI. PyPI [34] is used for hosting and distributing Python packages.
We use the “Project description” page to display the SCS challenge response. For
this, the project owner includes the challenge response in the project description
section of the setup.py file, which generally contains the metadata for the Python
package, and then builds the package and uploads it to PyPI.

SCS for RubyGems. RubyGems [36] is used for hosting and distributing
Ruby projects, known as “gems”. To display the SCS challenge response, we use
a section on a project’s webpage where the owner can provide a short description
of the project, which can range from a single sentence to a few paragraphs. Also,
the project page does not allow HTML or Markdown formatting and so, unlike
in PyPI, project owners do not have any choice in the way a challenge response
gets displayed in the section. The project owner includes the challenge response
in the description field of the gemspec file, which generally contains the metadata
for the gem, and then builds the package and uploads it to RubyGems.

464 S. Vaidya et al.

(a) PyPI
(b) NPM

Fig. 3. Challenge response on the project webpage for various community repos.

SCS for NPM. NPM [32] is the Node package manager used for hosting and
distributing JavaScript packages. We use the “Readme” page to display the SCS
challenge response. For this, the project owner includes the challenge response
in the package.json file and then builds the package and uploads it to NPM.

6.3 Automating Delegations in Community Repositories

We consider a setting in which a system such as TUF [18] or Diplomat [12] is
used to provide compromise resilience for a community repository such as PyPI.
This type of protection is achieved through several mechanisms, such as the
use of roles (which allow to separate responsibility in a system) and delegations
(which allow to distribute responsibilities in a system).

For PyPI, there is a root role, which indicates which keys are authorized for
other roles, such as the projects, release, and timestamp roles. The projects
role is trusted to validate all the packages on PyPI. This role delegates trust for
individual packages to the developers responsible for those packages. For exam-
ple, the projects role may delegate the BeautifulSoup project to the public
key belonging to the developer Alice, who is responsible for BeautifulSoup.

This delegation step can occur whenever a new project is created on PyPI,
or an existing project wants to change an existing delegation. Currently, such
a delegation involves manual operations on the part of the PyPI maintainers,
which is not scalable since PyPI has over 345,000 projects (as of December 2021).

We automate this delegation step using the SCS service. To have her public
key certified as trusted for the BeautifulSoup project, the developer responsible
for BeautifulSoup engages in the SCS ownership-proving protocol with the
entity responsible for the projects role (i.e., the PyPI server). If the developer
successfully completes the SCS protocol, this serves as proof that the developer
owns the BeautifulSoup project. As a result, the projects role will delegate
trust for the BeautifulSoup project to the public key of this developer.

Specifically, once the ownership protocol is completed successfully, the server
updates the top-level projects role to include a new “delegations" entry to a new
role BeautifulSoupOwner that is in charge of BeautifulSoup. This entry will
include the public key of the developer responsible for BeautifulSoup. Then,
the developer creates the projects file for the BeautifulSoupOwner role.

Bootstrapping Trust in Community Repository Projects 465

7 Related Work

Previous works in the area of securing community repositories studied the design
and implementation of community repositories and proposed attacks [5,6] and
defenses [11,12,17]. These works focus on designing more secure software ecosys-
tems with properties such as compromise-resilience and supply chain integrity.
[19] discusses the security issues with the programming language specific com-
munity repositories like PyPI, RubyGems or NPM. In addition, due to the
rising number of vulnerabilities and malware in the NPM ecosystem, various
works [8,9,40] have been proposed to find new vulnerabilities, isolate untrusted
packages, evaluate risks and remediate issues. [20] discusses the typosquatting
and combosquatting attacks on the Python software ecosystems like PyPI. Other
frameworks, such as in-toto [17,28] and Sigstore [38], focus on the security of the
entire software supply chain. As opposed to previous work, our focus is on boot-
strapping trust in a community repository project by ensuring that end users can
retrieve an authentic version of a community repository project, as intended by
the project owner. Specifically, we propose a new mechanism to certify software
hosted in community repositories.

8 Conclusion

In this work, we have presented a new approach for certifying the validity of
software projects hosted on community repositories. Towards this goal, we have
introduced a Software Certification Service (SCS) which gives software publish-
ers the ability to prove the ownership of their projects and then get a project
certificate that binds the project owner and the project name to a public key.
Although inspired from the ACME protocol in that it can be fully automated
on the SCS side, the proposed certification protocol is fundamentally different
in its attack mitigation capabilities and in how ownership is proven.

We deployed the SCS service to several community repositories, including
PyPI, RubyGems, and NPM, to automate the issuance of certificates for projects
hosted on these repositories. By design, the SCS service does not require any
changes to these community repositories, which makes it deployable right away
and serves as an incentive for adoption. We are currently working with Google
and PyPI on integrating our service into existing cloud security frameworks. As
future work, we plan to extend the SCS service to more community reposito-
ries (currently, we require that each individual project has a dedicated webpage
containing a project description section) and to explore other use cases that
can benefit from automated verification. We also plan to evaluate the usability
aspects of the proposed SCS certification protocol; in particular, we need to bet-
ter understand what are appropriate values for the validation windows, which
should be chosen as a tradeoff between usability and security.

Acknowledgments. This research was supported by the US National Science Foun-
dation under Grants No. CNS 1801430, DGE 1565478, and DGE 2043104.

466 S. Vaidya et al.

A Security Analysis

We now turn to analyzing the security of the proposed SCS protocol. We first
show that the protocol meets the security goals stated in Sect. 4.2, and then
analyze the protocol’s compromise resiliency.

SG1: Only a project’s owner should be able to complete the certification for
that project. To prove ownership over a project, which is required for completing
the certification protocol, an entity must successfully complete the challenges
generated by the SCS server. As such, for each challenge, the entity must both:
– Hold the private key of the SCS account key pair used to respond to the

challenge. This is because the responses from the client to the SCS server
must be signed with that key.

– Control the project in question. This is because successfully provisioning the
challenge response on the project’s homepage requires write-access to the
project’s repository.

Since only the project owner has write-access to the project’s repository, a
successful execution of the SCS protocol ensures that a specific SCS account
holder is also the entity that controls a project (i.e., the project owner).

SG2: Messages generated during one execution of the certification protocol for
one account (i.e., between the SCS server and one client) cannot be used towards
obtaining authorizations for other accounts. This is achieved because all messages
sent by an SCS client to the SCS server are signed using that client’s SCS
account private key. Thus, such messages cannot be reused between instances of
the certification protocol executed by different SCS account holders.

SG3: Attackers that gain control over a project’s repository for a short period
of time are not be able to successfully complete the SCS certification proto-
col. The certification protocol is designed so that the identifier authorization
step lasts over an extended period of time. An entity attempting to complete
the certification protocol for a project must complete multiple challenges. For
each challenge, the challenge response must be maintained persistently on the
project’s homepage, because the SCS server will check multiple times randomly
during the challenge validation window. If an attacker is able to briefly gain
control over the project’s repository, she maybe able to provision a valid chal-
lenge response for that challenge. However, such an attacker will not be able to
successfully provision valid information for subsequent challenges.

SG4: We need to show that an attacker cannot complete an SCS certification for
a project in a stealthy manner. The SCS protocol achieves this by requiring that
all challenge responses must be placed on the project’s repository in a publicly
visible way (i.e., on the project’s homepage). This ensures that the legitimate
project owner and/or other project maintainers will notice that a certification
protocol is ongoing.

Bootstrapping Trust in Community Repository Projects 467

Compromise Resiliency. If an attacker is able to get hold of the repository key
for a project, this allows the attacker unfettered access to the project repository,
including making changes to the project’s homepage. The attacker can register
an account with the SCS server and then request a project certificate under this
SCS account. Having access to the repository key, the attacker will be able to
provision challenge responses on the project homepage.

The SCS protocol has two safeguards in place to deal with a repository
key compromise. First, the certification protocol is designed to to last over an
extended period of time. Thus, if the repository key compromise is detected
early enough, the project owner can change the repository key, preventing the
attacker from successfully completing the certification protocol. In this way, a
successful attacker would have to maintain control over the project repository
for a longer period of time, which is arguably more difficult to achieve while
going undetected. Second, the SCS protocol requires that the response to a
challenge must be placed on the project’s repository in a publicly visible way
(i.e., the project’s homepage). This will prevent an adversary to execute the
certification protocol stealthily, as the legitimate project owner and/or other
project maintainers will notice that a certification protocol is ongoing and will
take steps to terminate such an active threat.

References

1. Aguirre, J.: Fake npm Roblox API Package Installs Ransomware and
has a Spooky Surprise. https://blog.sonatype.com/fake-npm-roblox-api-package-
installs-ransomware-spooky-surprise (2021)

2. Barnes, R., Hoffman-Andrews, J., McCarney, D., Kasten, J.: Automatic Certificate
Management Environment (ACME). RFC 8555 (Mar 2019). https://datatracker.
ietf.org/doc/html/rfc8555

3. Barsan, A.: Dependency Confusion: How I Hacked Into Apple, Microsoft
and Dozens of Other Companies. https://medium.com/@alex.birsan/dependency-
confusion-4a5d60fec610/ (February 2021)

4. Burt, J.: Supply Chain Flaws Found in Python Package Repository. https://
www.esecurityplanet.com/threats/supply-chain-flaws-found-in-python-package-
repository/ (August 2021)

5. Cappos, J., Samuel, J., Baker, S., Hartman, J.H.: A look in the mirror: Attacks
on package managers. In: Proceedings of the 15th ACM Conference on Computer
and Communications Security, pp. 565–574. CCS ’08, ACM, New York, NY, USA
(2008)

6. Cappos, J., Samuel, J., Baker, S., Hartman, J.H.: Package Management Security.
Tech. rep., University of Arizona (2008)

7. Cimpanu, C.: Malware found in npm package with millions of weekly down-
loads. https://therecord.media/malware-found-in-npm-package-with-millions-of-
weekly-downloads/ (October 2021)

8. Decan, A., Mens, T., Constantinou, E.: On the impact of security vulnerabilities
in the npm package dependency network. In: Proceedings of the 15th International
Conference on Mining Software Repositories, pp. 181–191. MSR ’18, ACM (2018)

https://blog.sonatype.com/fake-npm-roblox-api-package-installs-ransomware-spooky-surprise
https://blog.sonatype.com/fake-npm-roblox-api-package-installs-ransomware-spooky-surprise
https://datatracker.ietf.org/doc/html/rfc8555
https://datatracker.ietf.org/doc/html/rfc8555
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610/
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610/
https://www.esecurityplanet.com/threats/supply-chain-flaws-found-in-python-package-repository/
https://www.esecurityplanet.com/threats/supply-chain-flaws-found-in-python-package-repository/
https://www.esecurityplanet.com/threats/supply-chain-flaws-found-in-python-package-repository/
https://therecord.media/malware-found-in-npm-package-with-millions-of-weekly-downloads/
https://therecord.media/malware-found-in-npm-package-with-millions-of-weekly-downloads/

468 S. Vaidya et al.

9. Garrett, K., Ferreira, G., Jia, L., Sunshine, J., Kästner, C.: Detecting suspicious
package updates. In: Proceedings of the 41st International Conference on Software
Engineering: New Ideas and Emerging Results, pp. 13–16. ICSE-NIER ’19, IEEE
Press (2019). https://doi.org/10.1109/ICSE-NIER.2019.00012

10. Goodin, D.: Software downloaded 30,000 times from PyPI ransacked
developers’ machines. https://arstechnica.com/gadgets/2021/07/malicious-pypi-
packages-caught-stealing-developer-data-and-injecting-code/ (July 2021)

11. Kuppusamy, T.K., Diaz, V., Cappos, J.: Mercury: Bandwidth-effective preven-
tion of rollback attacks against community repositories. In: Proceedings of the
2017 USENIX Conference on Usenix Annual Technical Conference, pp. 673–688.
USENIX ATC ’17 (2017)

12. Kuppusamy, T.K., Torres-Arias, S., Diaz, V., Cappos, J.: Diplomat: Using dele-
gations to protect community repositories. In: 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 16), pp. 567–581 (2016)

13. Lakshmanan, R.: Two NPM Packages With 22 Million Weekly Downloads Found
Backdoored. https://thehackernews.com/2021/11/two-npm-packages-with-22-
million-weekly.html (November 2021)

14. Rfc 8259. https://datatracker.ietf.org/doc/html/rfc8259
15. Ruohonen, J., Hjerppe, K., Rindell, K.: A Large-Scale Security-Oriented Static

Analysis of Python Packages in PyPI. In: Proceedings of the 18th International
Conference on Privacy, Security and Trust (PST). IEEE (2021)

16. Sharma, A.: Sonatype Catches New PyPI Cryptomining Malware. https://blog.
sonatype.com/sonatype-catches-new-pypi-cryptomining-malware-via-automated-
detection/ (June 2021)

17. Torres-Arias, S., Afzali, H., Kuppusamy, T.K., Curtmola, R., Cappos, J.: In-toto:
Providing farm-to-table guarantees for bits and bytes. In: Proceedings of the 28th
USENIX Conference on Security Symposium, pp. 1393–1410. SEC’19 (2019)

18. TUF: The Update Framework. https://www.updateframework.com/
19. Vaidya, R.K., Carli, L.D., Davidson, D., Rastogi, V.: Security issues in language-

based sofware ecosystems. CoRR abs/1903.02613 (2019)
20. Vu, D.L., Pashchenko, I., Massacci, F., Plate, H., Sabetta, A.: Typosquatting and

combosquatting attacks on the python ecosystem. In: 2020 IEEE European Sym-
posium on Security and Privacy Workshops (EuroS PW). pp. 509–514 (2020).
https://doi.org/10.1109/EuroSPW51379.2020.00074

21. Bitcoin gold issues critical alert. https://www.enterprisetimes.co.uk/2017/11/27/
bitcoin-gold-issues-critical-alert

22. Npm packages disguised as roblox api code caught carrying ransomware. https://
www.theregister.com/2021/10/27/npm_roblox_ransomware/

23. Typosquatting attacks on rubygems. https://thehackernews.com/2020/04/
rubygem-typosquatting-malware.html

24. Introduction to Code Signing. https://docs.microsoft.com/en-us/previous-
versions/windows/internet-explorer/ie-developer/platform-apis/ms537361(v=vs.
85)

25. Minimum Requirements for the Issuance and Mgmt. of Publicly-Trusted
Code Signing Certificates. https://casecurity.org/wp-content/uploads/2016/09/
Minimum-requirements-for-the-Issuance-and-Management-of-code-signing.pdf

26. Leading Certificate Authorities and Microsoft Introduce New Standards to
Protect Consumers Online. https://casecurity.org/2016/12/08/leading-certificate-
authorities-and-microsoft-introduce-new-standards-to-protect-consumers-online/

27. Comprehensive Perl Archive Network. https://www.cpan.org/

https://doi.org/10.1109/ICSE-NIER.2019.00012
https://arstechnica.com/gadgets/2021/07/malicious-pypi-packages-caught-stealing-developer-data-and-injecting-code/
https://arstechnica.com/gadgets/2021/07/malicious-pypi-packages-caught-stealing-developer-data-and-injecting-code/
https://thehackernews.com/2021/11/two-npm-packages-with-22-million-weekly.html
https://thehackernews.com/2021/11/two-npm-packages-with-22-million-weekly.html
https://datatracker.ietf.org/doc/html/rfc8259
https://blog.sonatype.com/sonatype-catches-new-pypi-cryptomining-malware-via-automated-detection/
https://blog.sonatype.com/sonatype-catches-new-pypi-cryptomining-malware-via-automated-detection/
https://blog.sonatype.com/sonatype-catches-new-pypi-cryptomining-malware-via-automated-detection/
https://www.updateframework.com/
https://doi.org/10.1109/EuroSPW51379.2020.00074
https://www.enterprisetimes.co.uk/2017/11/27/bitcoin-gold-issues-critical-alert
https://www.enterprisetimes.co.uk/2017/11/27/bitcoin-gold-issues-critical-alert
https://www.theregister.com/2021/10/27/npm_roblox_ransomware/
https://www.theregister.com/2021/10/27/npm_roblox_ransomware/
https://thehackernews.com/2020/04/rubygem-typosquatting-malware.html
https://thehackernews.com/2020/04/rubygem-typosquatting-malware.html
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms537361(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms537361(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms537361(v=vs.85)
https://casecurity.org/wp-content/uploads/2016/09/Minimum-requirements-for-the-Issuance-and-Management-of-code-signing.pdf
https://casecurity.org/wp-content/uploads/2016/09/Minimum-requirements-for-the-Issuance-and-Management-of-code-signing.pdf
https://casecurity.org/2016/12/08/leading-certificate-authorities-and-microsoft-introduce-new-standards-to-protect-consumers-online/
https://casecurity.org/2016/12/08/leading-certificate-authorities-and-microsoft-introduce-new-standards-to-protect-consumers-online/
https://www.cpan.org/

Bootstrapping Trust in Community Repository Projects 469

28. in-toto. https://in-toto.io/
29. Keybase. https://keybase.io/
30. Let’s Encrypt. https://letsencrypt.org/
31. ACME client implementation. https://letsencrypt.org/docs/client-options/
32. Javascript Node package manager. https://npmjs.com
33. NPM download stats. https://npmcharts.com/
34. Python Packaging Index. https://pypi.org
35. PyPI download stats. https://pypistats.org/packages/__all__
36. RubyGems statistics. https://rubygems.org/stats
37. Supply-chain attack hits RubyGems repository with 725 malicious packages.

https://arstechnica.com/information-technology/2020/04/725-bitcoin-stealing-
apps-snuck-into-ruby-repository/ (2020)

38. Sigstore. https://www.sigstore.dev/
39. ACME server Boulder. https://github.com/letsencrypt/boulder
40. Zimmermann, M., Staicu, C.A., Tenny, C., Pradel, M.: Small world with high

risks: A study of security threats in the npm ecosystem. In: 28th USENIX Security
Symposium (USENIX Security 19). pp. 995–1010 (2019)

https://in-toto.io/
https://keybase.io/
https://letsencrypt.org/
https://letsencrypt.org/docs/client-options/
https://npmjs.com
https://npmcharts.com/
https://pypi.org
https://pypistats.org/packages/__all__
https://rubygems.org/stats
https://arstechnica.com/information-technology/2020/04/725-bitcoin-stealing-apps-snuck-into-ruby-repository/
https://arstechnica.com/information-technology/2020/04/725-bitcoin-stealing-apps-snuck-into-ruby-repository/
https://www.sigstore.dev/
https://github.com/letsencrypt/boulder

	Bootstrapping Trust in Community Repository Projects
	1 Introduction
	2 Background on the ACME Protocol
	3 Existing Software Certification Mechanisms
	3.1 Code Signing
	3.2 Package Signatures

	4 System and Threat Model
	4.1 System Model
	4.2 Threat Model and Security Goals

	5 Software Certification Service
	5.1 Preliminaries
	5.2 Certification Protocol Description
	5.3 Identifier Authorization

	6 Deployments
	6.1 SCS Implementation Details
	6.2 Deployment to Community Repositories
	6.3 Automating Delegations in Community Repositories

	7 Related Work
	8 Conclusion
	A Security Analysis
	References

