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Abstract. Version Control Systems (VCS-es) play a major role in the
software development life cycle, yet historically their security has been
relatively underdeveloped compared to their importance. Recent history
has shown that source code repositories represent appealing attack tar-
gets. Attacks that violate the integrity of repository data can impact
negatively millions of users. Some VCS-es, such as Git, employ com-

mit signatures as a mechanism to provide developers with cryptographic
protections for the code they contribute to a repository. However, an en-
tire class of other VCS-es, including the well-known Apache Subversion
(SVN), lacks such protections.
We design the first commit signing mechanism for centralized version
control systems, which supports features such as working with a subset of
the repository and allowing clients to work on disjoint sets of files without
having to retrieve each other’s changes. We implement a prototype for
the proposed commit signing mechanism on top of the SVN codebase
and show experimentally that it only incurs a modest overhead. With
our solution in place, the VCS security model is substantially improved.
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1 Introduction

A Version Control System (VCS) plays an important part in any software devel-
opment project. The VCS facilitates the development and maintenance process
by allowing multiple contributors to collaborate in writing and modifying the
source code. The VCS also maintains a history of the software development in
a source code repository, thus providing the ability to rollback to earlier ver-
sions when needed. Some well-known VCS-es include Git [10], Subversion [2],
Mercurial [18], and CVS [7].

Source code repositories represent appealing attack targets. Attackers that
break into repositories can violate their integrity, both when the repository is
hosted independently, such as internal to an enterprise, or when the repository
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is hosted at a specialized provider, such as GitHub [12], GitLab [13], or Source-
forge [20]. The attack surface is even larger when the hosting provider relies on
the services of a third party for storing the repository, such as a cloud stor-
age provider like Amazon or Google. Integrity violation attacks can introduce
vulnerabilities by adding or removing some part of the codebase. In turn, such
malicious activity can have a devastating impact, as it a↵ects millions of users
that retrieve data from the compromised repositories. In recent years, these types
of attacks have been on the rise [16], and have a↵ected most types of repositories,
including Git [1,32,17,4], Subversion [6,5], Perforce [15], and CVS [26].

To ensure the integrity and authenticity of externally-hosted repositories,
some VCS-es such as Git and Mercurial employ a mechanism called commit

signatures, by which developers can use digital signatures to protect the code
they contribute to a repository. Perhaps surprisingly, several other VCS-es, such
as Apache Subversion [2] (known as SVN), lack this ability and are vulnerable to
attacks that manipulate files on a remote repository in an undetectable fashion.

Contributions. In this work, we design and implement a commit signing mech-
anism for centralized version control systems that rely on a client-server archi-
tecture. Our solution is the first that supports VCS features such as working
with a portion of the repository on the client side and allowing clients to work
on disjoint sets of files without having to retrieve each other’s changes. During
a commit, clients compute the commit signature over the root of a Merkle Hash
Tree (MHT) built on top of the repository. A client obtains from the server an
e�cient proof that covers the portions of the repository that are not stored lo-
cally, and uses it in conjunction with data stored locally to compute the commit
signature. During an update, a client retrieves a revision’s data from the central
repository, together with the commit signature over that revision and a proof
that attests to the integrity and authenticity of the retrieved data. To minimize
the performance footprint of the commit signing mechanism, the proofs about
non-local data contain siblings of nodes in the Steiner tree determined by items
in the commit/update changeset.

When our commit signing protocol is in place, repository integrity and au-
thenticity can be guaranteed even when the server hosting the repository is not
trustworthy. We make the following contributions:
– We examine Apache SVN, a representative centralized version control sys-

tem, and identify a range of attacks that stem from the lack of integrity
mechanisms for the repository.

– We identify fundamental architectural and functional di↵erences between
centralized and decentralized VCS-es. Decentralized VCS-es like Git repli-
cate the entire repository at the client side and eliminate the need to interact
with the server when performing commits. Moreover, they do not support
partial checkouts and require clients to retrieve other clients’ changes before
committing their own changes. These di↵erences introduce security and per-
formance challenges that prevent us from applying to centralized VCS-es a
commit signing solution such as the one used in Git.

– We design the first commit signing mechanism for centralized VCS-es that
rely on a client-server architecture and support features such as working with
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a subset of the repository and allowing clients to work on disjoint sets of files
without having to retrieve each other’s changes. Our solution substantially
improves the security model of such version control systems. We describe a
solution for SVN, but our techniques are applicable to other VCS-es that
fit this model, such as GNU Bazaar [3], Perforce Helix Core [19], Surround
SCM [22], StarTeam [21], and Vault [27].

– We implement SSVN, a prototype for the proposed commit signature mech-
anism on top of the SVN codebase. We perform an extensive experimental
evaluation based on three representative SVN repositories (FileZilla, SVN,
GCC) and show that SSVN is e�cient and incurs only a modest overhead
compared to a regular (insecure) SVN system.

2 Background

This section provides background on version control systems (VCS-es) that have
a (centralized) client-server architecture [3,19,22,21,27] and on (non-standard)
Merkle Hash Trees, which will be used in subsequent sections. We overview the
main protocols of such VCS-es, commit and update, which have been designed
for a benign setting (i.e., the VCS server is assumed to be fully trusted). Our
description is focused on Apache SVN [2], an open source VCS that is represen-
tative for this class of VCS-es.

2.1 Centralized Version Control Systems

In a centralized VCS, the VCS server stores the main repository for a project
and multiple clients collaborate on the project. The main (central) repository
contains all the revisions since the project was created, whereas each client stores
in its local repository only one revision, referred to as a base revision. The clients
make changes to their local repositories and then publish these changes in the
central repository on the server for others to see these changes.

Project management involves two components: the main repository on the
server side and a local working copy (LWC) on the client side. The LWC contains
a base revision for files retrieved by the client from the main repository, plus any
changes the client makes on top of the base revision. A client can publish the
changes from her LWC to the main repository by using the “commit” command.
As a result, the server creates a new revision which incorporates these changes
into the main repository. If a client wants to update her LWC with the changes
made by other clients, she uses the “update” command. The codebase revisions
are referred to by a unique identifier called a revision number. In SVN, this is
an integer number that has value 1 initially and is incremented by 1 every time
a client commits changes to the repository.

The server stores revisions using skip delta encoding, in which only the first
revision is stored in its entirety and each subsequent revision is stored as the
di↵erence (i.e., delta) relative to an earlier revision [24].

Notation: The VCS (main) repository contains i revisions, and we assume with-
out loss of generality that for every file F there are i revisions which are stored
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PROTOCOL: Commit

1: for (each file F in the commit changeset) do
2: C ! S : � // Client computes and sends

�, such that Fi = Fi�1 + �
3: S computes Fi�1 based on the data in

the repository (i.e., start from F0 and apply
skip deltas)

4: S computes Fi = Fi�1 + �
5: S computes Fskip(i) based on the data in

the repository (i.e., start from F0 and apply
skip deltas)

6: S computes �i such that Fi = Fskip(i)+
�i and stores �i

PROTOCOL: Update

1: C ! S : i // C informs S that it wants to
retrieve revision i

2: for (each file F in the update set) do
3: C ! S : j // C sends to S it local revi-

sion number for F
4: S computes Fj and Fi based on the data

in the repository (i.e., start from F0 and ap-
ply skip deltas)

5: S computes � such that Fi = Fj + �
6: S ! C : �
7: C computes Fi as Fi = Fj + � and stores

Fi in its local repository

as F0,�1,�2, . . . ,�i�1. F0 is the initial version of the file, and the i � 1 delta
files are based on skip delta encoding.

We use Fi to denote revision i of the file. We use Fskip(i) to denote the skip
version for Fi (i.e., the base revision relative to which �i is computed). We
write Fi = Fj + � to denote that Fi is obtained by applying � to Fj . Also, we
use C ! S : M to denote that client C sends a message M to the server S.

Commit protocol: The client C’s local working copy contains changes made
over a base revision that was previously retrieved from the server S. We refer to
the changes that the client wants to commit as the commit changeset. Note that
changes can only be committed for files for which the client has the latest revision
from the server (i.e., i-1). Otherwise, the client is prompted to first retrieve the
latest revision for all the files in the changeset. After C commits the changes,
the latest revision at S will become i. After executing the steps described in the
Commit protocol, the server sends the revision number i to the client, and the
client sets i as the revision number for all the files in the commit changeset.

Update Protocol: The client wants to retrieve revision i for a set of files in the
repository, referred to as the update set. After finalizing the update, the client
sets i as the revision number for all the files in the update set.

2.2 Merkle Hash Trees

A Merkle Hash Tree (MHT) [31] is an authenticated data structure used to prove
set membership e�ciently. An MHT follows a tree data structure, in which every
leaf node is a hash of data associated with that leaf. The nodes are concatenated
and hashed using a collision-resistant hash function to create a parent node, until
the root of the tree is reached. Typically, a standard MHT is a full binary tree.
Given the MHT for a set of elements, one can prove e�ciently that an element
belongs to this set, based on a proof that contains the root node (authenticated
using a digital signature) and the siblings of all the nodes on the path between
the node to be verified and the root node.

In this work, we will work with sets of files and directories. As a result, we
will use non-standard MHTs, which are di↵erent than standard MHTs in two
aspects: 1) the tree is not necessarily binary (i.e., internal nodes have branching
factors larger than two), and 2) the tree may not be full, with leaf nodes having
di↵erent depths. An internal node is obtained by hashing a concatenation of its
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children nodes, ordered lexicographically. This ensures that for a given reposi-
tory, a unique MHT is obtained. We will use MHTs to provide proof that a file
or a set of files and directories belongs to the repository in a particular revision.

3 Can Git commit signing be used?

In this section, we review the commit signing mechanism used in Git [10] and
then identify several fundamental di↵erences between centralized and distributed
VCS-es that prevent us from using the same solution used to sign commits in Git.
Git is a popular decentralized VCS, which stores the contents of the repository in
form of objects. When the client commits to the repository, Git creates a commit

object that is a snapshot of the entire repository at that moment, obtained as the
root of an MHT computed over the repository. This commit object is digitally
signed by the client, thus ensuring its integrity and authenticity.

We have identified several fundamental di↵erences between Git and SVN in
their workflow, functionality, and architecture. These di↵erences make it chal-
lenging to apply the same commit signing solution used in Git to centralized
VCS-es such as SVN.

Non-interactive vs. interactive commits: One important di↵erence is that
Git allows clients to perform commits without interacting with the server that
hosts the main repository, whereas in SVN clients must interact with the server.
A few architectural and functional di↵erences dictate this behavior:

– Working with a subset of the repository: Git relies on a distributed model, in
which the entire repository (i.e., all files and directories) for a given revision
is mirrored on the client side. As opposed to that, SVN uses a centralized
model, in which clients store locally a single revision, but have the ability to
retrieve only a portion of a remote repository for that revision (i.e., they can
retrieve only one directory, or a subset of all the directories). This feature
can be useful for very large repositories, when the client only wants to work
on a small subset of the repository.
In such cases, SVN clients do not have a global view of the entire repository
and cannot use a Git-like strategy for commit signatures, which requires
information about the entire repository. Instead, SVN clients must rely on
the server to get a global view of the repository which raises security concerns
if the server is not trustworthy and may also incur a significant amount of
data transfer over the network.

– Commit identifier: SVN and Git use fundamentally di↵erent methods to
identify a commit. Git uses a unique identifier that is computed by the
client solely based on the data in that revision. This identifier is the hash of
the commit object, and can be computed by the client based on the data in
its local working copy, and without the involvement of the server that hosts
the main remote repository. However, in SVN, the revision identifier is an
integer which is chosen by the server, and which does not depend on the
data in that revision. To perform a commit, the client sends the changes to
the server, who then decides the revision number and sends it back to the
client. Thus, a Git-like commit signature mechanism cannot be used in SVN,
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because clients do not have the ability to decide independently the revision
identifier. This raises security concerns when the server is not trustworthy.

Working with mutually exclusive sets of files: SVN allows clients to per-
form commits on mutually exclusive sets of files without having to update their
local working copies. For example, client A modifies a file F1 in directory D1 and
client B modifies a file in another directory D2 of the same repository. When
A wants to commit additional changes to F1, A does not have to update its
local copy with the changes made by B. Git clients do not have this ability, as
they need the most up-to-date version for the entire repository before pushing
commits to the main repository (i.e., they need to retrieve all changes made any-
where in the repository before pushing changes). This ensures that a Git client
has updated metadata about the entire repository before pushing changes. As
opposed to that, SVN clients may not have the most up-to-date information for
some of the files. Thus, SVN clients cannot generate or verify commit signatures
in the same way as Git does, and may be tricked into signing incorrect data.

Repository Structure: SVN stores revisions of a file based on the skip delta
encoding mechanism, in which a revision is stored as the di↵erence from a pre-
vious revision. Thus, to obtain a revision for a file, the server has to start from
the first revision and apply a series of deltas. On the other hand, Git stores the
entire content for all versions of all files. This di↵erence in repository structure
complicates the SVN client’s ability to compute and verify commit signatures.
For example, a naive solution in which the client signs only the delta di↵erence
between revisions may be ine�cient and insecure.

4 Adversarial Model and Security Guarantees

We assume that the server hosting the central repository is not trusted to pre-
serve the integrity of the repository. For example, it may tamper with the repos-
itory in order to remove code (e.g., a security patch) or to introduce malicious
code (e.g., a backdoor). This captures a setting in which the server is either
compromised or is malicious. It also captures a setting in which the VCS server
relies on the services of a third party for storing the repository, such as a cloud
storage provider which may itself be malicious or may be victim of a compromise.
Existing centralized VCS-es o↵er no protection against such attacks.

In addition to tampering with data at rest (i.e., the repository), a compro-
mised or malicious server may choose to not follow correctly the VCS protocols,
as long as such actions will not incriminate the server. For example, since com-
mit is an interactive protocol, the server may present incorrect information to
clients during a commit, which may trick clients into committing incorrect data.

When a mechanism such as commit signing is available, we assume that
clients are trusted to sign their commits. In this case, we also assume that at-
tackers cannot get hold of client cryptographic keys. The integrity of commits
that are not signed cannot be guaranteed.

4.1 Attacks

When the VCS employs no mechanisms to ensure repository integrity, the data
in the repository is subject to a wide range of attacks as attackers can arbitrarily
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tamper with data. In this section, we describe a few concrete attacks that violate
the integrity and authenticity of the data in the repository. This list is not meant
to be comprehensive, but to suggest desirable defense goals.
Tampering Attack. The attacker can arbitrarily tamper with the repository
data, such as modifying file contents, adding a file to a revision, or deleting a file
from a revision. Such actions may lead to serious security integrity violations,
such as the removal of a security patch or the insertion of a backdoor, which can
have disastrous consequences. A defense should protect against direct modifica-
tion of the files. An attacker may also try to delete a historical revision entirely,
for example to hide past activity. A defense should link together consecutive
revisions, such that any tampering with the sequence of revision is detected.
Impersonation Attack. The attacker can tamper with the author field of
a committed revision. This will make it look like developers committed code
they never actually did, which can potentially damage their reputation. Thus, a
defense should protect the author field from tampering.
Mix and Match Attack. A revision reflects the state of the repository at
the moment when the revision is committed. That is, the revision refers to the
version of the files and directories at the moment when the commit is performed.
However, the various versions of files in the repository are not securely bound
to the revision they belong to. When the server is asked to deliver a particular
revision, it can send versions of the files that belong to di↵erent revisions. A
defense should securely bind together the files versions that belong to a revision,
and should also bind them to the revision identifier.

4.2 Security Guarantees

SG1: Ensure accurate commits. Commits performed by clients should be
accurately reflected in the repository (i.e., as if the server followed the com-
mit protocol faithfully). After each commit, the repository should be in a
state that reflects the client’s actions. This protects against attacks in which
the server does not follow the protocol and provides incorrect information
to clients during a commit.

SG2: Integrity and authenticity of committed data. An attacker should
not be able to modify data that has been committed to the repository with-
out being detected. This ensures the integrity and authenticity of both in-
dividual commits and the sequence of commits. This also ensures accurate
updates, i.e., an attacker is not able to present incorrect information to
clients that are retrieving data from the repository without being detected.

SG3: Non-repudiation of committed data. Clients that performed a com-
mit operation should not be able to deny having performed that commit.

5 Commit Signatures for Centralized VCS-es

We now present our design for enabling commit signatures by enhancing the
standard Commit and Update protocols. We use the following notation, in
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PROTOCOL: Secure Commit

1: // Steps 1-6 are the same as in the standard Commit protocol
7: S computes proof Pi�1 // S uses revision i� 1 if the repository to compute a proof relative to

the client’s commit changeset
8: S ! C : i, Pi�1, CSIGi�1, RevInfoi�1 // S sends the new revision number i, the proof for

the changeset, and the commit signature and revision information for revision i � 1
9: if (V erify(CSIGi�1) == invalid) then C aborts the protocol // C verifies the commit sig-

nature using Pi�1, RevInfoi�1 and revision i � 1 of the files in the commit changeset

10: C computes the MHTROOTi using Pi�1 and revision i of the files in the commit changeset
11: C sets RevInfoi = i, i � 1, IDclient

12: C computes CSIGi = Sign(MHTROOTi, RevInfoi)
13: C ! S : CSIGi, RevInfoi
14: S computes the MHT for revision i using the MHT for revision i� 1 and the client’s changeset
15: S stores CSIGi�1, RevInfoi and the MHT for revision i

PROTOCOL: Secure Update

1: // Steps 1-7 are the same as in the standard Update protocol
8: S computes proof Pi // S uses revision i of the repository to compute proof Pi relative to the

client’s update set
9: S ! C : Pi, CSIGi, RevInfoi // S sends the proof for the update set, and the commit signature

and revision information for revision i
10: if (V erify(CSIGi) == invalid) then C aborts the protocol // C verifies the commit signature

using Pi, RevInfoi and revision i of the files in the update set

11: for (each file F in the update set) do
12: C stores Fi in its local repository

addition to what we defined in Sec. 2.1. CSIGi denotes the client’s commit
signature over revision i, and MHTROOTi denotes the root of the Merkle hash
tree built on top of revision i. We use Sign and V erify to denote the signing
and verification algorithms of a standard digital signature scheme. To simplify
the notation, we will omit the keys, but Sign and V erify use the private and
public keys of the client who committed the revision. Due to space limitations,
the security analysis of these protocols is included in the full version of the paper.
Secure Commit Protocol. We now present the Secure Commit protocol.
The client has a commit changeset with changes on top of revision i � 1, and
wants to commit revision i. The client needs to compute the commit signature
over revision i of the entire repository. However, the client’s local working copy
may only contain a subset of the entire repository (e.g., only the files that are
part of the commit changeset). Thus, in order to compute the commit signature,
the client needs additional information from the server about the files in the
repository that are not in its local working copy. The server will provide this
additional information in the form of a proof relative the client’s changeset (line
7). We describe how this proof is computed and verified in Sec. 5.1. After receiv-
ing the new revision number, the proof, and the commit signature and revision
information for revision i� 1 (line 8), the client verifies the validity of the proof
(line 9). The client then uses this proof and the files in the changeset to com-
pute the root of the MHT over revision i of the repository (line 10). Finally, the
client computes the commit signature over revision i as a digital signature over
the root of the MHT and the revision information (which includes the current
revision number i, the previous revision number i� 1, and the client’s ID as the
author of the commit) (line 12). Upon receiving the commit signature (line 13),
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the server recomputes the MHT for revision i and stores it together with the
client’s commit signature and revision information (lines 14-15).

Secure Update Protocol. The client wants to retrieve revision i for a set of
files in the repository, referred to as the update set. To allow the client to check
the authenticity of the deltas, the server computes a proof for the MHT build on
top of revision i, relative to the client’s update set (line 8). The server sends this
proof to the client, together with the commit signature and revision information
for revision i (line 9). The client then verifies this proof (line 10). After finalizing
the update, the client sets i as revision number for all the files in the update set.

5.1 MHT-based proofs

As described in the previous sections, the commit signature CSIGi = Sign(
MHTROOTi, RevInfoi) binds together via a digital signature the root of a
Merkle Hash Tree (MHT) with the revision information, both computed over
revision i. In the Secure Commit and Secure Update protocols, the client
relies on an MHT-based proof from the server to verify the validity of information
provided by the server that is not present in the client’s local repository. This
covers scenarios in which the client works locally with only a portion of the
repository. We now describe how such a proof can be computed and verified.

MHT for a repository. To compute the commit signature, an MHT is built
over a revision of the repository. The MHT leaves are hashes of files, which are
concatenated and hashed to get the hash of the parent directory. This process
continues recursively until we obtain the root of the MHT. Fig. 1 shows the
directory structure and the corresponding MHT for a revision of repository R1.

MHT-based proofs. The client relies on a proof from the server to verify the
validity of information received relative to a set of files that it stores locally (i.e.,
the commit changeset for a commit, or the update set for an update).

The proof of membership for an element contains the siblings of all the nodes
on the path between the node to be verified and the root node. For example,
consider the MHT for the repository R1 as shown in Figure 1b. The proof for
node Hf31 is {Hf32, HD1, HD2, Hf1, Hf2}, whereas the proof for node Hf21 is
{HD4, Hf22, HD1, HD3, Hf1, Hf2} We can see that nodes HD1, Hf1, and Hf2

are repeated in the proofs of these two nodes. Thus, when computing a proof of
verification for multiple nodes in the MHT, many of the nodes at higher levels
of the tree will be common to all the nodes and will be sent multiple times.

To avoid unnecessary duplication and to reduce the data sent from server to
client, we follow an approach based on a Steiner tree to compute the proof on
the server side. For a given tree and a subset of leaves of that tree, the Steiner
tree induced by the set of leaves is defined as the minimal subtree of the tree
that connects all the leaves in the subset. This Steiner tree is unique for a given
tree and a subset of leaves. The proof for a set of nodes consists of the nodes that
“hang o↵” the Steiner tree induced by the set of nodes (i.e., siblings of nodes
in the Steiner tree). Using the same example as earlier, the Steiner tree for the
set of nodes {Hf21, Hf31} if shown in Fig. 1b using solid-filled nodes. Thus, the
proof is {HD4, Hf22, Hf32, HD1, Hf1, Hf2}.
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(a) Directory struc-
ture of repository
R1

HR1 = h(R1 || HD1 || HD2 || HD3 || Hf1 || Hf2)

HD1=h(D1)
HD2 = h(D2 || HD4 || Hf21 || Hf22)

HD4 = h(D4 || Hf41 || Hf42) Hf21 Hf22

Hf41 Hf42

HD3 = h(D3 || Hf31 || Hf32)

Hf31 Hf32

Hf1 Hf2

f41 f42

f21 f22 f31 f32

f1 f2

(b) MHT for repo R1. Also shown is the Steiner tree for the
set of files {f21, f31}

Fig. 1: MHT for a revision of repository R1.

6 Implementation and Experimental Evaluation

6.1 Implementation and Experimental Setup

We implemented SSVN by adding approximately 2,500 lines of C code on top
version 1.9.2 of the SVN codebase. For cryptographic functionality, we used the
following primitives from the OpenSSL version 1.0.2g: RSA with 2048-bit keys
for digital signatures, and SHA1 for hashing.

We ran experiments with both SVN server and SVN clients running on the
same machine, an Intel Core i7 system with 4 cores (each running at 2.90 GHz),
16GB RAM, and a 500GB hard disk with ext4 file system. The system runs
Ubuntu 16.04 LTS, kernel v. 4.10.14-041014-generic, and OpenSSL 1.0.2g.
Repository selection. For the experimental evaluation, we wanted to cover
a diverse set of repositories with regard to the number of revisions, number of
files, and average file size. Thus, we have chosen three representative public SVN
repositories: FileZilla [8], SVN [2], and GCC [9], as shown in Table 1.
Overview of experiments. We have evaluated the end-to-end delay, and the
communication and storage overhead associated with the commit and update
operations for both SSVN and SVN. We average the overhead over the first 100
revisions of the three selected repositories (labeled FileZilla, SVN, and GCC1).
GCC is a large size repository, with over 250K revisions and close to 80K files.
Since for GCC the di↵erence between the first 100 revisions and the last 100 revi-
sions is considerable in the size of the repository, we included in our experiments
the overhead average over the last 100 revisions of GCC (labeled GCC2). All
the data points in the experimental evaluation section are averaged over three
independent runs.

6.2 Experimental Evaluation for Commit Operations

End-to-end delay. The results for end-to-end delay per commit operation are
shown in Table 3. Compared to SVN, SSVN increases the end-to-end delay
between 12% (for SVN) and 35% (for FileZilla). The overhead is smaller for the
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Table 1: Statistics for the selected repositories
(as of March 2018). The number of files and
the average file size are based on the latest
revision in the repository.

FileZilla SVN GCC
Number of

8,738 1,826,802 258,555
revisions

Number of files 1,454 2,207 79,552
Average file size 21KB 18KB 6KB
Repository size

29.2MB 43.9MB 492.7MB
(all revisions)

Table 2: Network communication for
committing one revision (in KBs):
from client to server (top two rows),
from server to client (bottom two
rows).

FileZilla SVN GCC1 GCC2
SVN 35.565 46.672 4.676 20.347

SSVN 35.825 46.934 4.933 20.605

SVN 0.865 1.095 0.539 2.476
SSVN 1.137 1.432 0.962 3.275

Table 3: Commit time per revision
(in seconds).

FileZilla SVN GCC1 GCC2
SVN 0.183 0.300 0.385 7.342

SSVN 0.248 0.336 0.459 8.217

Table 4: Server storage per revision
(in MBs).

FileZilla SVN GCC1 GCC2
SVN 4.504 0.514 4.263 20.346

SSVN 4.610 0.682 4.415 23.563

SVN repository because the changeset in each commit is small, and thus the
corresponding change in the MHT metadata is also small. Even though 35% is
a large relative increase for the FileZilla repository, we note that the increase is
only 0.06 seconds per commit. For the GCC repository, the overhead decreases
from 20% to 12% as we look at the first 100 revisions compared to the last
100 revisions. This is because the changeset in a commit represents a smaller
percentage as the size of the files in the GCC codebase increases. In absolute
terms, the increase for GCC remains less than 1 second.

Communication overhead. Table 2 shows that SSVN adds about 256 bytes to
the communication from client to server, which matches the size of the commit
signature that is sent by the client with committing a revision. SSVN adds
between 0.27KB to 0.8KB of communication overhead from server to client.
This overhead is caused by the verification metadata sent by server which the
client uses to verify the signature over previous commit and to generate the
signature for this commit.

Storage overhead. There is no storage overhead on the client side as the client
does not store any additional data in SSVN. On the server side, Table 4 shows
that SSVN adds between 0.1MB - 0.16MB per commit over SVN for FileZilla,
SVN, and GCC1. This reflects the fact that the server stores one MHT per revi-
sion and the size of the MHT is proportional to the number of files in the reposi-
tory. We also see the storage overhead increases significantly between GCC1 and
GCC2, because the number of files in the GCC repository increases significantly
from revision 1 (about 3,000 files) to the latest revision (close to 80,000 files).
Since the MHT is proportional to the number of files, the storage overhead for
recent revisions in the GCC repository increases to about 3MB.
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6.3 Experimental Evaluation for Update Operations

End-to-end delay. The results for end-to-end delay per update operation are
shown in Table 5. The time needed retrieve a revision in SSVN increases between
11% and 41% compared to regular SVN. Even though 41% looks high, note that
the increase is quite modest as an absolute value, at 0.03 seconds. Even for
GCC2, the maximum increase remains modest, at 0.638 seconds. This increase
is caused by the time needed to generate the proof on the server side, to send
the proof to the client, and to verify the proof on the client side.

Communication overhead. Table 6 shows that SSVN adds between 0.24KB
- 0.66KB to the communication from the server to the client. This overhead is
caused by the proof that the server sends to the client, which is required on the
client side to verify the commit signature for the requested revision.

Table 5: Update time per revision
(in seconds).

FileZilla SVN GCC1 GCC2
SVN 0.072 0.098 0.150 3.215

SSVN 0.098 0.109 0.182 3.853

Table 6: Network communication for updating one
revision (in KBs): from client to server (top two
rows), from server to client (bottom two rows).

FileZilla SVN GCC1 GCC2
SVN 1.243 1.328 0.953 10.235

SSVN 1.235 1.548 1.045 11.369

SVN 36.342 49.978 5.782 54.678
SSVN 36.745 50.225 6.245 55.346

7 Related work

Even though an early proposal draft for SVN changeset signing has been consid-
ered [23], it only contains a high-level description and lacks concrete details. It
has not been followed by any further discussion regarding e�ciency or security
aspects, and it did not lead to an implementation. Furthermore, the proposal
suggests to sign the actual changeset, which may lead to ine�cient and inse-
cure solutions, and does not cover features such as allowing partial repository
checkout, or allowing clients to work with disjoint sets of files without having to
retrieve other clients’ changes.

GNU Bazaar [3] is a centralized VCS that allows to sign and verify com-
mits [14] using GPG keys. However, although Bazaar supports features such as
partial repository checkout and working with disjoint sets of files, commit signing
is not available when these features are used.

Wheeler [35] provides a comprehensive overview of security issues related
to source code management (SCM) tools. This includes security requirements,
threat models and suggested solutions to address the threats. In this work, we are
concerned with similar security guarantees for commit operations, i.e., integrity,
authenticity and non-repudiation.

Git provides GPG-based commit signature functionality to ensure the in-
tegrity and authenticity of the repository data [11]. Metadata manipulation at-
tacks against Git were identified by Torres-Arias et al. [33]. Gerwitz [30] gives
a detailed description of Git signed commits and covers how to create and ver-
ify signed commits for a few scenarios associated with common development
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workflows. As we argued earlier in the paper (Section 3), several fundamen-
tal architectural and functional di↵erences prevent us from applying the same
commit signing solution used in Git to centralized VCS-es such as SVN.

Chen and Curtmola [29] proposed mechanisms to ensure that all of the ver-
sions of a file are retrievable from an untrusted VCS server over time. The focus
of their work is di↵erent than ours, as they are concerned with providing prob-
abilistic long-term reliability guarantees for the data in a repository. Relevant
to our work, they provide useful insights into the inner workings of VCS-es that
rely on delta-based encoding.

8 Conclusion

In this work, we introduce a commit signing mechanism that substantially im-
proves the security model for an entire class of centralized version control systems
(VCS-es), which includes among others the well-known Apache SVN. As a re-
sult, we enable integrity, authenticity and non-repudiation of data committed by
developers. These security guarantees would not be otherwise available for the
considered VCS-es.

We are the first to consider commit signing in conjunction with supporting
VCS features such as working with a subset of the repository and allowing clients
to work on disjoint sets of files without having to retrieve each other’s changes.
This is achieved e�ciently by signing a Merkle Hash Tree (MHT) computed over
the entire repository, whereas the proofs about non-local data contain siblings of
nodes in the Steiner tree determined by items in the commit/update changeset.
This technique is of independent interest and can also be applied to distributed
VCS-es like Git in case Git moved to support partial checkouts (a feature that
has been considered before) or in ongoing e↵orts to optimize working with very
large Git repositories ([28,25]).

We implemented a prototype on top of the existing SVN codebase and eval-
uated its performance with a diverse set of repositories. The evaluation shows
that our solution incurs a modest overhead: for medium-sized repositories we add
less than 0.5KB network communication and less than 0.2 seconds end-to-end
delay per commit/update; even for very large repositories, the communication
overhead is under 1KB and end-to-end delay overhead remains under 1 second
per commit/update.
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