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Abstract. By requesting a security update, a client also notifies poten-
tial attackers that it is vulnerable to attack. Fortunately, this problem can
be solved using Private Information Retrieval (PIR), a problem which
has been widely studied by the security community. Unfortunately, due
to performance reasons PIR solutions have been dismissed as impractical
by academia and have not been adopted by industry.
This work demonstrate the feasibility of building a PIR system with
performance similar to non-PIR systems in real situations. Prior Chor
PIR systems have chosen block sizes that are theoretically optimized to
minimize communication. This (ironically) reduces the throughput of the
resulting system by a factor of roughly 50x. We constructed an efficient
Chor PIR system called upPIR that is efficient by choosing block sizes
that are theoretically suboptimal (from a communications standpoint),
but fast and efficient in practice. For example, an upPIR mirror running
on a three-year-old desktop provides security updates from Ubuntu 10.04
(1.4 GB of data) fast enough to saturate a T3 link. Measurements run
using mirrors distributed around the Internet demonstrate that a client
can download software updates with upPIR about as quickly as with
FTP.

1 Introduction

Each year, thousands of vulnerabilities in software are discovered and fixed. To
fix a vulnerability, a computer will request and install a security update. How-
ever, the request to retrieve a security update is very much a public action. Most
software updaters do not encrypt the request for a security update in any way
and the request itself is often directed to an untrustworthy party like a mirror.
For example, Cappos [1] set up an official mirror for popular Linux distributions
using dubious credentials and rented hosting. The official mirrors received re-
quests for security updates (and thus a notification that the requesting system
is unpatched) from a large number of computers including banking, government,
and military computers. Thus the act of fixing a security vulnerability ironically
also notifies potential attackers that the client has a security vulnerability!

Fortunately, Private Information Retrieval (PIR) [2] addresses this issue.
There are now myriad schemes proposing how clients can retrieve information



Fig. 1: Architecture of a typical software updater

from a database without disclosing which information is requested [2–5]. The
academic literature has primarily optimized these systems by improving their
theoretical properties [6–9], primarily to reduce communications overhead.

The biggest open problem related to PIR systems is how to make them
practical. An academic panel titled “Achieving Practical Private Information
Retrieval” lamented that the performance of existing PIR systems makes them
unsuitable for practical use [10]. Recently, Sion suggested that many PIR tech-
niques are so inefficient that it is faster to simply transmit all data stored on the
server to the client [11]. More recently, Olumofin and Goldberg [12] have shown
faster practicality results (especially with Chor PIR); however, these results are
still much slower than non-PIR systems.

We demonstrate that it is possible to build a practical PIR sys-
tem that provides performance similar to that of non-PIR production
systems. Our system, upPIR uses the Chor multi-server PIR scheme [2], which
uses XOR instructions that can be efficiently computed on modern hardware.
By carefully choosing the block size to match the processor’s cache size, upPIR’s
throughput is substantially faster than existing results. (This is opposed to prior
work which has focused on reducing communication complexity.) upPIR allows
clients to retain information-theoretic privacy while providing performance sim-
ilar to popular HTTP and FTP servers.

While security updates were chosen to motivate this work, PIR systems are
applicable to a rich set of problems. This includes stock quotes [13], pharmaceuti-
cal databases [14], location tracking [15], census information [13], and email [16,
17]. A high-performance PIR system will have wide reaching privacy benefits
across a large number of fields.



Distribution Version Size Updates

OpenSUSE 11.4 556MB 679
Ubuntu 10.04 1.4GB 845
Fedora 14 4.3GB 6305

Fig. 2: Security update information for
popular Linux distributions
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Fig. 3: Figure showing the number of up-
dates at or below the given size (by project)

2 Software Updaters

2.1 Software Updater Architecture

The architecture of software update systems (including upPIR) is similar to
what is shown in Figure 1. The software vendor, such as Ubuntu or Microsoft,
creates a set of updates and bundles them into a release. In this example, the
set of updates contains the packages a.deb, b.deb, and c.deb. The vendor also
creates some metadata that describes the release, called a manifest. The release
is obtained and copied by a set of mirrors. For economic and configurability
reasons, mirrors are an important and essential part of the software update
landscape. Unfortunately, it is trivial for a malicious party to register as an
official mirror and receive requests from clients, including requests for security
updates [1].

2.2 Software Update Contents

The size and number of items stored by a mirror vary over software projects,
as illustrated by Figure 2 for recent versions of popular Linux distributions.
The size of the security updates for a distribution is several orders of magnitude
smaller than the full mirror data which contains normal updates. In this work we
focus on distributing security updates and leave private distribution of complete
software mirrors for future work.

Further details about the suitability of PIR for software updates are provided
in the appendix.

3 Threat Model

Given information about the usage environments for software update systems,
we can devise a realistic threat model. In particular, a software update system
may contact many mirrors, including those that may be malicious. Our goal in



this work is to prevent a mirror from knowing which software update is being
retrieved by a vulnerable client.

We assume that:

– The vendor is creating valid updates that the client wishes to retrieve.
– A non-malicious mirror may fail at any time.
– A malicious party may operate one or more mirrors. Therefore the adversary

may see all communications and decode any encrypted messages for their
mirrors. Furthermore, these mirrors may share or publicize any information
they receive.

– An adversary may be able to observe all traffic sent over the network. This
is consistent with a malicious access point or ISP.

– A malicious mirror may corrupt or modify content.

For the bulk of the paper, we focus on allowing rapid retrieval of updates
given the first four constraints. We discuss an extension to handle mirrors that
corrupt or maliciously modify content in Section 4.3.

4 Architectural Overview

The overall architecture of our system (upPIR) is divided into the same three
components of traditional software updaters; a vendor, mirrors, and clients.
These parties use Chor PIR to allow the client to privately retrieve updates
from the mirror and vendor (the intuition for this is described in an appendix).
We specifically highlight differences between traditional update systems and up-
PIR.

4.1 Vendor

The vendor produces a set of updates that it wishes to package into a release
and provide to clients. The vendor generates a manifest that contains metadata
about the updates provided in the release. The release provided by a vendor
conceptually breaks the updates into equally sized blocks. If this were not done,
then performing an XOR of all updates together causes every XORed chunk
of data to be the size of the largest update. This would effectively mask the
size of the update being retrieved, but would be very inefficient if there is a
wide distribution of update sizes. In our implementation, the vendor selects the
block size when the manifest is created. (Section 5.4 discusses how to choose an
efficient block size).

The manifest contains the secure hashes of each of the blocks within the
release. A client can use the manifest to determine which blocks to retrieve
from the mirrors and to validate their correctness. The client can then privately
retrieve those blocks and reassemble its update. To protect against timeliness
attacks and similar threats, upPIR leverages best practices for software update
security [18, 19].

The vendor’s server is also responsible for providing the manifest and a cur-
rent list of mirrors to interested clients. The vendor’s server polls the mirrors for
liveness and removes unresponsive mirrors. It also removes any mirror that has
been demonstrated to be malicious by a client.



4.2 Mirror

An upPIR mirror obtains the files for the release from the vendor using rsync

or another file transfer mechanism for distributing updates to mirrors. Following
this, the mirror reads in all of the software updates in the release and stores
them in one contiguous memory region. (The order of the software updates in
memory is specified in the manifest file.) The mirror uses the manifest to validate
each block. The mirror then notifies the vendor’s server that it is ready to serve
blocks to clients. When a client sends a string of bits to the mirror, the mirror
will XOR together all blocks with a 1 in their position of the client’s request
string. The mirror then sends the result back to the client (which is the size of
one block).

In order to prevent a man-in-the-middle from snooping on the client’s re-
quest strings, communications between a client and mirror are encrypted. To
bootstrap this process, the mirror provides the vendor with a public key when
it registers to distribute updates. This is used both to establish a session key for
the communication with the client and also to attest to the correctness of the
block returned to the client. This signature is useful for non-repudiation because
it allows the client to prove that the mirror is producing corrupt blocks.

Note that our mirror implementation may also simultaneously serve content
to legacy clients. The mirror can look up the location of the update in the release
by checking the manifest. The security update can then be returned in response
to the client’s HTTP or FTP request.

4.3 Client

A client first contacts the vendor’s server to obtain the latest manifest and mirror
list. From the manifest, the client can determine which blocks of the release
it needs to retrieve in order to receive its update. The client also has some
value N that represents the number of mirrors that would have to collude to
compromise the client’s privacy. To retrieve a single block, the client generates
N − 1 cryptographically suitable random strings. The client derives the Nth
string by XORing the other N − 1 random strings together and flipping the bit
of the desired update. Each string is sent to a different mirror over an encrypted
channel (to prevent eavesdropping on the strings). Each mirror returns a block
consisting of the specified blocks XORed together. The mirror signs the request
and response in its reply to allow the client to demonstrate to a third party when
a mirror is corrupt or malicious. If multiple blocks are desired, the procedure is
repeated.

5 Evaluation

This section describes our evaluation of upPIR. In particular, we compare the
impact of different block size choices focusing on examining whether the theo-
retically optimal block size from a communications perspective [12] (where the
block size is the square root of the database size) results in good throughput.
We also examine the performance of upPIR on real data sets and in a realistic
deployment using the block size we recommend.



Fig. 4: Time to fetch one block against the
Ubuntu release on multiple machines
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Fig. 5: Throughput in fetching one block
against a 1GB release on multiple ma-
chines.

5.1 Implementation and Experimental Setup

The client and vendor code for upPIR are written in entirely in Python. The
mirror code is a mix of Python and 64-bit C code. The XOR portion of the
algorithm is in C for speed reasons, but the remaining code is all in Python for
maintainability. According to sloccount, the XOR portion of upPIR has 297
lines of C code. The client, mirror, and vendor implementations combined are
499 lines of Python code.

We wanted to test upPIR with realistic hardware for software mirrors. In
practice mirrors are often set up using outdated server hardware or in a VM
on shared resources. As a result, we chose a range of servers that had these
properties. The different machines used are as follows:

– ec2 large is a “large” 64 bit Amazon EC2 instance [20], with 7.5 GB of
RAM and 2 ECUs. One ECU is roughly equivalent to a 1.0Ghz Intel Xeon
circa 2007. Other specifications such as L2 cache size and network bandwidth
are not disclosed by Amazon.

– ec2 xlarge is an “extra-large” 64 bit Amazon EC2 instance with 15GB of
RAM and 4 ECUs.

– emulab is an approximately two-year-old Emulab node with an Intel E5530
CPU with an 8MB L2 cache and 12GB of RAM on a virtual 100Mbps
LAN [21, 22].

– local is an undergraduate student’s three-year-old PC with an Intel E5506
CPU with a 4MB L2 cache and 6GB of RAM on a shared 100Mbps LAN.

5.2 Mirror XOR Microbenchmarks

In this section we explore the performance with different block sizes and release
sizes. One potential bottleneck in upPIR is the rate at which the mirror can
XOR data. Recall that a mirror may have a release of 1GB or more and need to
XOR sizeable blocks of this data together. We implemented the XOR loop of our



mirror to XOR 64-bit chunks of data at a time. Our performance is bottlenecked
mostly on the time it takes to read the chunks from memory.

Figure 4 demonstrates the time it takes to produce a block of data when
a mirror serves the Ubuntu 10.04 data. We generated 10 random bit strings of
the appropriate size and then measured the amount of time the mirror spent
XORing the relevant update blocks together. Notice that the size of the block
has little impact until the block size exceeds 2MB. If the necessary code, the
block that is being XORed, and the current result of XORing all fit in cache,
the performance is similar.

Notice that the theoretically optimal block size from a communications stand-
point [12] has essentially the same speed as larger block sizes. Producing a 1MB
or larger block in the same time as the theoretically optimal block size results
in about a 50x increase in throughput.

Figure 4 also indicates that the outdated-but-dedicated hardware performs
slightly better than the shared EC2 instances. We believe this may be due to
two factors. First, our EC2 instances may be co-located with other code which
causes a higher degree of L2 cache misses. Second, while Amazon is vague about
the exact specifications one can expect, the EC2 instances’ expected processing
power is lower than that of our dedicated machines.

Another way of visualizing the data in Figure 4 is to look at the resulting
throughput, as is seen in Figure 5. This graph shows that as the block size
increases, the throughput improves. However, once the block size increases to
2MB, the throughput no longer increases linearly with the block size. This is
due to data and code not fitting entirely in L2 cache.

The block size is not the only thing that may vary depending on how upPIR
is used. The size of the release also varies significantly between vendors. The
release size is an important factor because larger releases contain more blocks.
To explore the impact of the release size, we fixed the block size to be 1MB and
then varied the release size on ‘emulab’ as shown in Figure 6. The performance
scales at the same rate as the release size until the release no longer fits in
memory. Once the release exceeds the size of RAM, the performance drops by
over an order of magnitude as disk latency comes into play (not shown). Our
results show that upPIR scales linearly as the release size grows provided the
data served fits within memory.

5.3 The Impact of Block Size on Efficiency

The previous discussion showed how quickly a mirror could produce XOR blocks.
However, there is a difference between useful data and data. If a mirror can pro-
duce a 1MB block in .1 second or a 2MB block in .15 second, from a throughput
standpoint, the 2MB block size is superior. However, if the client wants a 1MB
update but must retrieve 2MB of data to get it, then 1MB of the space is wasted.
In essence, the data efficiency is the amount of retrieved data that is useful.

One of the main factors in calculating the efficiency is the block size. Figure 7
shows how changing the block size impacts efficiency for different data sets. The
lines represent different update sizes (or data sets) and illustrate the performance
difference when block size is varied. The values given were calculated by dividing
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Fig. 7: Space efficiency of updates with
various block sizes

the size of the release by the amount of data that a client would have to download
to obtain every update in it one update at a time using our PIR scheme. Note
that this graph assumes that all update data in a block other than the requested
update is not of interest to the client. This is not always the case, as a client
may request two updates that share a block. As such, our results represent the
worst case efficiency for updates from these distributions.

Figure 7 demonstrates that the amount of useful data within a block decreases
rapidly as the block size increases. This is to be expected since larger blocks
imply that there is more wasted space when retrieving an update. For example,
between 70-85% of update data is unneeded when using 8MB blocks, but less
than 5% is unneeded with 64KB blocks. For a block size of 1MB, the amount of
unneeded data is about 20-40%. There is a significant increase in the amount of
unneeded update data for block sizes greater than 2MB.

5.4 Choosing a Block Size to Optimize Goodput

One decision the vendor makes when creating the manifest for a release is to
choose the block size. As we previously saw, this choice greatly impacts both
the mirror XOR performance and the client’s goodput. (Goodput is defined as
the desired bytes per second, so ignores padding and packet headers.) In order
to determine how to optimize the mirror’s goodput, one can combine the mirror
XOR time and the data efficiency to compute the goodput of the mirror.

Figure 8 shows how the goodput varies based on the throughput of the mirror
and the space efficiency of the block size. This chart is generated by retrieving an
average sized update from three distributions on the system ‘local’. This graph
shows that the goodput is optimal when block size is between 1MB to 2MB for
each distribution. As a result, these block sizes seem to be the most efficient for
this system. The theoretically optimal from a communications standpoint (the
square root of the distribution size) has one to two orders of magnitude less
throughput.



Fig. 8: Goodput for an average sized up-
date in three releases.

Fig. 9: Goodput for an average Ubuntu
update.

In addition to the differences seen by releases, the characteristics of the ma-
chine also impacts the performance characteristics. Figure 9 shows how the good-
put varies for Ubuntu 10.04 across platforms. Note that the EC2 instances have
nearly identical performance for most block sizes. Since the average update size
for Ubuntu is more than 1MB, it is unsurprising that the peak for each platform
is at a 2MB block size. It is worth noting that the relative improvement between
1MB and 2MB is much lower for systems that have smaller L2 caches and thus
process 2MB block sizes more slowly. Once again, the theoretically optimal block
size is more than an order of magnitude slower than 2MB on all systems.

5.5 Controlled Macrobenchmarks

All of the benchmarks we have observed so far have focused purely on the mir-
ror’s XOR speed. However, other important factors influence the efficiency of
retrieving an update, including the time the client takes to generate a suitable
random bit string and the transmission time for the resulting block. We in-
stantiated a client and an Ubuntu 10.04 mirror on Emulab machines and used
them to evaluate upPIR’s overall performance aspects. Since the client is only
communicating with one mirror, this experiment does not capture the time the
client needs to XOR the results together. However, further testing (not shown)
has indicated this cost is insignificant. This test was performed with 100Mbps
maximum virtual links between nodes with LAN latencies.

Figure 10 shows where time is spent retrieving a block from a mirror. First
of all, the time to generate the cryptographically suitable random string is only
paid on the client side of the connection. Similarly, the time that is spent XORing
content is only performed by the mirror. The communication time is perceived by
both systems. When the block size is small, the client’s time to generate the string
incurs a non-negligible cost. For larger block sizes, the network communication
time is the dominant factor. For example, for a 4MB block size, the XOR takes
about 200 ms, and the retrieval time is nearly 1 second. The theoretically optimal
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Location Protocol Time (s)

US-West (EC2) HTTP 0.64
US-West (EC2) FTP 1.5
US-West (EC2) upPIR 1.2

US-East (EC2) HTTP 1.5
US-East (EC2) FTP 2.1
US-East (EC2) upPIR 3.1

EU-West (EC2) HTTP 2.7
EU-West (EC2) FTP 4.5
EU-West (EC2) upPIR 4.1

Official US Mirrors HTTP 1.6
Official US Mirrors FTP 2.1

Worldwide (EC2) upPIR 3.5

Fig. 11: The time taken when re-
trieving an Ubuntu security up-
date by different mechanisms.

block size from a communications standpoint (about 38KB) has about 100 times
slower throughput than a 2MB block.

A goal of mirror software is to serve a reasonable number of clients per second.
Our mirror implementation is näıve with respect to parallelism and largely op-
erates on clients sequentially. By parallelizing network I/O with XORing blocks,
our mirror can handle between 5 and 8 requests per second. As a point of com-
parison, in April 2011 the 99.999th percentile request rate on our official Ubuntu
mirror for versions 6.06 to 11.10 was 3 requests per second. We believe upPIR’s
throughput is more than sufficient for practical scenarios, especially given that
a T3 link has a theoretical maximum throughput of about 3.6 average sized
Ubuntu updates per second.

5.6 Deployment

To understand the performance of upPIR in realistic environments, we deployed
our software on machines around the world. We used our machine ‘local’ as
an Ubuntu 10.04 vendor with a 2MB block size, three EC2 instances in either
the US East, US West, or EU West availability zones as mirrors, and ran the
client at the University of Washington. For the worldwide setting, we ran one
mirror in each availability zone to show the expected performance for a client
choosing mirrors at random. We compared the time to download the 1.5MB
libc6-prof 2.12.1-0ubuntu6 i386.deb package using different mechanisms.
We chose this package because it is popular and close to the average update
size. We compared upPIR running in this configuration with hosting the files
via HTTP (apache) and FTP (vsftpd) on the same EC2 instances. For compar-
ison’s sake, we also downloaded the same file using FTP and HTTP from every
available official Ubuntu mirror inside the United States. (We list the median
time for the Ubuntu mirrors because a few slow nodes skew the average. )



Figure 11 shows the result of distributing updates via upPIR and other mech-
anisms. The first thing to observe is that HTTP is slightly faster than FTP. We
believe that this is because FTP uses more back and forth communication than
HTTP (or upPIR) and therefore suffers the most from latency. HTTP is faster
than upPIR, which is expected because the client is downloading 2MB of data
from three mirrors instead of 1.5 MB from one mirror. Despite the additional
information downloaded, upPIR’s time is comparable to FTP on the same hard-
ware. However, unlike HTTP and FTP, upPIR retrieves the update privately.
Since we configured our upPIR client to download from three mirrors, even if two
mirrors collude, they do not learn which update the upPIR client is retrieving.

6 Related Work

6.1 PIR History and Impracticality Results

In 1995, Chor et al. proposed PIR as a novel mechanism for allowing clients
to retrieve information from a database without disclosing to the server what
was being retrieved [2]. This generated significant academic interest, particu-
larly on two perceived weaknesses of the basic scheme: its need for multiple
non-communicating servers (referred to as the replication problem) and its com-
munication complexity, which some termed its efficiency. In 1997, Kushilevitz
and Ostrovsky solved both problems by moving from the information- theo-
retic model to a model that admits computationally bounded adversaries. This
work proved that one could obtain in sublinear asymptotic complexity prov-
able privacy using only a single server. This spurred exploration of their CPIR
(Computationally Private Information Retrieval) problem [23–25, 5, 7]. Much of
this research effort focused on reducing the communication complexity at the
expense of computational cost.

However, PIR implementations were few and far in between and known to be
difficult to apply to real problems [16]. In 2006, a panel entitled “Achieving Prac-
tical Private Information Retrieval” [10] lamented the impracticality of much of
PIR research and discussed suggestions on how this might be improved. Different
panelists threw out a wide variety of proposals (some of which we leverage in this
work), including focusing on returning blocks instead of bits and using multiple
instead of single servers. There were also extended discussions about specialized
hardware and computing environments which have inspired other research.

Impracticality results from researchers including Sion [11], Yoshida [26] and
Sassaman [27] reveal inefficiencies in existing PIR schemes. Perhaps most inter-
esting is Sion’s argument that many types of computational PIR are presently
impractical and, given hardware trends, unlikely to improve from a performance
perspective [11]. He argues that it is faster to transfer the entire database than
to perform PIR with a large class of proposed schemes.

6.2 PIR on Commodity Hardware

Olumofin and Goldberg [12] recently provided performance results for a PIR
system that does not use the primitives mentioned as impractical in Sion’s prior
work. Olumofin’s resulting system is shown to be one to three orders of magni-



tude more efficient than transferring the entire database. They use the theoret-
ically optimal block size in their analysis, so their reported performance results
are significantly slower. For example, for a 2GB database, they produce a 46KB
block in just over 1 second (roughly 370Kbps). As was shown in Figure 6, upPIR
produces a 1MB block in .2 seconds from a 2GB data store, showing throughput
of roughly 40Mbps — two orders of magnitude higher throughput. We contacted
the authors and discovered their Chor implementation is similar to ours in per-
formance when choosing the non-theoretically optimal block size.

Similarly, Melchor [28] provides a fast PIR implementation that uses lattices
instead of the XOR-based primitives in our work. Their implementation boasts
speeds of 2Gbps on GPUs or 230 Mbps on CPUs similar to ours. However, as was
pointed out by Olumofin et al [12], these results are more of a micro-benchmark
as they do not account for many costs that would be incurred in actual sys-
tem use. The authors mention they aimed to maximize throughput by choosing
experimental data that fit exactly within cache (instead of using realistic data
sets). As a result, they retrieved 3MB results from a 36MB database to achieve
their 230Mbps speed number. On our system with comparable hardware (‘lo-
cal’) [29], our implementation can produce results for a 36MB database at over
1Gbps. This demonstrates that careful block size choice results in far greater
throughput improvements.

6.3 PIR on Specialized Hardware

Another common way to try to speed up PIR is to use specialized hardware. Pro-
posals have suggested leveraging GPUs [28], secure co-processors [30] or oblivious
RAM [31]. These results show promise, but our work demonstrates that it is pos-
sible to achieve excellent performance simply with universally deployed hardware
(commodity CPUs).

6.4 Applying PIR

Previous attempts to use PIR on practical problems on commodity hardware
have included stock quotes and census information [13], pharmaceutical databases [14],
location tracking [15], and email [16, 17]. Unfortunately, many of these systems
do not provide performance results [16, 14]. Yang et al [13] do provide perfor-
mance results for their study of stock quotes and census information; however,
it is hard to compare results which were run on systems from 2002. Notably,
the database they compare with is 86kb, and so on their hardware, it fits easily
within the L2 cache. Their results indicate that they can produce between 2 to
5 8kb blocks per second.

Ghinita et al [15] perform private queries specifically tailored to the problems
encountered by location services. Their system does not process traditional PIR
queries but instead provides answers to problems like nearest neighbor queries.
When running on modern hardware, their system can answer queries from 128KB
to 1.2MB of location data in 1 second or more per query. It is unclear whether
the reduced rate in processing queries poses a barrier to adoption by location
service providers.



Wang et al. [32] propose a concept called Bounding Box PIR that allows
the client to specify more relaxed privacy constraints and a budget for server
side computation. They evaluate their system using around 3MB of records
from a voter database [33]. Their implementation returns records of about 100
bytes from this database in 400ms to 600ms (depending on the privacy and
computation budget settings) on hardware similar to what we use. These results
are many orders of magnitude slower than a conventional database would be on
similar hardware.

7 Conclusion

This work demonstrates that in PIR systems, the theoretically optimal block
size (for minimizing communications cost) can be far less efficient than larger
block sizes in practice. In fact, it is possible to construct a PIR system with
performance similar to production non-PIR systems. We chose to motivate and
test upPIR by privately distributing security updates on commodity hardware
and show this has performance similar to FTP.

Our work on upPIR does not represent the completion of a goal, but the
beginning of an exploration into practically deployable PIR systems. We are cur-
rently working towards a production deployment of upPIR on software mirrors
to see what issues arise in practice. We make our source code publicly available
with a MIT License (https://uppir.poly.edu).
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A Software Update PIR Suitability

Do all clients retrieve the same update? An important question is whether
other factors indicate the exact update that is being retrieved. For the most part,
Microsoft directly serves updates for their software, with each client downloading
essentially the same update [34, 35]. This means that private retrieval of updates
is almost useless for Windows machines. Linux systems are much more diverse.
To understand this, we examined mirror requests from 120K unique IPs that
contacted offical mirrors for CentOS, Debian, Fedora, OpenSuSE, and Ubuntu.
Clients issued a total of 260K unique requests (omitting retries for the same
package). We then counted the number of IP addresses that requested the same
set of packages from our mirrors. The most popular set of packages only was
requested 692 times which is less than .3% of the time! In contrast, 24K clients
(about 20%) requested a completely unique set of packages. More than 50%
of the clients downloaded a set of packages downloaded by 14 or fewer other
IPs. Part of the apparent diversity here stems from the fact that some package
managers distribute requests across multiple mirrors (as we describe later).



Does the size indicate the update? Most software updates have a unique
size. We propose padding to mask the size of the updates that are being down-
loaded. Figure 3 demonstrates the distribution of update sizes within some pop-
ular versions of Linux. 95-99% of all updates would be included in the first 8
size denominations. This decreases the utility of the package size as an indicator
for which update is being retrieved. The efficiency impact of using padding is
explored in more detail in Section 5.4.

One additional influence on the size that complicates the above analysis is the
fact that packages may depend on each other. Over 260K client requests, clients
downloaded 2.2 packages on average. Part of the reason is that some package
managers will request packages from different mirrors when performing a down-
load. This helps to mitigate the mirrors’ ability to use size as a differentiator.

Does the time indicate the update? To understand the correlation between
the update requested and the time of the request, we collected data provided
by the popularity contest package [36] on Ubuntu. This utility assembles
installation and update information for all package types from Ubuntu users
and reports aggregate information about the entire Ubuntu community. When
looking at the two weeks of user-reported updates on Feb 3rd, 2011, there were
about 35 million updates for over 35 thousand distinct packages. Over this time
period, the most popular package update represented only 0.4% of the total
updates performed. Also, the top 100 packages only comprised about 23% of the
updates.

Is the IP address enough? An attacker still receives a client’s IP and could
try to attack all possible updates for that distribution that have a known vul-
nerability. However, most Linux distributions have hundreds of security updates
available. An attacker who could previously pinpoint a single vulnerability and
attack only when contacted by a vulnerable client must now attempt to blindly
exploit clients. This greatly increases the probability of such an attacker tripping
an IDS or otherwise being discovered.

Isn’t the opportunity for attack short? A natural question is whether this
threat has significant impact given that a client will download and apply a patch
soon after issuing the request. Given the ability for an attacker to automatically
generate exploits from a patch [37], this is a significant threat. More impor-
tantly, an attacker who controls a mirror can increase the attack window by
accepting the TCP connection from the package manager but returning data at
an arbitrarily slow rate. With a PIR system, the attacker must blindly attack
vulnerabilities, greatly increasing the chance of discovery.

Does the combination of information reveal the update? We have shown
that while the IP address, size, and time provide some information about what
security update is retrieved, this information is rather limited. Even when com-
bined it does not disclose the update in the majority of situations. However,
despite the relatively short time period that many updates occur in, there is still
a significant risk. In practice today, without PIR every client discloses all vulner-



Fig. 12: Illustration of a PIR client privately requesting block D

abilities to untrusted parties. As such security updates seem to be an appropriate
domain to apply PIR techniques.

Do existing techniques solve this problem? Existing software solves some
of the problems. HTTPS uses encryption to protect communication between the
client and mirror and can stop an eavesdropper from detecting which update is
retrieved — a upPIR uses. However, HTTPS only encrypts the communication
between the mirror and client, so the mirror learns exactly what security update
the client is requesting.

One could also use a mixnet like Tor [38] to provide privacy when retrieving
updates. Unfortunately, it is blocked by many governments and organizations
around the world. This would prevent users in those areas from anonymously
obtaining security updates. We believe that an upPIR mirror serving security
updates is much less likely to be blocked.

B Private Information Retrieval Intuition

In this section, we describe the intuition behind the fundamental building block
in our private information retrieval scheme. Our PIR scheme is the basic linear-
summation scheme for multi-server PIR proposed by Chor et al. [2] and dismissed
as theoretically sub-optimal later in the same paper. The intuition behind why
this scheme privately retrieves information follows.

Suppose a client wants to privately retrieve an update from two mirrors so
that neither mirror knows which update the client is retrieving (as is shown in
Figure 12). Let’s suppose that a vendor has produced a release containing 4
updates of the same size called A, B, C, and D. This release is currently being
served by the two mirrors. The client will generate a random string of bits of
length 4 (one bit for each update in the release) and send this to the first mirror.
The mirror receives the random string and then generates a response consisting
of the bitwise XOR of each update where there is a 1 value in that position.
For example, the string 1010 would contain A XOR C. Then the client takes
the random string it sent to the first mirror and flips the bit of the update it
wants. Let’s suppose the client wanted update D, if the first string was 1010, it
would send 1011 to the second mirror. The second mirror sends back a response
that contains all of the updates with a 1 XORed together (or A XOR C XOR D



in our example). The client can then XOR the responses together to obtain the
update D.

In our simple example, we addressed a client that retrieves an update from
two mirrors. However, this only provides protection if those two mirrors do not
collude. If a client wishes to protect against N − 1 colluding mirrors, the client
can generate N − 1 random bit strings to send to the first N − 1 mirrors. The
Nth mirror should be sent the first N − 1 strings XORed together with the bit
for the desired update flipped. The client can XOR all N results together to
obtain the result. If any N−1 of the N mirrors collude, they will not know what
information the client is retrieving. Consequently, all N mirrors would need to
collude in order to determine the requested update.

Each mirror receives a random string of bits (or a random string with an
unknown bit flipped) and therefore gains no information about which update is
being retrieved. Only by sharing the bit strings could the mirrors discover which
update the client is retrieving. As long as the client contacts enough mirrors
such that one of them does not share this information, no information is leaked
regarding which security updates are being requested.

However, a man-in-the-middle placed near the client, such as their ISP or
access point, could simply read all of the client’s bit strings and easily decode
which update is desired. To protect against an adversary who can observe all
network traffic, the client can communicate with each mirror over an encrypted
channel.
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