
18    D ECE M B ER 20 14  VO L . 3 9, N O. 6 	 www.usenix.org

SECURITY

PolyPasswordHasher
Improving Password Storage Security

S A N T I A G O T O R R E S A N D J U S T I N C A P P O S

We most often hear about password database thefts and the sub-
sequent cracking of these databases’ hashed passwords. Since
systems have become faster, and attackers have gained access

to clusters or specialized hardware used for cracking, the techniques that
have made cracking difficult need to be updated. We have created a system,
PolyPasswordHasher, that uses shared keys to add an additional encryption
step; it requires an attacker to simultaneously crack several keys at once.
We project that PolyPasswordHasher changes the time needed to crack even
short passwords to longer than current estimates of the age of the universe.

The Current Standard in Password Protection
Initially, passwords were stored in plaintext on servers. However, once a password data-
base was stolen by an attacker, all passwords on the system could be read. To combat this,
password storage systems started to store a cryptographic (one-way) hash of a password. In
this scheme, after acquiring a password database, the attacker had to guess at passwords and
check their values against the stored hashes in order to recover the actual passwords.

Cracking cryptographic hashes is not as complicated as it sounds, because an attacker can
simply pre-compute a database of common passwords and look up a password when given
its hash. To address this flaw, “salting” was devised; salt is a random value that is used in the
cryptographic hash of the password to make it effectively unique, per database. Current best
practice is to create a unique salt for every password (stored alongside the cryptographic
hash in the database).

How Do Hackers Steal and Crack Passwords?
To log in, a user provides his or her login name and password to the server. If the user is
remote (not physically at the server), this is done over an encrypted channel so that a man-in-
the-middle cannot see the user’s password. The server receives the user’s password, performs
a secure salted hash, and checks it against the value stored in the database. If these match,
the user is allowed to log in.

When an attacker wants to steal the password for a certain account, there are three options:
obtain the password before it gets hashed, act as a man-in-the-middle, or acquire the hash
and crack the database. Getting a password before it gets hashed requires the ability to read
arbitrary memory (root access) on a running server. Attacks of this nature, in which the
server has been completely compromised, account for less than 5% of total compromises,
according to Mirante’s analysis of recent password hacks [3].

Attacks that try to acquire the password while in transit (as a man-in-the-middle) are even
less common. The attacker must both intercept the client’s traffic and fool the user into
thinking the attacker’s site is in fact the actual site they are attempting to log in to. While not
perfect, technologies such as SSL and HSTS make thefts that use this technique uncommon.

Justin Cappos is an assistant
professor in the Computer
Science and Engineering
Department at New York
University. Justin’s research

philosophy focuses on improving real world
systems, often by addressing issues that arise
in practical deployments. jcappos@nyu.edu

Santiago Torres is a graduate
student in the Computer
Science Department at New
York University working under
Justin Cappos’s mentorship.

He is currently a contributor to open source
projects such as “TUF,” a secure update
framework, and “PolyPasswordHasher,” a
password storage mechanism resistant to
cracking. santiago@nyu.edu

www.usenix.org	   D ECE M B ER 20 14  VO L . 3 9, N O. 6  19

SECURITY
PolyPasswordHasher: Improving Password Storage Security

The most popular method is for the attacker to obtain a copy of
the hashed password database. This commonly occurs when a
copy of the hashed password database (e.g., a backup disk) is lost.
Attackers also can trigger a hashed password database disclo-
sure, with SQL injections accounting for the majority of known
password database breaches.

A hacker who gains access to a hashed password database will
usually try to crack passwords on a remote system (offline) by
guessing and computing passwords’ stored hashes, looking for
a match. Cracking programs such as oclHashCat [4] or John the
Ripper [2] can automate this process. To give this some perspec
tive, a dump of passwords for 60% of the 6.5 million stolen
LinkedIn accounts was found one week after the breach on a
hacker forum. This is perhaps not surprising since a security
researcher was able to crack 63% of a ~40,000 entry salted SHA1-
encoded database in 40 minutes. Given this state-of-affairs,
salted password hashes are not a sufficient protection strategy.

A New Defense Scheme: PolyPasswordHasher
To meet the need for enhanced password security, we have created
PolyPasswordHasher, a password storage scheme that makes
stored password hash data (called polyhashes) interdependent
and thus impossible to crack individually. An attacker that
obtains a password database stored using PolyPasswordHasher
must crack groups of passwords simultaneously. The principle
that makes this work is the concept of cryptographic shares, such
as in a Shamir Secret Store [1, 5].

Imagine these cryptographic shares functioning something like
a “two-man rule,” such as when a bank check requires multiple
signatures or two physical keys must be turned at the same time
to open a safety deposit box. A secret key is divided into multiple
pieces of information, called shares, with each piece distrib-
uted across at least two keyholders. This share strategy aids in
the process of recombination. When a certain number of these
pieces of information are acquired, an agent is able to recover
the original secret key. One important characteristic is that if
an agent has only some of the pieces of information needed, they
recover no information about the original secret key.

The principal characteristic of this sharing scheme is a configu-
rable threshold value, usually set to a value such as 3 or 5, which
determines how many shares are needed in order to recover the
secret key. The secret key is never stored on disk by PolyPass-
wordHasher to secure it from attacks such as SQL injection.
Instead of storing a secure salted hash, PolyPasswordHasher
stores a different value, called a polyhash. A polyhash consists of
the secure salted hash for the password, XORed with a crypto-
graphic share. This protects a password’s secure salted hash
with the cryptographic share. That is, before individual pass-
words can be cracked, an attacker must be able to recover the
secret key (recoverable via a threshold of passwords).

In the following sections, we first describe normal operation of
a PolyPasswordHasher server (by assuming that a server has a
threshold of passwords, and thus the secret key). We then dis-
cuss how a system using PolyPasswordHasher bootstraps after
a reboot.

How PolyPasswordHasher Works When a
Threshold of Passwords Is Known
PolyPasswordHasher supports two types of user accounts:
those that protect a cryptographic share (threshold accounts)
and those that do not (thresholdless). Types of accounts that
would not protect a share are those in which users are allowed
to register any number of accounts, as is the case with Gmail or
Facebook. Whether accounts are threshold or thresholdless is
invisible to the user, with different procedures taking place in
the background.

When a threshold account is created, the system produces a ran-
dom salt, calculates a salted-hash and issues a new share. The
system produces a polyhash by XORing the salted hash and the
share, which is then stored, along with the salt and some helper
information, as illustrated in Figure 1. The share itself and the
salted password hash are never stored on disk.

To log in, a user gives his or her username and password to the
server. PolyPasswordHasher checks these to identify which
share was assigned to the user’s polyhash and then recomputes
that share. Next, a salted-hash will be calculated from the input
password and its stored salt. Finally, the newly created salted-
hash will be XORed with the share to construct a polyhash.
Assessing whether the user provided the correct password is a
matter of checking the constructed polyhash against the stored
polyhash.

If in addition to threshold accounts the system allows other
users to freely create accounts (e.g., Gmail), a thresholdless entry
will be issued for those users. Instead of assigning a share, the
secure salted-hash for a thresholdless entry is encrypted with
the secret key. Verifying an account for this new user entails
decrypting the stored encrypted hash and comparing it in the
same fashion as are regular salted-hashes; thresholdless entries
are illustrated in Figure 2.

Figure 1: How a polyhash is stored for a threshold account

Figure 2: Stored data for thresholdless accounts

20    D ECE M B ER 20 14  VO L . 3 9, N O. 6 	 www.usenix.org

SECURITY
PolyPasswordHasher: Improving Password Storage Security

Bootstrapping a Server after Reboot
A PolyPasswordHasher server stores its secret key in memory,
not on a disk, and the key is thus lost upon reboot. When the
server reboots, this secret key is not available, and thus the
server cannot compute shares. Therefore, PolyPasswordHasher
cannot verify or create accounts as it normally does. PolyPass-
wordHasher must bootstrap.

During this phase, PolyPasswordHasher will collect shares
from threshold logins in order to recover the secret. The number
of threshold logins required to recover the secret is configured
by the system administrator, and it is usually set to a low
value (e.g., three or five). For example, if the threshold is three,
PolyPasswordHasher will finish bootstrapping after the third
threshold account has provided a correct password. While
PolyPasswordHasher waits for threshold accounts to log in, it
authenticates user passwords using a field called partial-bytes.

The partial-bytes field contains only a portion of a regular
salted-hash, such as the last four bytes. When a user attempts
to log in during the bootstrap phase, PolyPasswordHasher will
verify that the partial-bytes field matches the corresponding
portion of the password’s secure salted hash. For example, if
the last four bytes of the salted hash are “A04F,” then this will
be verified upon login. Although these partial-bytes could hint
to the attacker what the user’s password is, the attacker would
not be certain of the password since the complete salted hash is
not stored. If the attacker chooses a password that matches the
partial-bytes but nonetheless is incorrect, this will be detected
after bootstrapping is finished, and the system administrator
notified of the likely password hash database theft.

Account creation is also available during the bootstrap phase.
To enable this, the new account is added to the database with a
regular salted-hash. These accounts can be used normally while
the system is bootstrapping. When the system is provided shares
from enough threshold accounts, it can finish bootstrapping.
To do this, the server re-validates all prior logins with the full
polyhash or encrypted salted-hash. Also, any accounts that were
created during bootstrap will have their password hash transi-
tioned to protected shares (if threshold) or encrypted shares
(if thresholdless).

Evaluation—How We Know It Works
Three elements contribute to the effectiveness of a new pass-
word storage method: overhead (e.g., storage and memory
costs), efficiency, and time to crack passwords. We assessed
storage costs by analyzing the amount of extra information
that is required by PolyPasswordHasher and compared that
with a standard user database. The only additional informa-
tion required is the share number field and the partial-bytes
field. The share number requires one extra byte per entry, and
the partial-bytes requires four bytes, although this last value is

configurable. The total extra information required is, then, five
bytes per entry. Considering that the salt, username, and salted-
hash fields account for more than a hundred bytes per entry, we
expect the overhead to be less than 5% of the password database
storage space cost. Furthermore, the size of a hashed password
database is minimal compared to user data (photos, content,
etc.) on most systems.

The memory cost of an implementation consists only of a buffer
to hold the secret. The size of the buffer for the secret key ranges
from 16 bytes to 64 bytes, depending on the implementation.

To understand the instruction efficiency (performance) of
PolyPasswordHasher, we performed a series of microbench-
marks on an early 2011 MacBook Pro with 4 GB of RAM and a
2.3 GHz Intel Core i5 processor using a Python reference imple-
mentation. We measured instruction efficiency by looking at the
time it took for different operations of the PolyPasswordHasher
algorithm to complete. We found that the algorithm takes about
150 microseconds to authenticate a user. To transition from the
bootstrap phase to normal operation, which is only done once
upon restart, takes between hundreds of microseconds to tens
of milliseconds after the last threshold account has provided a
correct password, depending on the threshold value.

Suppose that users choose passwords from one of the 95 easily
typeable characters. If users choose six-character, random pass-
words, there are only 7.35*1011 possible values. When stored with
PolyPasswordHasher and a threshold of three, an attacker would
need to search 3.97*1035 different combinations—more than 23
orders of magnitude more operations.

To put these numbers into perspective, using the best known
GPU-cracking techniques, a computer can compute about
one billion hashes per second [6]. If three passwords were
stored with salted hashes (not PolyPasswordHasher), there are
3*7.35*1011 combinations possible. It would take an attacker less
than an hour to try these combinations on a single computer.
With PolyPasswordHasher, to search the keyspace of 3.97*1035
combinations would take all 900 million computers on the
planet 1.39*1010 years. That is longer than the estimated age of
the universe.

Summary / What’s to Come
There are multiple, open source implementations of PolyPassword-
Hasher available. Our Django implementation for PolyPassword-
Hasher is currently being integrated into a variety of servers at
New York University. We will use data from these servers to help
us understand whether there are any unforeseen complications
with production use.

We invite interested parties to find out more information and try
out PolyPasswordHasher at: http://polypasswordhasher.poly.edu.

www.usenix.org	   D ECE M B ER 20 14  VO L . 3 9, N O. 6  21

SECURITY
PolyPasswordHasher: Improving Password Storage Security

References
[1] K. Hirokuni, “Divide and Manage Secret Data Securely
with Shamir’s Secret Sharing—Kim’s Tech Blog”: http://kimh
.github.io/blog/en/security/protect-your-secret-key-with
-shamirs-secret-sharing/.

[2] John the Ripper official Web site: http://www.openwall
.com/john/.

[3] D. Mirante, J. Cappos, “Understanding Password Database
Compromises,” Polytechnic Institute of NYU, Department
of Computer Science, Technical Report TR-CSE-2013-02
9/13/2013.

[4] oclHashcat official Web site: http://hashcat.net/oclhashcat/.

[5] “Shamir’s Secret Sharing,” Wikipedia: https://en.wikipedia
.org/wiki/Shamir%27s_Secret_Sharing.

[6] A. Zonenberg, “Distributed Hash Cracker: A Cross-Platform
GPU-Accelerated Password Recovery System,” Rensselaer
Polytechnic Institute (2009).

03.16.15–03.17.15 | SANTA CLARA, CA

SREcon15
Help us make another SREcon happen!

Last May, we held the first ever SREcon, a conference focused in site reliability and production systems at scale. We, the
program chairs, wanted to make the event valuable for 200 attendees and capture whether attendees would want to
repeat the experience. We viewed SREcon14 as a success because the conference sold out with 275 attendees, and feed-
back was overwhelmingly positive! Now we need your help to make the next event even better.

The second SREcon will take place on March 16–17, 2015, in Santa Clara, CA. We added one more day because we felt
that there were many more important subjects to cover than our first program could contain. Now we need to fill in all
those spaces, and this is our call for participation. Save the date and come join us for two days of highly technical subjects
around site reliability and production at scale.

If you have a talk proposal or panel that is of interest to the community, send us your talk proposal using the template
available on the SRECon15 Web site and submit it to srecon15submissions@usenix.org. If you have a suggestion or request
for a particular speaker you really would like to see at the conference, feel free to drop us a message,
as well. We want SREcon15 to be a high-value conference once more.

Please send us talk proposals until January 5, 2015. We’ll evaluate those and get back to you by February 2, 2015.

We are looking forward to seeing you once more!

Program Co-Chairs:
Sabrina Farmer, Google
Andrew Fong, Dropbox
Fernanda Weiden, Facebook

www.usenix.org/srecon15

