
A First Look at Vehicle Data Collection
via Smartphone Sensors

Michael Reininger∗, Seth Miller∗, Yanyan Zhuang∗†, Justin Cappos∗
∗NYU Polytechnic School of Engineering

†University of British Columbia

Abstract—Smartphones serve as a technical interface to the
outside world. These devices have embedded, on-board sensors
(such as accelerometers, WiFi, and GPSes) that can provide
valuable information for investigating users’ needs and behavioral
patterns. Similarly, computers that are embedded in vehicles are
capable of collecting valuable sensor data that can be accessed
by smartphones through the use of On-Board Diagnostics (OBD)
sensors. This paper describes a prototype of a mobile computing
platform that provides access to vehicles’ sensors by using
smartphones and tablets, without compromising these devices’
security. Data such as speed, engine RPM, fuel consumption,
GPS locations, etc. are collected from moving vehicles by using a
WiFi On-Board Diagnostics (OBD) sensor, and then backhauled
to a remote server for both real-time and offline analysis. We
describe the design and implementation details of our platform,
for which we developed a library for in-vehicle sensor access
and created a non-relational database for scalable backend data
storage. We propose that our data collection and visualization
tools are useful for analyzing driving behaviors; we also discuss
future applications, security, and privacy concerns specific to
vehicular networks.

Keywords—Smartphone sensors, vehicular networks, data visu-
alization and analysis

I. INTRODUCTION

Modern smartphones and tablets have powerful computing,
communications, and sensing capabilities [1]. In addition to
being capable of performing complex computing tasks and
communicating with each other wirelessly, smartphones and
tablets have a rich set of on-board sensors, such as ac-
celerometers, gyroscopes, GPSs, and cameras. These sensors
provide valuable information when investigating users’ needs
and behavioral patterns [2]. Automobiles, a dominant means
of transportation for several decades, are also beginning to be
equipped with on-board sensors. These sensors, which provide
Internet connectivity and vehicle condition monitoring, form a
small ecosystem that promises to enhance both road safety
and travel comfort. If properly harnessed together, the on-
board sensors in cars and embedded sensors in smartphones
can objectively record information gathered from a car’s per-
spective, to benefit other motorists. Research scientists and
engineers can use this data to test hypotheses, improve driving
regulations, and design new systems for handling traffic. The
communication power of smartphones to deliver large-scale
vehicular data provides unique opportunities for improving the
quality of life in today’s modern smart roads and cities.

We present a prototype of a mobile computing platform
that uses smartphones and tablets to access vehicles’ sensors
without compromising the devices’ security. Using this plat-
form, we are able to collect real-time data from vehicles, such

as speed, engine RPM, fuel consumption, GPS location, etc.
This data can then be backhauled and displayed on a remote
server for analysis.

We describe the design and implementation of our platform
and discuss the challenges we encountered. We first developed
a library to allow access to in-vehicle sensor data and then
designed a non-relational database for scalable, backend data
storage. In particular, we were able to overcome problems of
intermittent device connectivity and rapid changes in vehicles’
movement that created significant challenges as we collected
data. We demonstrate that our data collection and visualization
tools are useful for analyzing driving behavior as well as
individual or aggregated vehicles’ commute patterns.

Vehicular data collection is still in its early phases. In the
future, sensor data collection will see a wider range of appli-
cations. For example, using similar data, researchers will be
able to deduce valuable information by fusing various sensor
outputs. Security and privacy issues are on-going topics in
vehicular networks research. We expect that more mechanisms
will emerge that are secure and preserve user privacy.

The rest of this paper is organized as follows. Section II
gives an overview of the existing technologies in vehicular data
collection and the corresponding applications. Sections III and
IV describe the design and implementation of our platform.
Section V discusses future applications along with security
and privacy concerns in vehicular networks and Section VI
concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Data Collection Techniques

Over the past decades, researchers have developed several
techniques for collecting vehicular data on highways and in
(sub)urban areas. Traditional approaches use road-mounted
detectors such as cameras, microwave sensors, and bluetooth
scanners, etc [3]. These technologies provide information
about the number and type of vehicles passing through an
area, their speed, travel time, and so on. However, such
approaches are complex and involve high installation costs [4].
For example, sensors need to connect to a vehicle’s third-
party, custom onboard computer in order to receive signals
from these sensors. In some cases, engineers need to adjust
the GPS antenna and install equipment in one of the car doors
or on the roof. These factors have lead to limited network
coverage.

Recently, standards organizations have allocated new wire-
less communication channels specifically designed for auto-



motive use [5]1. This has enabled new technologies such that
automobile systems can now rely on On-Board Units (OBUs)
to report vehicle information directly to other vehicles or to
a central server. With sophisticated on-board computing units
installed in vehicles, researchers are able to collect measure-
ment data to monitor traffic [6], detect traffic accidents and
propagate emergency messages [7], communicate diagnostic
information [8], and so on. However, a major limitation of
this approach is the availability of OBUs. It is likely that such
an advanced technology is only available to a biased subset of
vehicles.

More recently, the rising use of cellular technologies has
made vehicle-based data collection much more convenient.
One new technique, called floating cellular data (FCD) [9],
has been proposed by researchers [10]. This technique uses
anonymized cellular network data from mobile phones of
drivers or passengers inside vehicles. However, this approach
requires complex location triangulation and access to data
stored by a network operator. Although the technique does not
require on-road infrastructure, a monitoring system that inter-
cepts cellular network communications and parses signaling
protocols is necessary.

For our research, we use everyday Android smartphones
and WiFi On-Board Diagnostics sensors in order to collect
vehicular sensor data and backhaul the data to a database for
visualization and analysis. To be able to collect data from
vehicles, no expert knowledge about the hardware or protocol
configuration of a vehicle’s OBU is needed. Moreover, it is
not necessary to make modifications to the existing network
communication infrastructure or to mobile devices.

B. Example Use Cases

Current research in vehicular telematics and intelligent
transportation systems (ITS) emphasizes accident prevention
platforms, infotainment systems, and the discovery and analy-
sis of eco-friendly routes [11]. Vehicular network applications
can help drivers access current traffic conditions, improve
transportation safety and efficiency, and provide such services
as travel planning and teleconferencing to both drivers and
passengers, while on the move.

Additional research on automotive data has helped develop
platforms for analyzing driving behavior. These platforms have
been increasingly centered around smartphones [12], [13],
[14]. Indeed, smartphone apps can now understand driving
behaviors using built-in sensors like the accelerometer, gyro-
scope, and GPS [15]. Furthermore, they can alert drivers to
potential road hazards based on driving styles and patterns.
Although our prototype also focuses on smartphones and their
ability to collect environmental data, our work is novel in that
we provide a platform for resulting applications to collect,
analyze, and visualize both car data (e.g. fuel consumption and
pressure, mileage, engine RPM, etc.) and smartphone data in a
streamlined yet secure fashion, from an anonymous, voluntary
user base. This allows applications to analyze not only one, but
two sources of data, in real-time, and to share that information
with drivers. As this research evolves, we envision this plat-
form offering feedback to drivers on driving behaviors, traffic
information, road conditions, potentially unsafe situations, and

1This standard is called DSRC (Dedicated Short-Range Communications).
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Fig. 1: The process of collecting, storing, and visualizing
sensor data.

eco-friendly routes. All of this information can be shared in
the cloud across drivers’ smartphones, arriving in the form of
alarms from servers in the cloud, or in the form of peer-to-peer
alerts from neighboring vehicles.

III. VEHICULAR DATA COLLECTION DESIGN

Our vehicular data collection consists of a backend that
directly communicates with in-vehicle sensors and collects
sensor data. This backend is part of a distributed testbed
that allows access to smartphone sensor data in a secure
and performance-isolated way [2]. Furthermore, data can be
backhauled to a centralized server for permanent data storage.
This server also serves as a frontend to make the data available
to experimenters interested in traffic monitoring, etc. In this
section we describe the design of our platform.

A. Data Collection Infrastructure

1) Distributed Smartphone Sensor Testbed: We deploy
our platform on a distributed testbed [2] that provides an
efficient programming environment for our data collection.
Experimenters can implement automated experiments and col-
lect data from accelerometer, GPS, WiFi, camera, and other
sensors on mobile devices that are owned by the general
public. Conducting these experiments requires minimal power
and networking resources, used in a non-intrusive manner.
Our testbed employs a light-weight sandbox [16] to limit
the amount of storage, network, memory, battery, and CPU
resources used on a mobile device. To protect end users’
devices from malicious attackers, our sandboxed programs are
securely isolated from other programs on the same device.

2) Data Collection Overview: The process of deploying
an experiment on the testbed and then collecting data from
vehicular sensors on end user devices is as follows. Device
owners install a testbed app [17] on their devices2. Since we
are interested in vehicular data, the target group of device
owners are also vehicle owners. These owners simply insert
their WiFi On-Board Diagnostics (OBD) [18] sensor into

2Currently, Android smartphones and tablets are supported.
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Fig. 2: Design of obdlib.

their cars’ OBD ports (located under the steering wheel), and
connect their smartphone or tablet to the sensor, which also
runs as a WiFi access point. Note that OBD systems are in most
cars and light trucks on the road today [19]. Therefore, our
infrastructure does not require extra installation of specialized
hardware or equipment.

An experimenter interested in getting vehicular data from
device owners’ smartphones and tablets will

1) Register with our testbed infrastructure and acquire
end user devices for experimentation.

2) Write experiment code using the sandboxed program-
ming environment [16].

3) Upload code to a set of smartphone devices that she
or he has access to (obtained in step 1), using our
testbed’s experiment management tool [20], .

4) Start or stop the experiment at anytime; the experi-
menter can also collect sensor data using the testbed’s
logging function.

The experiment code runs in the background of those
mobile devices. Therefore, device owners need not worry
about having to interact with the app through an interface
or about being interrupted as they use their smartphones.
Concurrently and inconspicuously, the background experiment
records sensor data and can backhaul the collected data to a
remote server.

At the remote server, the vehicular sensor data collected
from multiple end user devices is stored in a non-relational
database (our reason for using a non-relational database is
stated in the following section). The collected data set can be
visualized on Google Maps to identify fuel efficient routes,
routes with higher traffic activity, and routes (and drivers)
that exhibit a high frequency of reckless or illegal driving
behaviors, etc. Figure 1 summarizes the process of collecting,
storing, and visualizing sensor data.

B. Vehicle Data Collection

We designed a library for the sandbox that provides an
interface to communicate with an in-vehicle OBD sensor,
which also acts as a WiFi access point. We named the OBD
communication library obdlib [21] and detail its implemen-
tation in Section IV-A. In our prototype implementation, the
experiment code can connect to the ODB sensor, similar to
connecting to a WiFi hotspot, and collect vehicle data from
this sensor through the obdlib interface. Our obdlib allows

Fig. 3: An example of vehicular data.

access to vehicular sensor data such as speed, engine RPM, and
rate of fuel consumption. We implemented the experiment such
that the data collected is periodically cached on the phone and
backhauled to a remote server whenever an Internet connection
is available through the cellular network. The design of the
communication protocol across the vehicle, the smartphone,
and the remote server is shown in Figure 2.

The rationale for having a centralized server to collect
vehicular sensor data is to support data analytics and visu-
alization. In addition to uploading the data to the server, an
experimenter can take advantage of our distributed testbed to
share vehicular sensor data in a peer-to-peer fashion with other
experimenters.

C. Frontend: Data Backhaul and Visualization

To handle the storage of multiple Android devices’ ve-
hicular sensor data in a user-friendly way, we deployed a
website [22] that accepts POST requests that contain the
desired (and encrypted) sensor data and stores it under pri-
vate experimenter accounts. Experimenters, however, need not
construct the requests nor encrypt sensor data themselves,
because we provide a library, named storesense, to execute
both of these functions [23]. With a single function call from
storesense, an experimenter can securely backhaul their
sensor data into a database on our website’s server. Thereafter,
experimenters can log into their accounts on our website to
analyze, visualize (in tables, by default), and interact with the
data they collect from remote end users’ smartphones.

Figure 3 shows a visualization of a subset of our vehicular
sensor data displayed on a map using the Google Maps
API [24]. This map feature is built into our website. In
the figure, a trajectory of automobile locations, spanning a
five minute period from a test run on August 5, 2014, is
shown on a map. By clicking on each marker in Figure 3, an
experimenter can observe other sensor data collected, along
with the vehicle’s GPS location, such as the speed and fuel
consumption of the vehicle at different times. Using our data
set, an experimenter can observe fuel efficiency as it varies



{
"sensors": {
"speed_car": 60,
"maf_car": 4,
"rpm_car": 114,
"gps_phone": {
"error": null,
"id": 0,
"result": {
"network": {
"time": 1407200660927,
"speed": 60,
"altitude": 4.099999904632568,
"bearing": 82.6999694824219,
"provider": "gps",
"longitude": -73.986706,
"latitude":40.694010,
"accuracy": 7,

}
}

},
"id": "310410696731709",
"time": "ISODate"("2014-08-05T21:04:07.183-04:00")

}

Fig. 4: JSON document of vehicular data.

across different routes, traffic densities, and speeds, or whether
a specific vehicle exhibits reckless or illegal driving behaviors.

In Figure 3, each marker on the map is separated by five
seconds. This sampling rate was pre-set in our implementation.
In the future, however, sampling rates will be automatically
adjusted via a mechanism called a security layer [16]. Such a
security layer acts as a protection between program interfaces
and experiment code, and protects functionality from tamper-
ing [25], [26]. To do this, we will implement a security layer
that prevents the experiment code from sampling sensor data
too frequently or reduces the sensor data granularity. This is
required for a number of reasons. On the one hand, we need to
limit the frequency of data sampling to avoid battery drain on
users’ devices. On the other hand, sensor data can be filtered
in response to user requests, thus preserving their privacy. For
example, an experiment could be prevented from obtaining the
precise GPS location of a vehicle; instead the data is abstracted
to show only neighborhood or zip code information.

IV. VEHICULAR DATA COLLECTION: PROTOTYPE
IMPLEMENTATION

In this section, we describe the implementation of the
prototype we described in Section III.

A. Vehicular Data Collection

For our prototype platform, the OBD-II ELM327 WiFi
sensor was used. In order to facilitate communications between
sandboxed programs on a smartphone and the OBD sensor,
we developed the obdlib library [21], which implements
the standard OBD communication protocol. We used a TCP
connection between the smartphone and the OBD sensor via
the default WiFi gateway IP address assigned to the OBD
sensor3.

In addition to the TCP connection wrapper, obdlib
includes OBD standard parameter ID (PID) commands that

3By default, our OBD sensor listens on port 35000 at address
192.168.0.10.
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Fig. 5: State diagram for our data collection prototype.

can be used to request a specific data element from the OBD
sensor [27]. After getting the data, an experimenter again uses
obdlib to decode the response from the sensor. Vehicular
sensor data is first logged onto the smartphone and structured
in JSON format. An example of this data is shown in Figure 4.

In order to give experimenters access to collected data
and to save storage space on users’ mobile devices, the data
should be moved to a reliable server. However, smartphone
network connections are very unreliable because a device
owner may move between different networks or disconnect
from the Internet at any time. We overcome the problems
of intermittent network connectivity by caching JSON sensor
data samples into a buffer and sending them opportunistically
whenever Internet connectivity is available. Figure 5 shows the
connection state diagram for our data collection prototype.

B. Non-relational Database Store

Given the variety of sensors on a smartphone, sensor
measurements come in different forms. As shown in Figure 4,
many types of sensor data are far more complex than are
simple primitive data types. For example, GPS data is returned
to an experimenter as a JSON object that contains another
“result” JSON object. This object, in turn, contains yet another
“network” JSON object, and this is the final container of
recognizable quantities such as latitude, longitude, altitude, and
so on.

As a result, it can be very challenging to store sensor data in
a relational database, which has a fixed column structure. The
use of a relational database would require either the creation of
tables with as many columns as sensors or the creation of tables
upon request by experimenters, who would have to predeter-
mine which sensors they intend to use. The former option is
not reasonable—for every unused sensor, these massive tables
would waste space in the database. While the latter option
is plausible, it places a burden on experimenters to know the
data types of all the sensor data they plan to collect before their
experiment begins. If an experimenter wants to use different
sensors later — for example, when new sensors are available
on next generation devices — each database table would have
to be copied over into a new table that could accommodate
these additional sensors.



For these reasons we decided to use a non-relational
database, MongoDB [28], for storing sensor data. MongoDB
has a Binary JSON (BSON) document-style structure identical
to that shown previously in Figure 4, albeit converted into
binary as its name suggests. This provides the scalability that
is crucial to our system and that allows dynamic storage of
new sensors, as needed. Non-primitive data types can also
be stored more easily because no column structure exists
in MongoDB that enforces model schema or data typing.
Additionally, because our sensor data is already in JSON
format, MongoDB is the most convenient storage option. For
the purposes of securing stored sensor data and easing the flow
of an experiment, this implementation is made transparent to
the user by our website’s interface.

Within the database, individual devices are distinguishable
to an experimenter by using a stored, unique identifier. We
chose to use the device’s IMEI number because it is a 15 digit
ID that is unique to each device’s hardware [29]. Although
the SIM number might be a more familiar choice, we decided
not to use it because the devices used in our testbed are not
required to have data plans. Experimenters can instead opt to
run their experiments solely through WiFi networks.

V. SMARTPHONE VEHICLE SENSORS: A LOOK TO THE
FUTURE

In the future, we hope that smartphone-based vehicular
telematics platforms will enable researchers to contribute to
a greener planet, a decrease in traffic related accidents, and
ultimately, serve as a platform that could save lives. Mean-
while, security and privacy concerns surrounding smartphone-
based vehicular systems need to be addressed. We discuss these
issues and our design choices in this section.

A. Future Work With Smartphone Sensors

We envision the future of smartphone-based vehicular
telematics as a platform that will fuse data from multiple sensor
sources, and thus, allow us to make inferences using exogenous
variables. For example, weather information or hotspot traffic
caused by large gatherings at entertainment venues could
be correlated with vehicular sensor data to predict possible
hazardous road conditions. With the multitude of available
sensors embedded in smartphones and on vehicular OBUs,
we expect that sensors will assist drivers in making decisions.
Additionally, transportation authorities could use changes in
aggregated gas mileage information—associated with specific
stretches of road within municipalities—to prioritize road
repairs, re-calibrate traffic lights, and dynamically adjust speed
limits in order to support smart city goals.

Additionally, context-aware data provided by smartphones
could help us understand real-time transit patterns. For exam-
ple, we can deduce present road conditions and avert potential
road hazards based on the frequency that specific smartphones
pass each other, both those that belong to emergency response
teams and to the general public. This information should be
provided by the smartphone and by the built-in infotainment
systems that come with most new cars. This will promote
distraction-free driving.

B. Data Privacy and Security

As with most technologies, smartphone-based vehicular
systems could be a double-edged sword if not properly used.
For example, if the data collected is not anonymized, it could
be linked to individual users, which would pose serious surveil-
lance threats if the smartphones were connected to a server
that was accessible by third parties [30]. We are currently
developing tools that will blur sensitive information [25], [26]
and effectively preserve user privacy.

As with other technologies, smartphones and sensors may
be targets of malicious actions by third parties. Therefore,
protective measures must be taken to ensure the security
of in-vehicle smartphones and sensor systems. The system
must guarantee that even if a hacker circumvents the sensor
environment, no harm can be done to users’ smartphones and
more importantly, their vehicles’ systems. These factors must
be taken into account during the design stage of smartphone-
based vehicular telematic systems. In the prototype we describe
in this paper, the sandboxing mechanism in Section III-A
effectively prevents malicious attacks. We expect that more
secure mechanisms will appear in the future.

VI. CONCLUSION

In this paper, we describe a prototype of a smartphone-
based platform that provides access to vehicular data such as
speed, engine RPM, fuel consumption, GPS locations, etc. In
our platform, data can be collected from moving vehicles by
using smartphones in combination with On-Board Diagnostics
sensors and an in-vehicle sensor library we designed. Collected
data can be backhauled to a remote server for real-time and
offline analysis. In describing the rationale for our system
design and the challenges we encountered, we demonstrate
that our data collection, backhaul, and visualization methods
are useful for analyzing driving behavior. Based on this work,
we consider future applications, security, and privacy concerns
that surround vehicular networks. Our work presents a first
look at vehicular data collection via smartphone sensors, as
well as their potential both today and in the future.
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