
Detecting Latent Cross-Platform API Violations
Jeff Rasley Eleni Gessiou Tony Ohmann Yuriy Brun Shriram Krishnamurthi Justin Cappos

Brown University New York University University of Massachusetts
Providence, RI USA 02912 New York, NY USA 10003 Amherst, MA USA 01003
{jeffra, sk}@cs.brown.edu, eleni.gessiou@gmail.com, {ohmann, brun}@cs.umass.edu, jcappos@nyu.edu

Abstract—Many APIs enable cross-platform system develop-
ment by abstracting over the details of a platform, allowing
application developers to write one implementation that will run
on a wide variety of platforms. Unfortunately, subtle differences
in the behavior of the underlying platforms make cross-platform
behavior difficult to achieve. As a result, applications using these
APIs can be plagued by bugs difficult to observe before deploy-
ment. These portability bugs can be particularly difficult to
diagnose and fix because they arise from the API implementation,
the operating system, or hardware, rather than application code.

This paper describes CheckAPI, a technique for detecting
violations of cross-platform portability. CheckAPI compares an
application’s interactions with the API implementation to its in-
teractions with a partial specification-based API implementation,
and does so efficiently enough to be used in real production
systems and at runtime. CheckAPI finds latent errors that escape
pre-release testing. This paper discusses the subtleties of different
kinds of API calls and strategies for effectively producing the
partial implementations. Validating CheckAPI on JavaScript,
the Seattle project’s Repy VM, and POSIX detects dozens of
violations that are confirmed bugs in widely-used software.

I. INTRODUCTION

Cross-platform APIs are critical for software portability and
reuse. Well-known examples include the Portable Operating
System Interface (POSIX) and Java, famously advertised
as “write-once, run-anywhere” (WORA) [91]. Similarly,
JavaScript and the document-object model (DOM) offer a
browser- and architecture-independent programming interface
to the Web, and Eclipse and Emacs offer cross-platform
extensible editors. Cross-platform APIs are at the heart of
the software engineering process, providing valuable detail-
hiding abstractions. Developers often use them to create higher-
level abstractions, including other cross-platform APIs, such as
layering a GUI package on top of the JVM, on top of POSIX.

Unfortunately, API implementations often inadvertently
breach the promise of a cross-platform API, forcing applications
to be altered to handle platform differences [17], [18], [36].
This has led developers to re-coin the catchphrase as “write-
once, debug everywhere” [40], [104]. Portability issues arise
because API implementations — which we refer to as libraries
to distinguish from the common interface, or API — behave
differently across platforms, often in subtle and undocumented
ways. Sometimes these behavioral variations are caused by
reliance on other purportedly cross-platform APIs that fail
to fulfill their promise. Even when a library successfully
provides cross-platform coverage, portability can change over
time because the underlying systems themselves change. It
is unreasonable to expect developers to double-check all the

documented — and undocumented — behavior of each library,
including operating systems, browsers, etc., that may affect
the application’s behavior every time new versions of those
libraries are released.

The result of cross-platform failures is frustrating to program-
mers: applications using libraries behave in unpredictable ways.
This is often discovered only after deployment, and sometimes
the fix cannot even be implemented in the application itself. As
this paper shows, even well-known and long-developed APIs
(such as POSIX and JavaScript) continue to exhibit serious
portability bugs.

In addition to causing difficult-to-reproduce failures, varia-
tions in libraries can have security implications. An example of
this is the SO_REUSEADDR socket option. On Linux kernels, this
option allows the reuse of local addresses, except when there is
an active listening socket bound to the address [84]. This option
is widely used, e.g., to allow applications to reuse addresses
in the TIME_WAIT state. However, on Windows, this allows
multiple sockets to actively listen on the same address, with
indeterminate results. For example, if multiple sockets are lis-
tening for TCP connections on the same address and port, either
could accept a connection. A malicious application can use this
option to bind to sockets already in use by other services to deny
access to or impersonate those services [97]. These differences
in SO_REUSEADDR implementations have forced a large number
of major software projects to write platform-specific code to
prevent application failures and to mitigate potential security
risks, including Python [87], Twisted [81], OpenSSH [73],
ntpd [102], Mozilla [79], Java [86], Ruby [92], Cygwin [45],
Eclipse [15], Mono [70], Go [69], and OpenVPN [74].

Despite these issues, there has been relatively little research
on helping the creators of cross-platform libraries and their
users identify violations of cross-platform uniformity. We
tackle this problem. Our approach finds violations in well-
known, widely-used APIs, such as POSIX and JavaScript, with
relatively little effort, and is designed to provide incremental
benefits for incremental effort. Our approach improves on two
alternatives — testing and virtualization — that are useful but
have drawbacks we describe next.
Testing: Testing involves generating suites of test inputs,
running them on multiple API implementations, and comparing
the outputs. Each output inconsistency potentially uncovers a
violation of cross-platform behavior. Developers have tried to
verify portability by writing tens of thousands of test cases [29],
[72] and by building huge test networks [27], [44]. While this
approach works in principle and does catch violations before

1

jeffra@cs.brown.edu, eleni.gessiou@gmail.com, ohmann@cs.umass.edu, brun@cs.umass.edu, sk@cs.brown.edu, jcappos@nyu.edu

deployment, it can be very expensive and many bugs still arise
in practice in deployed software [27], [101]. Further, testing
cannot fully anticipate user configurations, and developers often
use libraries in ways library developers did not anticipate [55].
Finally, because the APIs are not all deterministic, some latent
failures may not manifest during testing.
Virtualization: Operating system virtualization [8] has many
practical concerns: performance can suffer tremendously, com-
mercial systems cannot be easily distributed, end-users have to
work inside a virtual environment rather than in their traditional
workspaces, etc. Furthermore, virtualization does not always
succeed: bugs and limitations can cause the virtual machine to
behave differently from both the host and guest OSes [109].

Many existing validation techniques are also insufficient
for finding cross-platform violations. Static analysis often
relies on source code, which is not available for many
popular operating systems, libraries, and hardware. Traditional
modeling techniques require abstracting away portions of the
system to be tested so that one can reason about the correct
behavior of the remainder, thereby masking the very parts that
need checking. Parameter fuzzing can generate an enormous
test suite, but cannot detect problems with the interactions
between calls: fuzzing typically relies on crashes to detect
errors, but many violations result in inconsistency, not crashes.

We propose CheckAPI, an approach to detect cross-platform
violations in execution traces of library use. CheckAPI
compares a library’s trace induced by real API client be-
havior against a reference implementation, called a Partial
Specification-based Implementation (PSI). A PSI is an API
implementation in that it runs and produces answers. It
is specification-based in that it focuses on correctness, as
opposed to efficiency or utility. (For example, a PSI may
implement a file-system in memory and not on disk.) Finally,
a PSI can be partial, implementing only a part of the API.
This enables developers to write PSIs quickly and to benefit
immediately. Instead of creating one from scratch, a PSI can
often be derived by modifying an existing library implementing
the API. Checking library behavior against a PSI rather
than an unmodified alternate library is more effective — and
sometimes necessary — to handle methods that have state or
are nondeterministic, as discussed in Section IV.

By checking actual API client behavior, CheckAPI avoids
developers’ estimates of application behavior. This is particu-
larly helpful when APIs have state, because the exact sequence
of steps is relevant, and it is difficult to identify all relevant
sequences with offline testing. Most of all, exploiting the client
helps CheckAPI find latent errors that escaped the pre-release
testing process. Our evaluation shows that many such errors
persist beyond testing.

This work was motivated by our interaction with multiple
cross-platform projects, most notably with the developers of
the Repy VM [16], [37] for the Seattle testbed [80], which
provides cross-platform access to computational resources on
heterogeneous devices such as servers, tablets, and phones.
Repy was built using APIs such as POSIX, and initially had 212
cross-platform tests. However, as dozens of latent violations

were encountered, the tests grew to 350, at which point the
project contacted us for better ways to manage this problem.
As we show, applying CheckAPI to Repy resulted in significant
improvement of its cross-platform behavior.
The main contributions of this work are:
• The CheckAPI approach for detecting cross-platform API

violations at runtime. CheckAPI is open-source and available
for use to check API libraries: https://checkapi.poly.edu.

• The taxonomy of API calls on which CheckAPI relies, and
how CheckAPI can exploit and support them to evaluate
library conformance.

• The process of creating PSIs, showing how even relatively
little effort can yield significant payoffs.

• PSIs for JavaScript, the Repy VM, and POSIX for find-
ing cross-platform violations for applications using these
libraries.

• An evaluation of CheckAPI’s effectiveness and efficiency.
CheckAPI identified six real errors not detected by the test
suites of three production systems: POSIX, JavaScript, and
the Repy VM. Our design and optimizations make CheckAPI
efficient enough to be used at runtime, for example, checking
JavaScript for violations while browsing the Web.

Section II discusses a taxonomy of API calls and Sections III
and IV describe how CheckAPI works for these different kinds
of calls. Section V describes the effort needed to create three
PSIs, and Section VI evaluates CheckAPI. Section VII describes
how CheckAPI can be extended to multi-threaded execution,
Section VIII places our work in the context of related research,
and Section IX summarizes our contributions.

II. TAXONOMY OF API METHOD CALLS

CheckAPI detects cross-platform API violations by compar-
ing behavior of a library and a PSI. This comparison requires
a definition of API behavior. We define behavior of an API in
terms of execution traces: sequences of the API method calls
and their results. To detect conformance violations, CheckAPI
compares the calls and results of a library to those of a PSI.
However, for many calls, a direct comparison is insufficient
because, for example, the calls may also alter internal state.
To understand how CheckAPI compares traces, we first define
three types of API calls and how they differ. Sections III and
IV will describe how CheckAPI handles each type.

CheckAPI records library execution traces that consist of a
list of actions: an API call with its arguments and its result.
Figure 1 shows a sample trace from a JavaScript application. A
call may have side effects that are not immediately observable
but that can be observed via subsequent actions.

A trace is composed of an initial state and a sequence of
actions. The sequence of actions can be captured by recording
the actions of all method calls issued by an application. (We
assume for now the library is invoked by a single-threaded
application. Section VII discusses multi-threaded applications.)

Method calls can be classified into three categories:
• A stateless method call returns the same value (for the

same arguments) independent of its location in the trace.
Stateless calls’ actions are completely defined by their

2

https://checkapi.poly.edu

String.charAt(’unload’, 0) → ’u’
String.toLowerCase(’SCRIPT’) → ’script’
Array.indexOf([’h’, ’e’, ’y’], ’y’) → 2
RegExp.test(’^-?\\d+(?:px)?$’, ’i’, ’215px’) → true

Fig. 1. A sample JavaScript application execution trace with array, string, and
regular expression calls.

arguments and are independent of the initial state and prior
actions. An example of a stateless method call is any call
to String.length() in JavaScript.

• A stateful-deterministic method call returns the same value
(for the same arguments) whenever it is executed within a
given system state but may return a different value when
executed within different states. Given the initial state and a
sequence of actions executed before a stateful-deterministic
call, there is exactly one possible result for the call. For
example, a read() call at the start of a trace on an open,
blocking file descriptor that refers to a local file is a stateful-
deterministic call (assuming the call does not return EIO
due to an error).

• A nondeterministic method call’s results can differ depend-
ing on information not in the trace. This is common for
calls that involve resources like the network. For example,
a call to gettimeofday() is nondeterministic. This call
returns data that cannot be predicted by the application and
is likely to vary across executions. However, while results
can vary, usually not all results are acceptable.

Some methods can exhibit complex behavior that fits into
multiple of the above classifications. Some uses of the method
may be stateless, others stateful-deterministic, and still others
nondeterministic. For example, the POSIX connect() system
call will respond to a negative (invalid) socket descriptor with
EBADF regardless of previous calls. Thus, given a negative
socket descriptor, the connect() call is stateless. If the
connect() call is performed on a socket descriptor that is
being listened on, the call will always return EOPNOTSUPP. In
this situation, the connect() call acts in a stateful-deterministic
manner, because it is dependent on prior actions. The
connect() call can also be nondeterministic: when given
valid arguments, it can succeed or fail to connect based on
aspects of the environment not reflected in the initial systems
state and prior actions.

Because CheckAPI handles each type of call differently,
each call must be classified as stateless, stateful-deterministic,
or nondeterministic. CheckAPI requires this is done while
implementing the PSI, as Section V will describe. It is usually
easy to classify these calls by noting the system state on which
the implementation of that call depends. Observing the runtime
behavior of calls, and the return values of multiple instances
of the same call, can also help classify the call.

Next, Section III will describe CheckAPI with respect to the
stateless calls, and Section IV will describe how CheckAPI
handles the stateful deterministic and nondeterministic calls.

SurrogateValidation PSI

Trace File

State
Initialization

Diagnoses

API call

valid/invalid

Input:

Output:

CheckAPI

Fig. 2. CheckAPI architecture.

III. STATELESS DETERMINISTIC METHODS

Figure 2 shows the high-level CheckAPI architecture. Check-
API captures application execution traces (Section III-A), and
then uses a PSI (Section V) to detect violations (Section III-B)
in the trace. This section describes CheckAPI with respect to
just stateless deterministic actions, which are straightforward
to handle by a PSI that uses a reference implementation, an
alternate existing implementation, or some combination thereof.

A. Trace Capture

At runtime, CheckAPI captures execution traces. Each trace
is a sequence of actions (API calls, with their arguments and
return values) the applications makes (e.g., Figure 1). How the
trace is captured is specific to the system. For instance:
• POSIX has several popular trace capture mechanisms, such

as ktrace and strace. These and similar mechanisms
capture OS system calls via ptrace, which guarantees that
the calls are properly serialized.

• For JavaScript, we wrote a custom script to interpose on rel-
evant API calls. This script modifies the prototype object for
built-in objects such as String, Array, Number, Boolean,
Date, Object, Function and RegExp. The script calls the
underlying method and records the action. It can be loaded
on a webpage with a tag in the HTML or automatically on
all pages via a browser extension. We implemented such
an extension for Chrome. This allows the user to browse
normally, while checking for violations at runtime.

• Seattle’s security layer functionality [16] includes a
mechanism to collect traces from applications running
inside the Repy VM.

B. Detecting Violations

Given a PSI and a trace, a validation component detects if
an action results in a violation. Validation involves executing
the trace in the PSI by simulating each recorded action, in
order. For stateless (and also stateful-deterministic) calls, a
difference between the action’s call result and the PSI’s call
result implies a violation.

Many stateless calls are repeated more than once in a
program’s execution. For the top-10 Alexa sites [3], repeated
stateless calls represent about half of the actions. To optimize
verification, information about stateless calls can be memoized
in the trace-gathering routine. If the action for a stateless call
is not identical across multiple invocations, assuming the call

3

has been correctly identified as stateless, it is immediately a
violation. API call entries are about 250 bytes each and are
kept in a fixed-size cache with an LRU eviction policy. This
technique significantly speeds up violation detection without
reducing accuracy, as we show in Section VI.

IV. STATEFUL AND NONDETERMINISTIC METHODS

This section describes how CheckAPI handles stateful
systems and nondeterminism. Whereas reusing an existing
alternate implementation usually suffices for stateless deter-
ministic methods, handling these features usually requires
constructing a PSI (Section IV-A) with additional facilities
to handle nondeterminism (Section IV-C) beyond what an
existing reference implementation PSI offers. For example,
a simple reference implementation PSI might erroneously
report a violation for nondeterministic method calls, such
as gettimeofday(), when the PSI and library results do
not match exactly; in such cases, it is better to check for
conformance to a pattern rather than for a precise match. In
addition, many deterministic calls, especially those related to
system resources, require that the initial state is recorded in
the trace (Section IV-B).

A. Partial Specification-Based Implementations (PSIs)

A PSI consisting of a complete reference implementation
is useful for detecting cross-platform violations of stateless
calls. However, for stateful and nondeterministic calls that,
for example, modify the filesystem, send and receive network
messages, or rely on randomness, simply running a second
implementation in parallel will not ensure that the PSI returns
the expected result for an API call. Instead, the PSI needs
to have careful control over the state of the environment in
which it executes. This is particularly important for managing
nondeterminism and concurrency, where small deviations in the
order of execution can dramatically affect the result. Of course,
off-the-shelf library implementations that could theoretically
be used as a PSI do not handle such details. In contrast,
implementing a custom PSI (potentially starting from the source
of an off-the-shelf implementation) yields full visibility into the
library’s execution environment and state, and provides exactly
the required control. PSIs may also employ optimizations to
perform faster than off-the-shelf implementations.

A PSI consists of an executable description of the correct,
expected behavior of the API or a subset of the API. Since a PSI
is executable, it is possible to replay a trace from an application
directly in the PSI. The PSI can be written in any language.
The behavior of the PSI dictates how all implementations of
the API must behave on all platforms.

For example, our POSIX PSI models file system calls,
including the open() system call. When the PSI executes
the open() call, it does not open an actual file, only one in
memory. To continue the open() example, when receiving an
open action for a file that doesn’t exist, the PSI checks the input
flags to determine if O_CREAT is set (indicating to create the file
if it does not exist). If O_CREAT is not set, the PSI returns the
ENOENT error code, indicating that the named file does not exist

in the file system. Otherwise, the PSI simulates the creation
of the file, adding its descriptor to the PSI’s data structure.
Section V discusses more examples of building PSIs.1

CheckAPI enables developers to benefit from violation
detection without requiring building a complete PSI that handles
all API calls. PSIs are partial, meaning that they can implement
a subset of the API, and can immediately be used to detect
violations over the implemented calls. This greatly lowers the
bar to entry and allows developers to benefit from CheckAPI
without committing much effort to building a PSI. Once the
benefits become clear, the developers may put in more effort
into extending the PSI to more calls, checking for more
potential violations. As Sections V and VI will show, the
PSIs we have built are partial and were used to discover
significant errors that resulted in cross-platform violations and
vulnerabilities in mature APIs.

B. Initial State

Some API calls rely on state that is external to the
application, such as file system state: a call may depend on
the (non)existence of certain files and their contents. This state
presents a challenge because we need to know the initial state
of such external resources (i.e., the state before the application
began executing). Each of the APIs that we evaluated with
CheckAPI required a different strategy.

The JavaScript API is stateless, so this challenge did not
apply. In the Repy API, filesystem state is the only external
resource we need to consider. Because Repy runs in a
sandboxed environment that is constrained to access files in a
single directory on the system, the Repy PSI adds all of the
files in this directory to the initial state. We applied CheckAPI
to POSIX offline, by collecting traces during execution and
then verifying their conformance with the PSI later. For this
reason, we used a more sophisticated technique to infer the
initial state based on the input trace. We read the trace in
reverse and updated resource state to have each call in the
trace execute as expected. For example, if the trace contained a
call that successfully deleted a file, then we update the PSI state
to make sure that the file existed prior to that call. Similarly,
a call to read data from a file causes the PSI state to update
that file with the expected data, and so on.

C. Nondeterministic APIs

Upto this point, a PSI will return the single, correct result
for stateless and deterministic-stateful API calls. However,
nondeterminism is common in APIs. Nondeterministic behavior
comes from state changes outside the APIs control and view,
such as many networking-based calls, calls that acquire the
system time, or calls using randomness.

Since the possible behavior of a nondeterministic call
does have some deterministic constraints (e.g., behavior of

1Of course, it is possible for a PSI to contain a bug. Indeed, a PSI may
disagree with all actual libraries that implement an API. In such a case, each
of these libraries would be flagged as violating the API, and the problem
would have to be revealed only through manual analysis — though if multiple
libraries exist, then checking for majority outputs can be helpful in narrowing
the cause of the divergence.

4

closed sockets), a PSI can process these scenarios just like a
deterministic method. However, when the PSI needs to decide
what a nondeterministic value should be, given the constraints
it has computed, it communicates with a nondeterminism
surrogate to derive an allowed value. The job of the surrogate
is to act as the resources and sources of nondeterminism on
which the calls rely, including the network, the file system,
a pseudo-random number generator, data and time resources,
etc. To find the appropriate value to return to the PSI, our
experience has shown that record-and-replay mechanisms are
sufficient: it is adequate to seed the surrogate with the result of
the execution trace action being validated and repeat that result
during checking. The PSI developer can specify a pattern —
such as a regular expression — of the expected values and what
post-processing needs to be performed before returning the
result. As an example, the getmessage() call in the Repy
API is used to receive datagram messages; when successful, it
returns the total number of bytes received. This value should
be between 0 and 65507, so the regular expression for this can
be expressed as “^.{0,65507}$”.

If the surrogate returns a value allowed by the pattern, and
results in the PSI returning the same result as is in the trace,
the action is consistent with expectation and is not a violation.
If the PSI returns a different value or the returned value does
not match the pattern, the action is a violation.

The gain control over the execution environment, the PSI
provides the necessary facilities to handle concurrency. This is
the subject of our current and immediate future work, details
of which we describe in Section VII.

The surrogate can also be used to reduce the state needed to
verify stateful-deterministic calls. For example, when verifying
a read() call on a file, it is essential to know the file contents.
Storing the entire file in memory can be prohibitively expensive.
Instead, a hash of the file or file blocks can be kept (similar
to prior work [107]). The PSI can use the hashes to check the
blocks or complete files returned by the surrogate. This allows
the detection of errors in stored or retrieved data, without
requiring the file’s contents to be in memory.

V. PSI IMPLEMENTATIONS

With the goal of discovering cross-platform violations in real
APIs, we developed PSIs for three programming interfaces:
JavaScript, Repy, and POSIX. These used different techniques,
which we discuss below.

A. JavaScript

To check for the compliance of JavaScript implementations,
the ECMA standards body for JavaScript [28] has created
a conformance suite called test262 [29]. In selecting an
implementation from which to build a PSI, we ran test262 on a
set of popular browsers (Chrome, Firefox, and IE9) and found
that Internet Explorer 9, at the time, had the most accurate
implementation. Due to IE9’s closed environment we were not
able to isolate its JavaScript implementation to create a PSI
from, so we instead used the second-most compliant JavaScript
implementation, JaegerMonkey (from Firefox). We were able

to use JaegerMonkey as a PSI for JavaScript because we limited
our JavaScript evaluation scope to only stateless calls.

We wrote a custom script and browser extension for Chrome
to interpose on stateless JavaScript calls and create execution
traces (recall Section III-A). The browser extension then sends
the traces to a web server, which runs the CheckAPI detection
mechanism. Using the trace, CheckAPI replays actions in the
PSI. Since each trace’s action includes the method and its
arguments, the detection mechanism simply re-executes the
method call with its arguments and compares the results with
those listed in the trace. CheckAPI declares a conformance
failure if the result from the PSI does not match the result
from the trace.

B. Repy PSI

We derived the PSI for the Repy API by modifying the
API implementation. The Repy library is implemented in
Python and is used to run experiments on the Seattle peer-
to-peer testbed [80]. Non-platform-specific code from the
implementation can be re-used in the PSI. All platform-specific
code (e.g., file and network IO calls) must be re-written to
interface with new in-memory data-structures inside the PSI.
For example, platform-specific file IO calls are replaced with
calls to in-memory data-structures that keep track of file system
metadata. Calls that involve nondeterminism (e.g., network
receive calls) must be changed to request a value from the
surrogate (discussed in Section IV-C).

Figure 3 shows the library and PSI implementations of the
Repy removefile() call. The library uses Python’s os library
to directly interact with Python’s underlying platform-specific
code (seen on lines 10, 11, 14, and 18). In contrast, the PSI
uses in-memory data-structures (seen on lines 6, 14, 18) to
represent these same interactions. Each code block seen in the
library and PSI for removefile() can be directly mapped to
one another in the figure to see how the library is translated
into its corresponding PSI. E.g.: line 14 of the library calls
Python’s os.path.isfile() to see if the file exists. If the file
does exist it is later removed on line 18 with the os.remove()
call. The PSI, however, references a dictionary representation
of the file system.

The full Repy PSI was written over the course of a few
days by an undergraduate student who had no prior knowledge
of the internal implementation of Repy. The time it took to
implement this PSI was largely reduced because of our ability
to re-use non-platform-specific code from the original Repy
libraries. The Repy libraries included a collection of unit tests
that were used to test basic functional correctness and API
conformance. Since the PSI is an executable implementation
we are able to re-run these same unit tests. The original Repy
implementation consisted of 4,435 lines of code (measured by
removing white-space and comments), where as the Repy PSI
consisted of 869 lines, 762 of which differ from the original
implementation. We suspect there to be further similarities
between the PSI and the implementation but were unable to
easily quantify them.

5

1 def removefile(filename):
2 # raise a RepyArgumentError if the filename isn't valid
3 _assert_is_allowed_filename(filename)
4
5 # Check if the file is in use
6 if filename in OPEN_FILES:
7 raise FileInUseError("Cannot remove file. It's in use")
8
9 # Get the absolute file name
10 relative_path = os.path.join(REPY_CURRENT_DIR, filename)
11 absolute_filename = os.path.abspath(relative_path)
12
13 # Check if the file exists
14 if not os.path.isfile(absolute_filename):
15 raise FileNotFoundError(“Cannot remove non-existent file”)
16
17 # Remove the file
18 os.remove(absolute_filename)

1 def psi_removefile(filename):
2 # raise a RepyArgumentError if the filename isn't valid
3 _assert_is_allowed_filename(filename)
4
5 # Check if the file is in use
6 if filename in FILEIO_OPEN_FILES_LIST:
7 raise FileInUseError("Cannot remove file. It's in use")
8
9 # The Repy API provides the illusion of a flat file system,
10 # which requires getting an absolute path to the filename.
11 # The PSI version does not need to do this.
12
13 # Check if the file exists
14 if filename not in FILEIO_FILE_STATE_DICT:
15 raise FileNotFoundError(“Cannot remove non-existent file”)
16
17 # Remove the file
18 FILEIO_FILE_STATE_DICT.pop(filename)

(a) (b)

Fig. 3. (a) The original implementation of the removefile API call in Repy. (b) The removefile call in the Repy PSI derived from the implementation in
(a) with minor modifications (unchanged lines are colored grey).

C. POSIX PSI

The POSIX PSI was implemented in Python and covers net-
work and file system API calls. Note that although the POSIX
specification allows some platform-specific behavior [43], we
treat these as cross-platform violations because we believe
these are issues that should be brought to the attention of the
library’s user. In most cases, the documentation for the API
specified the expected result. In situations in which it was
ambiguous or unclear, we used tests to observe the actual
behavior of POSIX in OS X.

Implementing the 34 calls for the POSIX PSI was straight-
forward and took only 4 days. Our implementation focused on
calls that are widely used within programs, such as open(),
and did not include rarely-used calls, such as mount(). It
would be straightforward to support the majority of the POSIX
API; however, modeling calls that perform IPC or signaling
calls (e.g., kill()) would pose a challenge because the call
does not contain information on whether it reaches the other
process, but that fact affects the expected behavior.

For some aspects of the nondeterministic calls, such as
those involving the network, the POSIX PSI queries the
nondeterminism surrogate for guidance. Figure 4 illustrates
this using the send call. When send is called, the PSI first
validates the known state of the socket (lines 3–13). If it is in a
state in which a send call may succeed (the conditions on lines
4–5, 10–11 are false), the PSI checks with the surrogate (line
16) to see whether the surrogate has a valid string or an error
that should be possible given the known socket status (lines
32–39). If it receives an incorrect string (e.g., longer than the
requested length) or an error that should be impossible, the
PSI raises a conformance failure (line 41). Otherwise, the PSI
returns the number of bytes successfully sent (line 44).

VI. EVALUATION

We evaluated CheckAPI on both its effectiveness at finding
cross-platform violations and its runtime performance.

A. Detected Cross-Platform Violations

JavaScript. We constructed a Chrome extension to detect
JavaScript API violations at runtime. Our implementation
used Firefox’s JaegerMonkey implementation to validate the
Chrome’s V8 engine. Once we uncovered a violation, we
modified the HTML to include our interposition code and
opened the page in other browsers to further understand the
issue. As a test, we also visited the ECMAScript compliance
page [28], a page designed to test for violations. While
some of these tests are for the computational aspects of
JavaScript, CheckAPI is able to test the behavior of a variety of
JavaScript standard objects, including String, Array, RegExp,
and Number. We also used CheckAPI in our day-to-day web
browsing.

CheckAPI detected two violations that are not listed in the
more than 10K ECMAScript tests. The first bug deals with the
way that splitting strings works, resulting in divergent behavior
across the JavaScript implementations for IE, Chrome, Firefox,
and Safari. In fact, there are even separate deviations for
different versions of those implementations [52]. The other
issue deals with sorting using the locale information from the
host. This varies not only with the locale settings, but depends
on the specific JavaScript settings [62]. We found outside
sources that are able to confirm that these are true JavaScript
API violations [52], [62]. Since CheckAPI uncovers violations
that are not in the ECMAScript test suite, this demonstrates
the value of testing using a PSI.

Repy. Repy’s API consists of 33 calls and is built expressly
with portability in mind [37]. Though this API has been
in use for over four years across tens of thousands of
machines, CheckAPI uncovered four file system [33], [64]
and network [49], [76] violations. All of these violations were
confirmed and fixed by the Repy developers.

These bugs would have been quite difficult to find or fix
using other methods. For example, CheckAPI discovered a

6

 1. def send_syscall(fd, message, msg_len, flags):
 2.
 3. # Send can success if it is on a connected TCP socket.
 4. if ('IPPROTO_TCP' == fdtable[fd]['protocol'] and
 5. fdtable[fd]['state'] != CONNECTED):
 6. raise SyscallError("send_syscall","ENOTCONN",
 7. "The descriptor is not connected.")
 8.
 9. # Send should be used only with TCP/UDP scokets.
10. if ('IPPROTO_TCP' != fdtable[fd]['protocol'] and
11. 'IPPROTO_UDP' != fdtable[fd]['protocol']):
12. raise SyscallError("send_syscall","EOPNOTSUPP",
13. "Send not supported on this protocol.")
14.
15. # Get the return value from the surrogate.
16. impl_ret, impl_errno = posix_surrogate.pop()
17.
18. # Check with implementation's behavior:
19. # was it non−deterministic?
20. if (impl_errno != None and
21. impl_errno in send_nondeter_errors):
22. raise SyscallError("send_syscall", impl_errno,
23. "Non−deterministic error")
24.
25. # Omitted: in case of a UDP socket..
26.
27. # Get the socket so I can send...
28. sock = sockettable[fdtable[fd]['sockid']]
29.
30. # Consult surrogate to see if we should raise
31. # a nondeterministic error.
32. remote_close = SocketClosedRemote("Closed remotely!")
33. block_error = SocketWouldBlockError("Send would block.")
34.
35. # Register regular expression condition
36. # for verification of this function.
37. regex_cond = regex_cond_range(0, msg_len)
38. num_bytes_sent, error = surrogate_getter(regex_cond,
39. [remote_close, block_error])
40. if error != None:
41. return error
42.
43. # Return the characters sent.
44. return num_bytes_sent

Fig. 4. Listing of the send call implementation the POSIX PSI. The regular
expression regex_cond_range (line 37) matches numerical ranges, while
send_nondeter_errors (line 21) is a list of all the nondeterministic errors
for this call. The listing omits initial checks for deterministic errors and the
case of a UDP socket.

bug in Repy’s network API where Python raised an error that
Repy did not expect. This bug took more than two weeks
of developer effort to try to find the root cause.2 The core
issue was that whether or not the O_NONBLOCK flag is inherited
by a socket returned from accept() differs across operating
systems. The underlying fault was actually in the Python
standard libraries [49]. This was the root cause for a host of
other problems [46], [47], [48].

POSIX. Since the POSIX specification allows a higher degree
of variance than the other APIs we studied, there are more
potential violations. To evaluate the POSIX PSI we first looked
for POSIX bug reports related to portability violations with
the goal of finding around 20 bugs. We found 19 bug reports
across many popular applications (Figure 5). All of these
violations were reproduced with CheckAPI: we first ran each
application to produce traces that exhibit the violation and then
ran CheckAPI to find the violation.

In 10 cases (top of Figure 5), CheckAPI correctly detected

2Unfortunately, we had not constructed the POSIX PSI at this time. The
POSIX PSI finds the bug immediately.

Portability violation Affected Applications

Found using CheckAPI
Inheritance of flags from accept() Python [49]
SO_REUSEADDR semantics dif-
fer when binding to the same port

Python [87], Java [86],
NTP [102], Mozilla [79]

File name character set pervasive
Deleting an open file Seattle Repy Sandbox
Max file name length pervasive
File name case sensitivity MathType, SVN [90], etc.
UDP broadcast setup Apache [26], Netcat [68],

etc.
recvfrom error codes handle con-
nection refused differently

Twisted [96]

get/setsockopt buffer size mis-
match

Seattle Repy Sandbox

Semantics of shutdown() Ruby [31], Cygwin [2],
Python [85], FreeBSD [82]

Can be found with a more expressive PSI
Getaddrinfo behavior Wine [105], Repy [38]
Setsockopt with closed connec-
tions

Java/Tomcat [24]

SO_(RECV/SND)TIMEO result PHP [103], LibSoup [35]
Cannot be found with CheckAPI

Non-blocking sockets partial send Twisted [95]
Ioctl size of next available data-
gram

pervasive

OS buffer is smaller than data-
gram

pervasive

Datagrams truncated (or dropped)
when return buffer is smaller than
datagram

pervasive

Receiving datagrams over 8KB VirtualBox VM with Win-
dows host

recv() hangs despite close() Ruby [93], Android [23]

Fig. 5. POSIX portability violations. The top category are found by CheckAPI.
The middle could be found with a more expressive PSI. The bottom cannot
be found with current techniques.

the violation. CheckAPI detected file system and network
issues that impact popular applications like Firefox, Apache,
Java, Ruby, Perl, Twisted, Cygwin, and Python. For example,
the SO_REUSEADDR semantic difference allowed other programs
to bind to the same port on Windows systems: Windows
requires an additional flag SO_EXCLUSIVEADDRUSE to prohibit
another process from binding to the same port. This caused
security issues for a variety of applications [86], [102].

However, there were also 9 violations that CheckAPI did
not detect. One reason is that our PSI covers only 34 POSIX
calls. Thus for 3 violations (middle of Figure 5) the issue
would be straightforward to detect given a more complete PSI.
For example, it is trivial to detect the different semantics of
getaddrinfo(), but our PSI did not implement that API call.
Since the PSI is a general construct and not tailored to any
one bug or test case, these issues are to be expected for partial
implementations of large APIs. At the same time, this also
shows that an extremely partial PSI can still find many errors.

The other 6 violations that CheckAPI does not detect are
related to network behavior (bottom of Figure 5). Since the

7

�

���

���

���

���

����

����

����

����

������

��������

�������

�����
������

�
��������

����
�������

����������

��������

�
��
�
��
��

������� ���������
������������� ���������
��������� ���� �����������

Fig. 6. Page load times comparison with and without CheckAPI. Using
stateless call memoization dramatically improves the load time.

recipient of a network packet does not know what was sent, it
is not possible to detect many issues of this type. For example,
a recipient cannot tell if a packet was truncated by the sender
or by the local OS: this can only be detected using traces from
multiple nodes, which we currently do not support.

B. Performance

JavaScript. The primary user-perceived impact is based on
the injection of a custom JavaScript script for trace capture. To
measure CheckAPI’s page load time impact we tested it with
the top 10 most popular Alexa sites [3] and measured it using
Google Chrome’s built-in developer tools [21]. As Figure 6
shows, using CheckAPI for runtime overhead presents a less
than 9% overhead for 9 of the 10 most popular websites.

Stateless Call Memoization: Figure 6 also shows the
impact of the stateless call memoization (described in Sec-
tion III-B). On average, it reduces load time increase from
21.8% to 7.9% and reduces the average trace length from 2027
JavaScript calls per request to 1025. Note here that while the
page may have been fully loaded, trace capture mechanism
may still be recording data.

Twitter had 8,121 JavaScript calls per request, an increase of
37%. Google had 53 JavaScript calls per request, an increase of
7.6%. In practice, we have used the CheckAPI Google Chrome
extension in daily web browsing with minimal perceivable
impact even using our unoptimized trace gathering code.
Repy. To understand the performance of Repy with CheckAPI
during online verification we evaluated it with four represen-
tative applications used on the Seattle testbed. We monitored
the client-perceived running time to perform common tasks
across four applications: a UDP-based P2P ping application
(all-pairs-ping), a block store similar to S3 (blockstore), and a
webserver with either small 1K (webserver-list-files) or large
1MB (webserver-meg) requests. We executed these applications
under three different scenarios: without trace capture or
CheckAPI, with trace capture, and trace capture with CheckAPI.
The results from these experiments are seen in Figure 7 and
show that on average trace capture (second scenario) adds an
average of 10% to the runtime of a Repy program. The addition
of CheckAPI-based verification (third scenario) adds 10% to
the total execution time of the original application. In general,

�

��

��

��

��

��

��

��������������
����������

�������������
�������������������

��
��
��
��
�
�
��
�
��
��
�

�� ����� �������
����� �������
����� ������� ��� �����������

Fig. 7. The benchmark application running time, as perceived by the client.

the verification time and trace gathering overhead are small
compared to the actual execution times of the benchmarks.

The version of CheckAPI that was evaluated in these
experiments was a prototype implementation that does multi-
threaded verification (CheckAPI-MT). This implementation is
further discussed in Section VII. Since CheckAPI-MT provides
a superset of the features so far described in this paper we are
confident that the performance of a single-threaded version of
CheckAPI would perform no worse than CheckAPI-MT and
would in fact exhibit less verification overhead.
POSIX. To understand the overhead imposed by CheckAPI
with the POSIX PSI, we first wanted to understand the
impact trace capture had on applications. We therefore
benchmarked the Apache webserver using the benchmarking
tool ApacheBench [1] on a 320KB web page (320KB is the the
average page size on the web [100]). We used ApacheBench to
issue 100 requests with a maximum of 10 concurrent requests.
Apache served about 1

3 as many requests with strace as
without. We believe this result is largely due to the high
number of context switches by strace. Increasing the content
served by an order of magnitude resulted in a slowdown of
only 38%. The time taken by offline verification was less than
10% of the actual execution time.

VII. FUTURE WORK: MULTI-THREADED APPLICATIONS

Up to now we have described the CheckAPI approach as ap-
plied to a single-threaded application. For broader applicability
and to find more violations we have begun work to extend
CheckAPI to handle multi-threaded applications. We now
discuss our preliminary work on this CheckAPI-MT version.

To support multi-threading, we require that traces record a
start action (with no return value) prior to the call’s execution
and a finish action when the method returns. Tools such as
strace [89] generate traces for multi-threaded programs that
conform to this requirement.

When multiple threads concurrently use an API, the order
in which the actions are recorded may differ from the order in
which they actually occurred. Guarding API calls with locks
can potentially prevent this, but in many cases, decreasing
application performance and potentially causing correctness
issues or producing inaccurate traces (e.g., due to blocking

8

Thread1: removefile_start(‘oldfile’)
Thread2: listfiles_start()
Thread1: removefile_finish(‘oldfile‘) → SUCCESS
Thread2: listfiles_finish() → [‘oldfile’]

Fig. 8. An example ambiguous trace used by CheckAPI-MT with only one
valid ordering of the two actions: [Thread2: listfiles, Thread1: removefile].

calls). Instead, CheckAPI-MT must handle what we call
ambiguous traces.

Figure 8 shows an example ambiguous trace. In this trace,
two threads execute one Repy call each: Thread1 executes
removefile(), which deletes the file oldfile, and Thread2
executes listfiles(), which indicates that oldfile is present.
As explained above, each of the two calls in the figure
has a start and a finish action. If removefile() finished
before listfiles(), then the return value of listfiles()
would be incorrect; this implies that removefile() must have
executed after listfiles(). The challenge for CheckAPI-MT
is therefore to filter out these kinds of implausible traces and
focus on the remaining ones.

CheckAPI-MT uses trace disambiguation to explore a subset
of the space of all totally ordered sequences corresponding to
an ambiguous trace to find a valid call order. If no such order
is found, the trace is flagged as a violation. To successfully
replay many different orderings of a trace, CheckAPI-MT must
store versions of the application’s global state, this way it can
efficiently revert the side-effects of a set of actions.

CheckAPI-MT first replays the trace in the PSI: to process
the trace in Figure 8, we first replay removefile() then
listfiles(). This ordering causes a conformance failure:
oldfile was successfully removed, which means listfile()
should not return it, which causes CheckAPI-MT to backtrack,
reverting all side-effects of this action, and to replay these calls
in a different order. This process continues until CheckAPI-MT
either finds an ordering that does not cause a conformance
failure or explores all orderings.

Figure 9 shows a more involved example with four actions,
referred to as A, B, C, and D. Figure 9(a) shows the trace and
Figure 9(b) shows a corresponding tree of call interleavings
that CheckAPI-MT explores (each path in the tree is one
interleaving). In this example, CheckAPI-MT explores this tree
from left to right: it first traverses the left most path, [sleep(),
openfile(), listfiles()] by replaying each action in the
PSI as it goes. In this trace, openfile() created a file
called newfile that does not appear in the listing produced
by listfiles(), so CheckAPI-MT raises a conformance
failure. Trace disambiguation then restores the previous PSI
state and backtracks up the tree to try another branch. The
trace disambiguation process will next check the interleaving
[sleep(), openfile(), file.close(), listfiles()], which
also raises a conformance failure because the openfile()
action was replayed before the listfiles() action. CheckAPI-
MT will then proceed to explore the final (right-most) trace in
the tree, which is a valid interleaving of the calls in Figure 9(a).

The task of finding a valid trace ordering is similar to finding

�!

�!�!

�! �!

�!�!

X"

�!

X"

��
������������
��	!

A: sleep_start(1.0)

A: sleep_finish(1.0) → SUCCESS

B: openfile_start(‘newfile’, True)

C: listfiles_start()
B: openfile_finish(‘newfile’, True) → fileobj1

D: file.close_start(fileobj1)

D: file.close_finish(fileobj1) → SUCCESS

C: listfiles_finish() → [‘oldfile’]

(a) (b)

Fig. 9. An ambiguous trace (a) and its corresponding tree (b) during trace dis-
ambiguation. Each action’s color represents if Thread 1 or Thread 2 performs it.

valid linearization points [42] for each API call. We essentially
have to find a correct ordering where each API call took effect
and determine if a call “happens before” another call [58].
This task is made easier for applications that consist of many
stateless API calls since these calls do not have any side-effects
in the PSI and are thus are not restricted in their call order. We
believe that future work in making CheckAPI-MT practical can
leverage work in distributed systems and parallel computing.

CheckAPI-MT includes a few heuristics to cull the space
of orders it needs to explore. For example, we do not need
to consider re-ordering stateless calls or calls that occur in
the same thread. In addition, if an action A is reported as
finished before another action B starts, then we do not consider
the ordering [B, A]. In practice, we did not find any cases
where these heuristics caused us to miss an ordering, and
it greatly reduces the space of interleavings. For example,
a naïve approach would consider all 24 possible orders of
actions in Figure 9. However, because the sleep() call starts
and finishes before all other calls start, CheckAPI-MT only
considers orderings in which sleep() appears in the first
position. This reduces the search space by a factor of 4, from
24 orderings to 6.

We have built a prototype checker using these principles
and have already found it to be useful (as discussed in
Section VI-B). However, there are probably many more
opportunities for optimization, which will be necessary for
processing long call sequences. Therefore, we consider
CheckAPI-MT a work in progress.

VIII. RELATED WORK

Static analysis: The Explode system uses model checking to
check properties of file systems [106]. MC enables writing
checkers that are compiled into static checks for violations of
system rules and security properties [5], [30]. SLAM [6], [7]
uses model checking to check if an implementation conforms
to rules characterizing correct API usage; it has been very
successful in finding bugs in Windows device drivers. By
contrast, verification techniques like CheckAPI typically scale

9

better and are less prone to false-positives, but they provide
less strong guarantees of correctness.

Static analysis can integrate static API call verification into
an API implementation [88]. This requires formally specifying
each API call, whereas a PSI specifies API behavior with
a direct implementation. Silakov et al. [83] statically detect
portability problems in Linux applications, while the Java
API Compliance Checker [51] checks binary- and source-level
compatibility of an application against a Java library API.
These tools check static properties, while CheckAPI validates
an API’s runtime behavior.
Portability: System call interposition can monitor executions
of binaries to automatically assemble packages of code needed
to run applications on other platforms [41]. Inferred behavioral
models of software component interactions can automatically
generate compatibility test suites [65]. Compliance-validated
wrappers can be used for principled migration of APIs across
platforms [13]. In C, feature test macros can explicitly
specify compatibility with a specific OS. These approaches
are complementary to CheckAPI, whose goals is to detect
portability issues so that they can be fixed.

Skoll addresses portability bugs arising from configuration
problems by sampling the configuration space using distributed
and diverse machines [66]. Skoll, together with combinato-
rial techniques, can systematically discover combinations of
configuration options (selected from a large but well-defined
space) that cause a given test suite to fail [34], [108].

Recently, several tools have addressed the issue of cross-
browser incompatibilities for web applications [19], [20], [67].
These involve computer vision algorithms to detect differ-
ences in page rendering, along with dynamic web crawling.
Choudhary et al. [83] additionally compare web applications’
possible states across browsers. Cross-browser incompatibilities
detected by these techniques can arise from differences in
JavaScript interpreters, along with other root causes. Integrating
CheckAPI for JavaScript into such tools could improve their
accuracy and help in fault diagnosis.
POSIX conformance testing: The Ballista system generates
parameter values for POSIX functions aimed at detecting im-
plementation problems. In fifteen popular OS implementations,
Ballista revealed many bugs through crashes and abnormal task
termination [57]. By contrast, CheckAPI detects violations that
are the result of more subtle differences in OS behavior.

Model-based test and oracle generation [50], [78] can aid
conformance, and has been applied to POSIX file systems [25]
and to other POSIX aspects [32]. This work generates tests to
validate library behavior and is complementary to CheckAPI,
which finds violations at runtime. Executing test suites across
multiple configurations of a product or system, known as
variability execution [54], [71], may reveal differences between
the configurations. By contrast, CheckAPI focuses on executing
multiple implementations that share no or little code.
Reliability via redundancy: Developing and running multiple
implementations of an application in parallel, comparing
them at checkpoints, can achieve high reliability under the
assumption that the implementations fail independently [56].

Such reliability can be made optimal, in terms of the number
of necessary implementations [14]. CheckAPI’s use of a PSI
differs because a PSI represents an idealized execution of the
system, avoiding OS behavior to the greatest extent possible.
For example, the file system metadata in a CheckAPI PSI is
likely to be entirely in memory. Thus, while n-version testing
would have all implementations heavily dependent on the
same underlying OS behavior, a PSI is independent of the OS
implementation and can discover violations caused by the OS.
Runtime verification: Runtime verification (RV) tech-
niques [4], [11], [59], [61], [63], [77], [94], [98] can detect
violations of properties on specific executions but do not show
that the software satisfies the specification for every possible
input or on every possible execution. Many of these techniques
find general violations of properties, such as atomicity [77],
[98]. Other RV techniques enable checking program-specific
requirements usually specified with formal languages, such as
automata or logic formalisms [12], [39].

Many RV approaches instrument code to capture relevant
events or application state and insert executable assertions [9],
[10], [22], [53], [60], [75]. However, inserting pre- and post-
conditions obscures the fact that the specification can be treated
as a parallel construct to the implementation [9], [10]. Instead,
an architecture can be used for runtime verification of .NET
components by running the model and the implementation
side-by-side, comparing results at method boundaries [9],
[10]. CheckAPI does not require application instrumentation,
assuming a tracing mechanism exists in the API [16], [89].

Like CheckAPI, several other (runtime and static) checking
techniques allow the use of languages more familiar to program-
mers. The WiDS checker allows using a scripting language
to specify properties of a distributed system [61]. Contracts
written in a C-like language can specify components for use
in TinyOS applications [4]. CheckAPI allows programmers
to choose the language for PSI construction or simply to use
an existing implementation. Lastly, work on deterministic
replay [99] enables record-replay techniques on multi-core
systems and could help improve CheckAPI-MT performance.

IX. CONTRIBUTIONS

Latent cross-platform violations are difficult to identify and
costly. We have presented CheckAPI, a technique for effectively
identifying cross-platform violations at runtime. CheckAPI
is efficient and finds bugs in popular and mature projects,
including JavaScript, Repy, and POSIX, suggesting promise
for improving cross-platform library quality and facilitating
software reuse.

X. ACKNOWLEDGMENTS

Yanyan Zhuang, Savvas Savvides, Yang Li, Jonathan Jacky,
Phyllis Frankl, and Ivan Beschastnikh provided useful feedback
and implementation help. This work is supported by the
National Science Foundation under grants CNS-1205415, CNS-
1405904, CCF-1453508, CNS-1513055, CNS-1513457, and
DGE-1058262.

10

REFERENCES

[1] ab — Apache HTTP server benchmarking tool. Accessed May 1st,
2012 http://httpd.apache.org/docs/2.0/programs/ab.html.

[2] Re: listen socket / poll block. Accessed April 30th, 2012 http://cygwin.
com/ml/cygwin/2011-04/msg00235.html.

[3] Alexa top 500 global sites. Accessed April 30th, 2012 http://www.alexa.
com/topsites.

[4] W. Archer, P. Levis, and J. Regehr. Interface contracts for tinyos. In
IPSN, pages 158–165, 2007.

[5] K. Ashcraft and D. Engler. Using programmer-written compiler
extensions to catch security holes. In IEEE Symposium on Security and
Privacy, pages 143–159, 2002.

[6] T. Ball, V. Levin, and S. K. Rajamani. A decade of software model
checking with SLAM, July 2011.

[7] T. Ball and S. K. Rajamani. The SLAM project: Debugging system
software via static analysis. In POPL, pages 1–3, 2002.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In SOSP, pages 164–177, 2003.

[9] M. Barnett and W. Schulte. Spying on components: A runtime
verification technique. In Workshop on Specification and Verification of
Component-Based Systems, 2001.

[10] M. Barnett and W. Schulte. Runtime verification of .NET contracts.
Journal of Systems and Software, 65(3):199–208, 2003.

[11] H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. J. Pace,
G. Rosu, O. Sokolsky, and N. Tillmann, editors. Runtime Verification -
First International Conference, RV 2010, St. Julians, Malta, November
1-4, 2010. Proceedings, volume 6418. Springer, 2010.

[12] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based
runtime verification. In VMCAI, pages 44–57, 2004.

[13] T. T. Bartolomei, K. Czarnecki, and R. Lämmel. Compliance testing
for wrapper-based API migration. In ISSTA, 2012.

[14] Y. Brun, G. Edwards, J. young Bang, and N. Medvidovic. Smart
redundancy for distributed computation. In ICDCS, pages 665–676,
June 2011.

[15] Cannot bind to default port after using connection and restarting.
Accessed May 2nd, 2012 https://bugs.eclipse.org/bugs/show_bug.cgi?
id=249736.

[16] J. Cappos, A. Dadgar, J. Rasley, J. Samuel, I. Beschastnikh, C. Barsan,
A. Krishnamurthy, and T. Anderson. Retaining sandbox containment
despite bugs in privileged memory-safe code. In CCS. ACM, 2010.

[17] P. Chanezon. Write Once, Run Anywhere: the devil is in the details,
October 2006. http://wordpress.chanezon.com/?p=7.

[18] B. Charny. Write once, run anywhere not working for phones, July
2005. http://mcall.com.com/Write-once,-run-anywhere-not-working-
for-phones/2100-1037_3-5788766.html.

[19] S. R. Choudhary. Detecting cross-browser issues in web applications.
In ICSE, pages 1146–1148, 2011.

[20] S. R. Choudhary, H. Versee, and A. Orso. Webdiff: Automated
identification of cross-browser issues in web applications. In ICSM,
pages 1–10, 2010.

[21] Chrome developer tools: Network panel. Accessed April 1st, 2012
http://code.google.com/chrome/devtools/docs/network.html.

[22] J. A. Clause and A. Orso. Camouflage: automated anonymization of
field data. In ICSE, pages 21–30, 2011.

[23] Closing a socket from another thread doesn’t generate IOException.
Accessed April 30th, 2012 http://code.google.com/p/android/issues/
detail?id=7933.

[24] Confusing error “java.net.SocketException: Invalid argument” for
socket disconnection. Accessed April 30th, 2012 http://bugs.sun.com/
bugdatabase/view_bug.do?bug_id=6378870.

[25] F. Dadeau, A. Kermadec, and R. Tissot. Combining scenario- and
model-based testing to ensure posix compliance. In Proceedings of
the 1st international conference on Abstract State Machines, B and Z,
pages 153–166. Springer-Verlag, 2008.

[26] Datagram (UDP) broadcasts fail with “permission denied” on platforms
that require SO_BROADCAST to be set first. Accessed April 30th,
2012 https://issues.apache.org/bugzilla/show_bug.cgi?format=multiple&
id=46389.

[27] Developers battle with over 100 different versions of android. Ac-
cessed April 26th, 2012 http://www.pcpro.co.uk/news/enterprise/361948/
developers-battle-with-over-100-different-versions-of-android.

[28] Ecmascript language specification. Accessed March 28th, 2012 http:
//www.ecma-international.org/publications/standards/Ecma-262.htm.

[29] Ecmascript test262. Accessed March 28th, 2012 http://test262.
ecmascript.org/.

[30] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules
using system-specific, programmer-written compiler extensions. In
OSDI, page 1, 2000.

[31] ‘errno::ENOTCONN: Socket is not connected’ in test/net/imap. Ac-
cessed April 30th, 2012 http://bugs.ruby-lang.org/issues/465.

[32] E. Farchi, A. Hartman, and S. S. Pinter. Using a model-based test
generator to test for standard conformance. IBM Systems Journal,
41(1):89–110, 2002.

[33] file names not case-sensitive? Accessed April 30th, 2012 http://forums.
macrumors.com/showthread.php?t=1037142.

[34] S. Fouché, M. B. Cohen, and A. Porter. Incremental covering array
failure characterization in large configuration spaces. In ISSTA, pages
177–188, 2009.

[35] Found an interesting bug in libsoup on Windows. Accessed April 30th,
2012 http://mail.gnome.org/archives/libsoup-list/2008-June/msg00001.
html.

[36] J. Fruhlinger. LWUIT: Write once, run anywhere (mobile) (hopefully),
August 2008. http://www.javaworld.com/community/node/1113.

[37] Future repy library reference. Accessed April 24th, 2012 https://seattle.
cs.washington.edu/wiki/FutureRepyAPI.

[38] getmyip fallback to using TCP for Windows Mobile. Accessed May
1st, 2012 https://seattle.cs.washington.edu/changeset/1337/seattle/trunk/
repy/emulcomm.py.

[39] D. Giannakopoulou and K. Havelund. Automata-based verification of
temporal properties on running programs. In ASE, pages 412–416,
2001.

[40] J. Gosling. Java: Write-Once, Debug Everywhere?, May
2008. http://www.uberpulse.com/us/2008/05/java_write_once_debug_
everywhere.php.

[41] P. J. Guo and D. Engler. CDE: Using system call interposition to
automatically create portable software packages. In USENIX, 2011.

[42] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[43] IEEE Std 1003.1-2001 Standard for Information Technology — Portable
Operating System Interface (POSIX) Base Definitions, Issue 6, 2001.

[44] Internet explorer performance lab: reliably measuring
browser performance. Accessed January 23rd, 2015
http://blogs.msdn.com/b/b8/archive/2012/02/16/internet-explorer-
performance-lab-reliably-measuring-browser-performance.aspx.

[45] Issue with socket SO_REUSEADDR when a client is connected.
Accessed May 2nd, 2012 http://comments.gmane.org/gmane.os.cygwin/
1246085.

[46] Strange behavior for socket.timeout. Accessed April 29th, 2012 http:
//bugs.python.org/issue10473.

[47] OSX broken poll testing doesn’t work. Accessed April 29th, 2012
http://bugs.python.org/issue5154.

[48] Socket timeout can cause file-like readline() method to lose data.
Accessed April 29th, 2012 http://bugs.python.org/issue7322.

[49] On mac / bsd sockets returned by accept inherit the parent’s fd flags.
Accessed April 29th, 2012 http://bugs.python.org/issue7995.

[50] J. Jacky, M. Veanes, C. Campbell, and W. Schulte. Model-based
Software Testing and Analysis with C#. Cambridge University Press,
2008.

[51] Java API compliance checker - ISP_RAS. Accessed September 5th, 2014
http://ispras.linuxbase.org/index.php/Java_API_Compliance_Checker.

[52] JavaScript split bugs: Fixed! Accessed April 30th, 2012 http://blog.
stevenlevithan.com/archives/cross-browser-split.

[53] G. Jin, A. Thakur, B. Liblit, and S. Lu. Instrumentation and sampling
strategies for cooperative concurrency bug isolation. SIGPLAN Not.,
45:241–255, October 2010.

[54] C. Kästner, A. von Rhein, S. Erdweg, J. Pusch, S. Apel, T. Rendel,
and K. Ostermann. Toward variability-aware testing. In International
Workshop on Feature-Oriented Software Development, pages 1–8, 2012.

[55] F. M. Kifetew, W. Jin, R. Tiella, A. Orso, and P. Tonella. Reproducing
field failures for programs with complex grammar-based input. In
ISSTA, pages 163–172, 2014.

[56] J. C. Knight and N. G. Leveson. An experimental evaluation of the
assumption of independence in multiversion programming. IEEE Trans.
Software Eng., 12(1):96–109, 1986.

[57] P. Koopman and J. DeVale. The exception handling effectiveness of
posix operating systems. IEEE TSE, 26(9):837–848, 2000.

11

http://httpd.apache.org/docs/2.0/programs/ab.html
http://cygwin.com/ml/cygwin/2011-04/msg00235.html
http://cygwin.com/ml/cygwin/2011-04/msg00235.html
http://www.alexa.com/topsites
http://www.alexa.com/topsites
https://bugs.eclipse.org/bugs/show_bug.cgi?id=249736
https://bugs.eclipse.org/bugs/show_bug.cgi?id=249736
http://wordpress.chanezon.com/?p=7
http://mcall.com.com/Write-once,-run-anywhere-not-working-for-phones/2100-1037_3-5788766.html
http://mcall.com.com/Write-once,-run-anywhere-not-working-for-phones/2100-1037_3-5788766.html
http://code.google.com/chrome/devtools/docs/network.html
http://code.google.com/p/android/issues/detail?id=7933
http://code.google.com/p/android/issues/detail?id=7933
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6378870
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6378870
https://issues.apache.org/bugzilla/show_bug.cgi?format=multiple&id=46389
https://issues.apache.org/bugzilla/show_bug.cgi?format=multiple&id=46389
http://www.pcpro.co.uk/news/enterprise/361948/developers-battle-with-over-100-different-versions-of-android
http://www.pcpro.co.uk/news/enterprise/361948/developers-battle-with-over-100-different-versions-of-android
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://test262.ecmascript.org/
http://test262.ecmascript.org/
http://bugs.ruby-lang.org/issues/465
http://forums.macrumors.com/showthread.php?t=1037142
http://forums.macrumors.com/showthread.php?t=1037142
http://mail.gnome.org/archives/libsoup-list/2008-June/msg00001.html
http://mail.gnome.org/archives/libsoup-list/2008-June/msg00001.html
http://www.javaworld.com/community/node/1113
https://seattle.cs.washington.edu/wiki/FutureRepyAPI
https://seattle.cs.washington.edu/wiki/FutureRepyAPI
https://seattle.cs.washington.edu/changeset/1337/seattle/trunk/repy/emulcomm.py
https://seattle.cs.washington.edu/changeset/1337/seattle/trunk/repy/emulcomm.py
http://www.uberpulse.com/us/2008/05/java_write_once_debug_everywhere.php
http://www.uberpulse.com/us/2008/05/java_write_once_debug_everywhere.php
http://blogs.msdn.com/b/b8/archive/2012/02/16/internet-explorer-performance-lab-reliably-measuring-browser-performance.aspx
http://blogs.msdn.com/b/b8/archive/2012/02/16/internet-explorer-performance-lab-reliably-measuring-browser-performance.aspx
http://comments.gmane.org/gmane.os.cygwin/1246085
http://comments.gmane.org/gmane.os.cygwin/1246085
http://bugs.python.org/issue10473
http://bugs.python.org/issue10473
http://bugs.python.org/issue5154
http://bugs.python.org/issue7322
http://ispras.linuxbase.org/index.php/Java_API_Compliance_Checker
http://blog.stevenlevithan.com/archives/cross-browser-split
http://blog.stevenlevithan.com/archives/cross-browser-split

[58] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[59] M. Leucker and C. Schallhart. A brief account of runtime verification.
J. Log. Algebr. Program., 78(5):293–303, 2009.

[60] B. Liblit. Cooperative Bug Isolation (Winning Thesis of the 2005 ACM
Doctoral Dissertation Competition), volume 4440. Springer, 2007.

[61] X. Liu, W. Lin, A. Pan, and Z. Zhang. WiDS checker: Combating bugs
in distributed systems. In NSDI, pages 19–19, 2007.

[62] localecompare implementation differs. Accessed April 29th, 2012
http://code.google.com/p/v8/issues/detail?id=459.

[63] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: detecting atomicity
violations via access interleaving invariants. In Proceedings of the
12th international conference on Architectural support for programming
languages and operating systems, pages 37–48. ACM, 2006.

[64] Mac and Windows OS file/folder naming rules. Accessed April 30th,
2012 http://www.portfoliofaq.com/pfaq/FAQ00352.htm.

[65] L. Mariani, S. Papagiannakis, and M. Pezze. Compatibility and
regression testing of COTS-component-based software. In ICSE, 2007.

[66] A. M. Memon, A. A. Porter, C. Yilmaz, A. Nagarajan, D. C. Schmidt,
and B. Natarajan. Skoll: Distributed continuous quality assurance. In
ICSE, pages 459–468, 2004.

[67] A. Mesbah and M. R. Prasad. Automated cross-browser compatibility
testing. In Proceedings of the 33rd International Conference on Software
Engineering, pages 561–570. ACM, 2011.

[68] ncat broadcast support? Accessed May 3rd, 2012 http://seclists.org/
nmap-dev/2010/q2/440.

[69] net.listentcp succeeds twice on windows. Accessed May 2nd, 2012
http://code.google.com/p/go/issues/detail?id=2307.

[70] New — SO_REUSEADDR should also set SO_REUSEPORT on
FreeBSD UDP sockets. Accessed May 2nd, 2012 http://lists.ximian.
com/pipermail/mono-bugs/2007-June/058136.html.

[71] H. V. Nguyen, C. Kästner, and T. N. Nguyen. Exploring variability-
aware execution for testing plugin-based web applications. In ICSE,
pages 907–918, 2014.

[72] On android compatibility. Accessed April 26th, 2012 http://android-
developers.blogspot.com/2010/05/on-android-compatibility.html.

[73] Openssh 5.1. Accessed May 2nd, 2012 http://www.openssh.com/txt/
release-5.1.

[74] Openvpn change log — version 2.1.4. Accessed May 2nd,
2012 http://openvpn.net/index.php/open-source/documentation/change-
log/71-21-change-log.html.

[75] A. Orso, D. Liang, M. J. Harrold, and R. Lipton. Gamma system:
continuous evolution of software after deployment. In Proceedings of
the 2002 ACM SIGSOFT international symposium on Software testing
and analysis, pages 65–69. ACM, 2002.

[76] Ticket 426: z_testconcurrentopenconns.py fails on Mac 10.4 (Tiger).
Accessed January 23rd, 2015 https://seattle.cs.washington.edu/ticket/
426.

[77] S. Park, S. Lu, and Y. Zhou. Ctrigger: exposing atomicity violation
bugs from their hiding places. In Proceedings of the 14th international
conference on Architectural support for programming languages and
operating systems, pages 25–36. ACM, 2009.

[78] A. Pretschner. Model-based testing. In ICSE, pages 722–723, 2005.
[79] Pr_sockopt_reuseaddr functions differently on windows from on other

oses. Accessed April 30th, 2012 https://bugzilla.mozilla.org/show_bug.
cgi?id=489488.

[80] Seattle. https://seattle.cs.washington.edu/.
[81] Security: SO_EXCLUSIVEADDRUSE should be enabled when binding

to ports on Windows. Accessed May 2nd, 2012 http://twistedmatrix.
com/trac/ticket/4195.

[82] shutdown() of non-connected socket should fail with ENOTCONN.
Accessed April 30th, 2012 http://comments.gmane.org/gmane.os.freebsd.
bugs/31006.

[83] D. Silakov and A. Smachev. Improving portability of linux applications
by early detection of interoperability issues. In Leveraging Applications
of Formal Methods, Verification, and Validation, pages 357–370.
Springer, 2010.

[84] socket - linux socket interface. Accessed May 3rd, 2012 http://www.
kernel.org/doc/man-pages/online/pages/man7/socket.7.html.

[85] socket.shutdown documentation: on some platforms, closing
one half closes the other half. Accessed April 30th, 2012
http://grokbase.com/t/python/docs/121cvag9n1/issue6774-socket-
shutdown-documentation-on-some-platforms-closing-one-half-closes-
the-other-half.

[86] SO_REUSEADDR broken on Windows. Accessed April 30th, 2012
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4476378.

[87] SO_REUSEADDR doesn’t have the same semantics on Windows as
on Unix. Accessed April 30th, 2012 http://bugs.python.org/issue2550.

[88] D. Spinellis and P. Louridas. A framework for the static verification of
api calls. Journal of Systems and Software, 80(7):1156–1168, 2007.

[89] strace(1) - Linux man page. Accessed March 28th, 2012 http://linux.
die.net/man/1/strace.

[90] Subversion problem with case sensitivity. Accessed April 29th,
2012 http://stackoverflow.com/questions/713220/subversion-problem-
with-case-sensitivity.

[91] Sun Java J2EE – Compatibility & Java Verification. http://java.sun.com/
j2ee/verified/.

[92] TCPServer should not use SO_REUSEADDR in Cygwin port. Accessed
May 2nd, 2012 http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-
core/6765.

[93] Tcpsocket#readline doesn’t raise if the socket is #close’d in another
thread. Accessed April 30th, 2012 http://bugs.ruby-lang.org/issues/4390.

[94] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage: diagnosing
production run failures at the user’s site. In Proceedings of twenty-
first ACM SIGOPS symposium on Operating systems principles, pages
131–144. ACM, 2007.

[95] [Twisted-Python] ENOBUF and Twisted. Accessed January 23rd,
2015 http://twistedmatrix.com/pipermail/twisted-python/2004-August/
008461.html.

[96] UDP error trapping on Cygwin. Accessed April 30th,
2012 http://twistedmatrix.com/pipermail/twisted-python/2007-
February/014770.html.

[97] Using SO_REUSEADDR and SO_EXCLUSIVEADDRUSE. Ac-
cessed May 3rd, 2012 http://msdn.microsoft.com/en-us/library/windows/
desktop/ms740621(v=vs.85).aspx.

[98] C. Verbowski, E. Kiciman, A. Kumar, B. Daniels, S. Lu, J. Lee, Y.-M.
Wang, and R. Roussev. Flight data recorder: Monitoring persistent-state
interactions to improve systems management. In OSDI, pages 117–130,
2006.

[99] N. Viennot, S. Nair, and J. Nieh. Transparent mutable replay for
multicore debugging and patch validation. In ASPLOS, pages 127–138,
2013.

[100] Web metrics: Size and number of resources. Accessed May 1st, 2012
https://developers.google.com/speed/articles/web-metrics.

[101] Why android upgrades take so long. Accessed April 26th,
2012 http://mobile.slashdot.org/story/11/12/09/1839223/why-android-
upgrades-take-so-long.

[102] Windows ntpd should secure UDP 123 with
SO_EXCLUSIVEADDRUSE. Accessed April 30th, 2012
https://support.ntp.org/bugs/show_bug.cgi?id=1149.

[103] Winsock programmer’s FAQ articles: The lame list. Accessed April
30th, 2012 http://tangentsoft.net/wskfaq/articles/lame-list.html.

[104] W. Wong. Write-Once, Debug Everywhere, May 2002.
http://electronicdesign.com/article/embedded-software/write-once-
debug-everywhere2255.

[105] ws2_32: getaddrinfo edge cases broken on OS X. Accessed April 30th,
2012 http://bugs.winehq.org/show_bug.cgi?id=29756.

[106] J. Yang, C. Sar, and D. Engler. EXPLODE: A lightweight, general
system for finding serious storage system errors. In OSDI, pages
131–146, Seattle, WA, USA, 2006.

[107] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model
checking to find serious file system errors. ACM Trans. Comput. Syst.,
24(4):393–423, Nov. 2006.

[108] C. Yilmaz, M. B. Cohen, and A. Porter. Covering arrays for efficient
fault characterization in complex configuration spaces. In ISSTA, pages
45–54, 2004.

[109] Y. Zhuang, E. Gessiou, S. Portzer, F. Fund, M. Muhammad, I. Beschast-
nikh, and J. Cappos. NetCheck: Network diagnoses from blackbox
traces. In NSDI, pages 115–128, Apr. 2014.

12

http://code.google.com/p/v8/issues/detail?id=459
http://www.portfoliofaq.com/pfaq/FAQ00352.htm
http://seclists.org/nmap-dev/2010/q2/440
http://seclists.org/nmap-dev/2010/q2/440
http://code.google.com/p/go/issues/detail?id=2307
http://lists.ximian.com/pipermail/mono-bugs/2007-June/058136.html
http://lists.ximian.com/pipermail/mono-bugs/2007-June/058136.html
http://android-developers.blogspot.com/2010/05/on-android-compatibility.html
http://android-developers.blogspot.com/2010/05/on-android-compatibility.html
http://www.openssh.com/txt/release-5.1
http://www.openssh.com/txt/release-5.1
http://openvpn.net/index.php/open-source/documentation/change-log/71-21-change-log.html
http://openvpn.net/index.php/open-source/documentation/change-log/71-21-change-log.html
https://seattle.cs.washington.edu/ticket/426
https://seattle.cs.washington.edu/ticket/426
https://bugzilla.mozilla.org/show_bug.cgi?id=489488
https://bugzilla.mozilla.org/show_bug.cgi?id=489488
https://seattle.cs.washington.edu/
http://twistedmatrix.com/trac/ticket/4195
http://twistedmatrix.com/trac/ticket/4195
http://comments.gmane.org/gmane.os.freebsd.bugs/31006
http://comments.gmane.org/gmane.os.freebsd.bugs/31006
http://www.kernel.org/doc/man-pages/online/pages/man7/socket.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/socket.7.html
http://grokbase.com/t/python/docs/121cvag9n1/issue6774-socket-shutdown-documentation-on-some-platforms-closing-one-half-closes-the-other-half
http://grokbase.com/t/python/docs/121cvag9n1/issue6774-socket-shutdown-documentation-on-some-platforms-closing-one-half-closes-the-other-half
http://grokbase.com/t/python/docs/121cvag9n1/issue6774-socket-shutdown-documentation-on-some-platforms-closing-one-half-closes-the-other-half
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4476378
http://bugs.python.org/issue2550
http://linux.die.net/man/1/strace
http://linux.die.net/man/1/strace
http://java.sun.com/j2ee/verified/
http://java.sun.com/j2ee/verified/
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/6765
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/6765
http://bugs.ruby-lang.org/issues/4390
http://twistedmatrix.com/pipermail/twisted-python/2004-August/008461.html
http://twistedmatrix.com/pipermail/twisted-python/2004-August/008461.html
http://twistedmatrix.com/pipermail/twisted-python/2007-February/014770.html
http://twistedmatrix.com/pipermail/twisted-python/2007-February/014770.html
http://msdn.microsoft.com/en-us/library/windows/desktop/ms740621(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms740621(v=vs.85).aspx
https://developers.google.com/speed/articles/web-metrics
http://mobile.slashdot.org/story/11/12/09/1839223/why-android-upgrades-take-so-long
http://mobile.slashdot.org/story/11/12/09/1839223/why-android-upgrades-take-so-long
https://support.ntp.org/bugs/show_bug.cgi?id=1149
http://tangentsoft.net/wskfaq/articles/lame-list.html
http://electronicdesign.com/article/embedded-software/write-once-debug-everywhere2255
http://electronicdesign.com/article/embedded-software/write-once-debug-everywhere2255
http://bugs.winehq.org/show_bug.cgi?id=29756

	I Introduction
	II Taxonomy of API Method Calls
	III Stateless Deterministic Methods
	III-A Trace Capture
	III-B Detecting Violations

	IV Stateful and Nondeterministic Methods
	IV-A Partial Specification-Based Implementations (PSIs)
	IV-B Initial State
	IV-C Nondeterministic APIs

	V PSI Implementations
	V-A JavaScript
	V-B Repy PSI
	V-C POSIX PSI

	VI Evaluation
	VI-A Detected Cross-Platform Violations
	VI-B Performance

	VII Future Work: Multi-Threaded Applications
	VIII Related Work
	IX Contributions
	X Acknowledgments
	References

