




single points of failure, increases transparency, ensures in-
tegrity and authenticity, and retains efficient verifiability
of the software-release process.

First, CHAINIAC introduces a decentralized release
sign-off model for developers which retains efficient sig-
nature verifiability by using a multi-signature scheme. To
propose a software release, a threshold of the developers
has to sanity-check1 and sign off on it to express their ap-
proval. Third-party witness servers then validate the pro-
posal against a release policy. These witnesses are chosen
by the developers and are trusted collectively but not in-
dividually. If the proposed release is valid, the witnesses
produce a collective signature [69], which is almost as
compact and inexpensive to verify as a conventional digi-
tal signature. Although improving security, this approach
does not place a burden on clients who otherwise would
have to verify multiple signatures per updated package.

Second, CHAINIAC introduces collectively verified
builds to validate source-to-binary correspondence.
CHAINIAC’s verified builds are an improvement over re-
producible builds, in that they ensure that binaries are not
only reproducible in principle, but have indeed been iden-
tically reproduced by multiple independent verifiers from
the corresponding source release. Concretely, this task is
handled by a subset of the witness servers, or build veri-
fiers, that reproducibly build the source code of a release,
compare the result with the binary provided by the devel-
opers, and attest this validation to clients upon success.
An additional advantage of this approach is that compa-
nies, in order to provide the source-to-binary guarantee to
customers, can reveal source code only to third-party build
verifiers who sign appropriate non-disclosure agreements.

Third, CHAINIAC increases transparency and ensures
the accountability of the update process by implement-
ing a public update-timeline that comprises a release log,
freshness proofs, and key records. The timeline is main-
tained collectively by the witness servers such that each
new entry can only be added – and clients will only ac-
cept it – if appropriate thresholds of the witnesses and
build verifiers approve it. This mechanism ensures the
source-to-binary binding to protect clients from compile-
time backdoors or malware, and it guarantees that all users
have a consistent view of the update history, preventing
adversaries from stealthily attacking targeted clients with
compromised updates. Even if an attacker manages to slip
a backdoor into the source code, the corresponding signed
binary stays publicly available for scrutiny, thereby pre-
venting secret deployment against targeted users.

1Precise details of this review process depend on the developers’ en-
gineering disciplines, which are also security-critical but are beyond the
scope of this paper.

Finally, to achieve tamper evidence, consistency, and
search efficiency of the timeline, and to enable a secure
rotation of signing keys, CHAINIAC employs skipchains,
novel authenticated data structures inspired by skip
lists [55, 61] and blockchains [41, 56]. The skipchains
enable clients to efficiently navigate arbitrarily long up-
date timelines, both forward (e.g., to validate a new soft-
ware release) and backward (e.g., to downgrade or ver-
ify the validity of older package-dependencies needed for
compatibility). Back-pointers in skipchains are crypto-
graphic hashes, whereas forward-pointers are collective
signatures. Due to skipchains, even resource-constrained
clients (e.g., IoT devices) can obtain and efficiently val-
idate binary updates, using a hard-coded initial software
version as a trust anchor. Such clients do not need to con-
tinuously track a release chain, like a Bitcoin full-node
does, but can privately exchange, gossip, and indepen-
dently validate on-demand newer or older blocks due to
the skipchain’s forward and backward links being offline-
verifiable. Although blockchains are well-known tools, to
our knowledge the skipchain structure is novel and can be
useful in other contexts, besides software updates.

The evaluation of our prototype implementation of
CHAINIAC on reproducible Debian packages shows that,
in a group of more than a hundred verifiers, the end-
to-end cost per witness of release attestation is on av-
erage five minutes per package, with the verified builds
dominating this overhead. Furthermore, skipchains can
increase the security of PyPI updates with minimal over-
head, whereas a strawman approach would incur the in-
crease of 500%. Finally, creating a skipblock of the ag-
gregate update timeline for the full Debian repository of
about 52,000 packages requires only 20 seconds of CPU
time for a witness server, whereas receiving the latest
skipblock on a client introduces only 16% of overhead to
the usual communication cost of the APT manager [23].

In summary, our main contributions are as follows:
• We propose CHAINIAC (Sections 3 and 5), a software-

update framework that enhances security and trans-
parency of the update process via system-wide decen-
tralization and efficiently verifiable logging.

• We introduce skipchains (Section 4), a novel authenti-
cated data structure that enables secure trust delegation
and efficient bi-directional timeline traversal, and we
discuss their application in the context of CHAINIAC.

• We conduct an informal security analysis (Section 6) of
CHAINIAC, justifying its resilience in common attack
scenarios.

• We implement CHAINIAC (Section 7) and evalu-
ate (Section 8) a prototype on real-world data from the
Debian and PyPI package repositories.
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2 Background
In this section, we give an overview of the concepts and
notions CHAINIAC builds on, this includes scalable col-
lective signing, reproducible builds, software-update sys-
tems, blockchains, and decentralized consensus.

2.1 Collective Signing and Timestamping
CoSi [69] is a protocol for large-scale collective signing.
Aggregation techniques and communication trees [25,73]
enable CoSi to efficiently produce compact Schnorr multi-
signatures [64] and to scale to thousands of participants.
A complete group of signers, or witnesses, is called a col-
lective authority or cothority. CoSi assumes that signa-
ture verifiers know the public keys of the witnesses, all of
which are combined to form an aggregate public key of
the cothority. If witnesses are offline during the collective
signing process or refuse to sign a statement, the resulting
signature includes metadata that documents the event.

In CHAINIAC, we rely on CoSi for efficient collective
signing among a large number of witnesses. Furthermore,
we use the witness-cosigned timestamp service [69] as a
building block in our design for the protection of clients
against replay and freeze attacks [15] (where clients are
blocked from learning about the availability of new soft-
ware updates by an adversary). We describe the design of
the protection mechanism in Section 5.6.

2.2 Reproducible Builds
Ensuring that source code verifiably compiles to a cer-
tain binary is difficult in practice, as there are often non-
deterministic properties in the build environment [49,59],
which can influence the compilation process. This is-
sue poses a variety of attack vectors for backdoor inser-
tion and false security-claims [36]. Reproducible builds
are software development techniques that enable users
to compile deterministically a given source code into
one same binary, independent of factors such as system
time or build machines. An ongoing collaboration of
projects [62] is dedicated to improving these techniques,
e.g., Debian claims that 90% of its packages in the testing
suite are reproducible [22], amounting to ∼21,000 pack-
ages. To provide a source-to-binary attestation as one of
the guarantees, CHAINIAC relies on software projects to
adopt the practices of reproducible builds.

2.3 Roles in Software-Update Systems
The separation of roles and responsibilities is one of the
key concepts in security systems. TUF [63] and its succes-
sor, Diplomat [44], are software-update frameworks that
make update systems more resilient to key compromise
by exploiting this concept. In comparison to classic sys-

tems, these frameworks categorize the tasks that are com-
monly involved in software-update processes and specify
a responsible role for every category. Each of these roles is
then assigned a specific set of capabilities and receives its
own set of signing keys, which enables TUF and Diplomat
to realize different trade-offs between security and usabil-
ity. For example, frequently used keys with low-security
risks are kept online, whereas rarely needed keys with a
high-security risk are kept offline, making it harder for
attackers to subvert them. To achieve, for each role, the
sweet-spot between security and usability, we follow a
similar delegation model in our multi-layered architecture
in Section 5.6. However, we decentralize all these roles,
use a larger number of keys, and log their usage and evo-
lution to further enhance security and add transparency.

2.4 Blockchains and Consensus
Introduced by Nakamoto [56], blockchains are a form of
a distributed append-only log that is used in cryptocur-
rencies [56, 75] as well as in other domains [41, 74].
Blockchains are composed of blocks, each typically con-
taining a timestamp, a nonce, a hash of the previous
block, and application-specific data such as cryptocur-
rency transactions. As each block includes a hash of the
prior block, it depends on the entire prior history, thus
forming a tamper-evident log.

CHAINIAC uses BFT-CoSi, introduced in Byz-
Coin [42], as a consensus algorithm to ensure a single
consistent timeline, e.g., while rotating signing keys.
BFT-CoSi implements PBFT [16] by using collective
signing [69] with two CoSi-rounds to realize PBFT’s
prepare and commit phases. CHAINIAC’s skipchain
structure is partly inspired by blockchains [41]: Whereas
ByzCoin also uses collective signatures to enable light-
client verification, skipchains extend this functionality
with skiplinks to enable clients to efficiently track and
validate update timelines, instead of downloading and
validating every signature. As a result skipchains can be
used for more efficient offline verification of transactions
in distributed ledger systems that work with consensus
committees [2, 42, 43].

3 System Overview
In this section, we state high-level security goals that
a hardened software-update system should achieve, we in-
troduce a system and threat model, and we present an ar-
chitectural overview of our proposed framework.

3.1 Security Goals
To address the challenges listed in Section 1, we formulate
the following security goals for CHAINIAC:
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Figure 1: Architectural overview of CHAINIAC

1. No single point of failure: The software-update sys-
tem should retain its security guarantees in case any sin-
gle one of its components fails (or gets compromised),
whether it is a device or a human.

2. Source-to-binary affirmation: The software-update
system should provide a high assurance-level to its
clients that the deployed binaries have been built from
trustworthy and untampered source code.

3. Efficient release-search and verifiability: The
software-update system should provide means to its
clients to find software release (the latest or older ones)
and verify its validity in an efficient manner.

4. Linear immutable public release history: The
software-update system should provide a globally con-
sistent tamper-evident public log where each software
release corresponds to a unique log entry that, once cre-
ated, cannot be modified or deleted.

5. Evolution of signing keys: The software-update sys-
tem should enable the rotation of authoritative keys,
even when a (non-majority) subset of the keys is com-
promised.

6. Timeliness of updates: Clients should be able to ver-
ify that the software indeed corresponds to the latest
one available.

3.2 System and Threat Model
In the system model, we introduce terminology and ba-
sic assumptions; and, in the threat model, potential attack
scenarios against CHAINIAC.

System model. Developers write the source code of a
software project and are responsible for approving and
announcing new project releases. Each release includes
source code, binaries (potentially, for multiple target ar-
chitectures), and metadata such as release description.
A snapshot refers to a set of releases of different software
projects at a certain point in time. Projects can have sin-
gle or multiple packages. Witnesses are servers that can
validate and attest statements. They are chosen by the
developers and should be operated ideally by both de-

velopers and independent trusted third parties. Witnesses
are trusted as a group but not individually. Build veri-
fiers are a subset of the witnesses who execute, in addi-
tion to their regular witness tasks, reproducible building
of new software releases and compare them to the release
binaries. Witnesses and build verifiers jointly form an up-
date cothority (collective authority). The update timeline
refers to a public log that keeps track of the authorita-
tive signing keys, as well as the software releases. Users
are clients of the system; they receive software releases
through an (untrusted) software-update center.

Threat model. We assume that a threshold td of nd de-
velopers are honest, meaning that less than td are com-
promised and want to tamper with the update process. We
further assume that a threshold tw of nw witness servers is
required for signing, whereas at most fw = nw − tw wit-
nesses can potentially be faulty or compromised. To en-
sure consistency and resistance to fork attacks, CHAINIAC
requires nw ≥ 3fw + 1, hence, tw >= 2fw + 1. If this
property is violated, CHAINIAC does not guarantee sin-
gle history of the update timeline, however, even then,
each history will individually be valid and satisfy the other
correctness and validation properties, provided fewer than
tw witnesses are compromised. Furthermore, a threshold
tv of nv build verifiers is honest and uses a trustworthy
compiler [71] such that malicious and legitimate versions
of a given source-code release are compiled into differ-
ent binaries. Software-update centers and mirrors might
be partially or fully compromised. Moreover, a powerful
(e.g., state-level) adversary might try to target a specific
group of users by coercing developers or an update center
to present to his targets a malicious version of a release.
Finally, we assume that users of CHAINIAC are able to se-
curely bootstrap, i.e., receive the first version of a software
package with a hard-coded initial public key of the system
via some secure means, e.g., pre-installed on a hard drive,
on a read-only media, or via a secure connection.
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An attack on the system is successful if an attacker
manages to accomplish at least one of the following:
• Make developers sign the source code that they do not

approve.
• Substitute a release binary with its tampered version

such that the update cothority signs it.
• Trick the update cothority into signing a release that is

not approved by the developers.
• Create a valid fork of the public release history or mod-

ify/revoke its entries; or present different users with dif-
ferent views of the history.

• Trick an outdated client into accepting a bogus public
key as a new signing key of the update cothority.

• Get a client to load and run a release binary that is not
approved by the developers or validated by the update
cothority.

3.3 Architecture Overview
An illustration of CHAINIAC, showing how its various
components interact with each other, is given in Figure 1.
To introduce CHAINIAC, we begin with a simple straw-
man design that most of today’s software-update systems
use, and we present a roadmap for evolving this design
into our target layout. Initially, we assume that only a
single, static, uncompromisable cryptographic key pair
is used to sign/verify software releases. The private key
might be shared among a group of developers, and the
public key is installed on client devices, e.g., during a
bootstrap. To distribute software, one of the developers
builds the source code and pushes the binary to a trusted
software-update center from where users can download
and install it. This strawman system guarantees that users
receive authenticated releases with a minimal verification
overhead.

This design, though common, is rife with precarious as-
sumptions. Expecting the signing key to be uncompro-
misable is unrealistic, especially if shared among mul-
tiple parties, as attackers need to subvert only a single
developer’s machine to retrieve the secret key or to co-
erce only one of the key owners. For similar reasons, it is
utopian to assume that the software-update center is trust-
worthy. Moreover, without special measures, it is hard to
verify that the binaries were built from the given (un-
modified) source code, as the compilation process is of-
ten influenced by variations in the building-environment,
hence non-deterministic. If an attacker manages to replace
a compiled binary with its backdoored version, before it
is signed, the developers might not detect the substitution
and unknowingly sign the subverted software.

Eliminating these assumptions creates the need to track
a potentially large number of dynamically changing sign-
ing keys; furthermore, checking a multitude of signatures

would incur large overheads to end users who rarely up-
date their software. To address these restrictions, we trans-
form the strawman design into CHAINIAC in six steps:

1. To protect against a single compromised developer,
CHAINIAC requires that developers have individual
signing keys and that a threshold of the developers sign
each release, see step 1⃝ in Figure 1.

2. To be able to distribute verified binaries to end users,
we introduce developer-signed reproducible builds. Al-
though users still need to verify multiple signatures,
they no longer need to build the source code.

3. To further unburden users and developers, we use a
cothority to validate software releases (check developer
signatures and reproducible binaries) and collectively
sign them, once validated: steps 2⃝ and 3⃝ in Figure 1.

4. To protect against release-history tampering or stealthy
developer-equivocation, we adopt a public log for soft-
ware releases in the form of collectively signed decen-
tralized hash chains, see step 4⃝ in Figure 1.

5. To enable efficient key rotation, we replace hash
chains with skipchains, blockchain-like data structures
that enable forward linking and decrease verification
overhead by multi-hop links.

6. To ensure update timeliness and further harden the sys-
tem against key compromise, we introduce a multi-
layer skipchain-based architecture that, in particular,
implements a decentralized timestamp role.

Before presenting CHAINIAC in detail in Section 5, we
introduce skipchains, one of CHAINIAC’s core building
blocks, in Section 4.

4 Skipchains

Skipchains are authenticated data structures that com-
bine ideas from blockchains [41] and skiplists [55, 61].
Skipchains enable clients (1) to securely traverse the time-
line in both forward and backward directions and (2) to
efficiently traverse short or long distances by employing
multi-hop links. Backward links are cryptographic hashes
of past blocks, as in regular blockchains. Forward links
are cryptographic signatures of future blocks, which are
added retroactively when the target block appears.

We distinguish randomized and deterministic
skipchains, which differ in the way the lengths of
multi-hop links are determined. The link length is tied to
the height parameter of a block that is computed during
block creation, either randomly in randomized skipchains
or via a fixed formula in deterministic skipchains. In both
approaches, skipchains enable logarithmic-cost timeline
traversal, both forward and backward.
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4.1 Design
We denote a skipchain by Sh

b where h ≥ 1 and b > 0 are
called skipheight and skipbasis, respectively. If 0 < b < 1
we call the skipchain randomized; and if b ≥ 1 (b integer),
we call it deterministic. The elements of a skipchain are
skipblocks Bt = (idt, ht, Dt, Bt, Ft) where t ≥ 0 is the
block index. The variables idt, ht, Dt, Bt, and Ft denote
block identifier, block height, payload data, list of back-
ward links, and list of forward links, respectively. Both Bt

and Ft can store exactly ht links and a reference at index
0 ≤ i ≤ ht−1 in Bt (Ft) points to the last (next) block in
the timeline having at least height i+1. For deterministic
skipchains this block is Bt−j (Bt+j) where j = bi.

The concrete value of ht is determined by the depen-
dency of the skipchain’s type: if Sh

b is randomized, then
a coin, with probability b to land on heads, is repeatedly
flipped. Once it lands on tails, we set ht = min{m,h}
where m denotes the number of times it landed on heads
up to this point. If Sh

b is deterministic, we set

ht = max{i : 0 ≤ i ≤ h ∧ 0 ≡ t mod bi−1} .

Fig. 2 illustrates a simple deterministic skipchain.
During the creation of a block, its identifier is set to the

(cryptographic) hash of Dt and Bt, both known at this
point, i.e., idt = H(Dt, Bt). For a backward link from Bt

to Bt−j , we simply store idt−j at index i in Bt. This works
as in regular blockchains but with the difference that links
can point to blocks further back in the timeline.

Forward links [41], are added retroactively to blocks
in the log, as future blocks do not yet exist at the time
of block creation. Furthermore, forward links cannot be
cryptographic hashes, as this would result in a circular de-
pendency between the forward link of the current and the
backward link of the next block. For these reasons, for-
ward links are created as digital (multi-)signatures. For a
forward link from Bt to Bt+j , we store the cryptographic
signature ⟨idt+j⟩Et at index i in Ft where Et denotes the

entity (possibly a decentralized collective such as a BFT-
CoSi cothority [41, 42, 69]) that represents the head of
trust of the system during time step t. To create the re-
quired signatures for the forward links until all slots in Ft

are full, in particular, Et must “stay alive” and watch the
head of the skipchain. Once this is achieved, the job of Et

is done and it ceases to exist.

4.2 Useful Properties and Applications
Skipchains provide a framework for timeline tracking,
which can be useful in other domains such as cryptocur-
rencies [42, 43, 56], key-management [41, 51], certificate
tracking [1,45] or, in general, for membership evolution in
decentralized systems [68,69]. Beyond the standard prop-
erties of blockchains, skipchains offer the following two
useful features.

First, skipchains enable clients to securely and effi-
ciently traverse arbitrarily long timelines, both forward
and backward from any reference point. If the client has
the correct hash of an existing block and wants to obtain
a future or past block in the timeline from an untrusted
source (such as a software-update server or a nearby peer),
to cryptographically validate the target block (and all links
leading to it), the client needs to download only a logarith-
mic number of additional, intermediate blocks.

Secondly, suppose two resource-constrained clients
have two reference points on a skipchain, but have no
access to a database containing the full skipchain, e.g.,
clients exchanging peer-to-peer software updates while
disconnected from any central update server. Provided
these clients have cached a logarithmic number of ad-
ditional blocks with their respective reference points –
specifically the reference points’ next and prior blocks at
each level – then the two clients have all the information
they need to cryptographically validate each others’ ref-
erence points. For software updates, forward validation is
important when an out-of-date client obtains a newer up-
date from a peer. Reverse validation (via hashes) is useful
for secure version rollback, or in other applications, such
as efficiently verifying a historical payment on a skipchain
for a cryptocurrency.

5 Design of CHAINIAC
In this section, we present CHAINIAC, a framework en-
hancing security and transparency of software updates.
For clarity of exposition, we describe CHAINIAC step-by-
step starting from a strawman update-system that uses one
key to sign release binaries, as introduced in Section 3. We
begin by introducing a decentralized validation of both
source code and corresponding binaries, while alleviat-
ing the developer and client overhead. We then improve
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transparency and address the evolution of update config-
urations by using skipchains. Finally, we reduce traver-
sal overheads with multi-level skipchains and demonstrate
how to adapt CHAINIAC to multi-package projects.

5.1 Decentralized Release-Approval
The first step towards CHAINIAC involves enlarging
the trust base that approves software releases. Instead of
using a single (shared) key to sign updates, each software
developer signs using their individual keys. At the begin-
ning of a project, the developers collect all their public
keys in a policy file, together with a threshold value that
specifies the minimal number of valid developer signa-
tures required to make a release valid. Complying with
our threat model, we assume that this policy file, as a trust
anchor, is obtained securely by users at the initial acquisi-
tion of the software, e.g., it can reside on a project’s web-
site as often is the case with a single signing key in the
current software model.

Upon the announcement of a software release, which
can be done by a subset or all developers depending on
the project structure, all the developers check the source
code and, if they approve, they sign the hash of it with
their individual keys, e.g., using PGP [14], and they add
the signatures to an append-only list. Signing source code,
instead of binaries, ensures that developers can realisti-
cally verify (human-readable) code.

The combination of the source code and the signature
list is then pushed to the software-update center from
where a user can download it. For simplicity, we first as-
sume that the update center is trusted, later relaxing this
assumption. When a user receives an update, she verifies
that a threshold of the developers’ signatures is valid, as
specified in the policy file already stored on user’s ma-
chine. If so, the user builds the binary from the obtained
source code and installs it. An attacker trying to forge a
valid software-release needs to control the threshold of the
developers’ keys, which is presumably harder than gain-
ing control over any single signing key.

5.2 Build Transparency via Developers
The security benefits of developers signing source-code
releases come at the cost of requiring users to build the
binaries. This cost is a significant usability disadvantage,
as users usually expect to receive fully functional binaries
directly from the software center. Therefore in our second
step towards CHAINIAC, we transfer the responsibility of
building binaries from users to developers.

When a new software release is announced, it includes
not only the source code but also a corresponding binary
(or a set of binaries for multiple platforms) that users will
obtain via an update center. Each developer now first vali-

dates the source code, then compiles it using reproducible
build techniques [49, 59]. If the result matches the an-
nounced binary, he signs the software release. Assuming
a threshold of developers is not compromised, this pro-
cess ensures that the release binary has been checked by
a number of independent verifiers. Upon receiving the up-
date, a user verifies that a threshold of signatures is valid;
if so, she can directly install the binary without needing to
build it herself.

5.3 Release-Validation via Cothority
Although decentralized developer approval and repro-
ducible builds improve software-update security, running
reproducible builds for each binary places a high bur-
den on developers (e.g., building the Tor Browser Bun-
dle takes 32 hours on an average modern laptop [60]).
The load becomes even worse for developers involved
in multiple software projects. Moreover, verifying many
developer-signatures in large software projects can be a
burden for client devices, especially when upgrading mul-
tiple packages. It would naturally be more convenient for
an intermediary to take the developers’ commitments, run
the reproducible builds and produce a result that is eas-
ily verifiable by clients. Using a trusted third party is,
however, contrary to CHAINIAC’s goal of decentraliza-
tion. Hence to maintain decentralization, we implement
the intermediary as a collective authority or cothority.

To announce a new software release, the package devel-
opers combine the hashes of the associated source-code
and binaries in a Merkle tree [52]. Each developer checks
the source code and signs the root hash (of this tree), that
summarizes all data associated with the release. The de-
velopers then send the release data and the list of their
individual signatures to the cothority that validates and
collectively signs the release. Clients can download and
validate the release’s source and/or any associated binary
by verifying only a single collective signature and Merkle
inclusion proofs for the components of interest.

To validate a release, each cothority server checks
the developer signatures against the public keys and
the threshold defined in the policy file. Remembering
the policy for each software project is a challenge for
the cothority that is supposed to be stateless. For now,
we assume that each cothority member stores a project-
to-policy list for all the projects it serves for. We relax
this assumption in Section 5.5. The build verifiers then
compile the source code and compare the result against
the binaries of the release. The latter verification enables
the transition from reproducible builds to verified builds: a
deployment improvement over reproducible builds, which
we introduce. The verified builds enable clients to obtain
the guarantee of source-to-binary correspondence without
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the need to accomplish the resource-consuming building
work, due to the broad independent validation.

5.4 Anti-equivocation Measures
Many software projects are maintained by a small group
of (often under-funded or volunteer) developers. Hence,
it is not unreasonable to assume that a powerful (state-
level) attacker could coerce a threshold of group members
to create a secret backdoored release used for targeted
attacks. In our next step towards CHAINIAC, we tackle
the problem of such stealthy developer-equivocation, as
well as the threat of an (untrusted) software-update center
that accidentally or intentionally forgets parts of the soft-
ware release history.

We introduce cothority-controlled hash chains that cre-
ate a public history of the releases for each software
project. When a new release is announced, the develop-
ers include and sign the summary (Merkle Root) of the
software’s last version. The cothority then checks the de-
velopers’ signatures, the collective signature on the parent
hash-block, and that there is no fork in the hash-chain (i.e.,
that the parent hash-block is the last one publicly logged
and that there is no other hash-block with the same par-
ent). If everything is valid, it builds the summary for the
current release, then runs BFT-CoSi [42] to create a new
collective signature. Because the hash chain is cothority
controlled, we can distribute the witnessing of its consis-
tency across a larger group: for example, not just across a
few servers chosen by the developers of a particular pack-
age, but rather across all the servers chosen by numerous
developers who contribute to a large software distribution,
such as Debian. Even if an attacker controls a threshold
of developer keys for a package and creates a seemingly
valid release, the only way to convince any client to ac-
cept this malicious update is to submit it to the cothority
for approval and public logging. As a result, it is not pos-
sible for the group to sign the compromised release and
keep it “off the public record”.

This approach prevents attackers from secretly creating
malicious updates targeted at specific users without be-
ing detected. It also prevents software-update centers from
"forgetting" old software releases, as everything is stored
in a decentralized hash chain. CHAINIAC’s transparency
provisions not only protect users from compromised de-
velopers, but can also protect developers from attempts of
coercion, as real-world attackers prefer secrecy and would
be less likely to attack if they perceive a strong risk of the
attack being publicly revealed.

5.5 Evolution of Authoritative Keys
So far, we have assumed that developer and cothority keys
are static, hence clients who verify (individual or collec-

tive) signatures need not rely on centralized intermedi-
aries such as CAs to retrieve those public keys. This as-
sumption is unrealistic, however, as it makes a compro-
mise of a key only a matter of time. Collective signing
exacerbates this problem, because for both maximum in-
dependence and administrative manageability, witnesses’
keys might need to rotate on different schedules. To lift
this assumption without relying on centralized CAs, we
construct a decentralized mechanism for a trust delegation
that enables the evolution of the keys. As a result, devel-
opers and cothorities can change, when necessary, their
signing keys and create a moving target for an attacker,
and the cothority becomes more robust to churn.

To implement this trust delegation mechanism, we em-
ploy skipchains presented in Section 4. For the cothor-
ity keys, each cothority configuration becomes a block in
a skipchain. When a new cothority configuration needs to
be introduced, the current cothority witnesses run BFT on
it. If completed successfully, they add the configuration to
the skipchain, along with the produced signature as a for-
ward link. For the developer keys, the trust is rooted in the
policy file. To enable a rotation of developer keys, a pol-
icy file needs to be a part of the Merkle tree of the release,
hence examined by the developers. Thus, the consistency
of key evolution becomes protected by the hash chain. To
update their keys, the developers first specify a new pol-
icy file that includes an updated set of keys, then, as usual
during a new release, they sign it with a threshold of their
current keys, thus delegating trust from the old to the new
policy. Once the cothority has appended the new release
to the chain, the new keys become active and supersede
their older counterparts. Anyone following the chain can
be certain that a threshold of the developers has approved
the new set of keys. With this approach, developers can
rotate their keys regularly and, if needed, securely revoke
a sub-threshold number of compromised keys.

5.6 Role Separation and Timeliness
In addition to verifying and authenticating updates,
a software-update system must ensure update timeliness,
so that a client cannot unknowingly become a victim of
freeze or replay attacks (see Section 2.1). To retain decen-
tralization in CHAINIAC, we rely on the update cothor-
ity to provide a timestamp service. Using one set of keys
for signing new releases and for timestamping introduces
tradeoffs between security and usability, as online keys
are easier compromisable than offline keys, whereas the
latter cannot be used frequently. To address the described
challenges, we introduce a multi-layer skipchain-based ar-
chitecture with different trust roles, each having different
responsibilities and rights. We distinguish the four roles
ROOT, CONFIG, RELEASE, and TIME. The first three are
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Figure 3: Trust delegation in CHAINIAC

based on skipchains and interconnected with each other
through upward and downward links represented as cryp-
tographic hashes and signatures, respectively. Figure 3
shows an overview of this multi-layer architecture.

The ROOT role represents CHAINIAC’s root of trust;
its signing keys are the most security-critical. These keys
are kept offline, possibly as secrets shared among a set of
developer-administrators. They are used to delegate trust
to the update cothority and revoke it in case of misbehav-
ior. The ROOT skipchain changes slowly (e.g., once per
year), and old keys are deleted immediately. As a result,
the ROOT skipchain has a height of one, with only single-
step forward and backward links.

The CONFIG role represents the online keys of the up-
date cothority and models CHAINIAC’s control plane.
These keys are kept online for access to them quicker than
to the ROOT keys. Their purpose is to attest to the validity
of new release-blocks. The CONFIG skipchain can have
higher-level skips, as it can be updated more frequently.
If a threshold of CONFIG keys is compromised, the ROOT
role signs a new set of CONFIG keys, enabling secure re-
covery. This is equivalent to a downward link from the
ROOT skipchain to the CONFIG skipchain.

The RELEASE role wraps the functionality of the re-
lease log, as specified previously, and adds upward links
to ROOT and CONFIG skipchains, enabling clients to effi-
ciently look up the latest trusted ROOT and CONFIG con-
figurations required for verifying software releases.

Finally, the TIME role provides a timestamp service that
informs clients of the latest version of a package, within
a coarse-grained time interval. Every TIME block contains
a wall-clock timestamp and a hash of the latest release.
The CONFIG leader creates this block when a new RE-
LEASE skipblock is co-signed, or every hour if nothing
happens. Before signing it off, the rest of the indepen-
dent servers check that the hash inside the timestamp is
correct and that the time indicated is sufficiently close to
their clocks (e.g., within five minutes). From an absence
of fresh TIME updates and provided that clients has an

approximately accurate notion of the current time2, the
clients can then detect freeze attacks.

5.7 Multiple-Package Projects
To keep track of software packages, users often rely on
large software projects, such as Debian or Ubuntu, and
their community repositories. Each of these packages can
be maintained by a separate group of developers, hence
can deploy its own release log. To stay updated with
new releases of installed packages, a user would have
to frequently contact all the respective release logs and
follow their configuration skipchains. This is not only
bandwidth- and time-consuming for the user but also re-
quires the maintainers of each package to run a fresh-
ness service. To alleviate this burden, we further enhance
CHAINIAC to support multi-package projects.

Figure 4: Constructing an aggregate layer in CHAINIAC

We introduce an aggregate layer into CHAINIAC: this
layer is responsible for collecting, validating and pro-
viding to clients information about all the packages in-
cluded in the project. A project-level update cothority im-
plements a project log where each entry is a snapshot of
a project state (Figure 4). To publish a new snapshot,
the cothority retrieves the latest data from the individual
package skipchains, including freshness proofs and signa-
tures on the heads. The witnesses then verify the correct-
ness and freshness of all packages in this snapshot against
the corresponding per-package logs. Finally, the cothority
forms a Merkle tree that summarizes all package versions
in the snapshot, then collectively signs it.

This architecture facilitates the gradual upgrade of large
open-source projects, as packages that do not yet have
their own skipchains can still be included in the aggregate
layer as hash values of the latest release files. The project-
level cothority runs an aggregate timestamp service, en-
suring that clients are provided with the latest status of all
individual packages and a consistent repository state. A

2 Protecting the client’s notion of time is an important but orthogonal
problem [50], solvable using a timestamping service with collectively-
signed proofs-of-freshness, as in CoSi [69, Section V.A.].
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client can request the latest signed project-snapshot from
the update cothority and check outdated packages on her
system using Merkle proofs. If there are such packages,
the client accesses their individual release logs, knowing
the hash values of the latest blocks.

A multi-package project can potentially have several
aggregate layers, each representing a certain distribution ,
e.g., based on the development phase of packages, as sta-
ble, testing, and unstable in Debian. Individual packages
would still maintain a single-view linear skipchain-log but
the project developers would additionally tag each release
with its distribution affiliation. For example, the stable
distribution would then notify clients only when corre-
spondingly tagged releases appear, and would point to the
precise block in the package skipchain by providing its
hash value, whereas the developers might move ahead and
publish experimental versions of the package to its release
log. The timeliness is then ensured by maintaining a sep-
arate timestamp service for each distribution.

6 Security Analysis
In this section, we informally analyze the security of
CHAINIAC against the threat model defined in Section 3.2.
We thereby assume that an adversary is computationally
bound and unable to compromise the employed cryptosys-
tems (e.g., create hash collisions or forge signatures), ex-
cept with negligible probability.

Developers. The first point of attack in CHAINIAC
is the software-release proposal created by developers.
An attacker might try to sneak a vulnerability into
the source code, compromise the developers’ signing
keys, or intercept a release proposal that the developers
send to the update cothority, and replace it with a back-
doored version. If developers carefully review source-
code changes and releases, and fewer than the threshold
td of developers or their keys are compromised, the at-
tacker alone cannot forge a release proposal that the up-
date cothority would accept.3 As developer-signed re-
lease proposals are cryptographically bound to particular
sources and binaries, the update cothority will similarly
refuse to sign a release proposal whose sources differ from
the signed versions, or whose binaries differ from those
reproduced by the build verifiers. If a sub-threshold num-
ber of developer keys are compromised without detection,

3Of course there is no guarantee that even honest, competent devel-
opers will detect all bugs, let alone sophisticated backdoors masquerad-
ing as bugs. CHAINIAC’s transparency provisions ensure that even com-
promised releases are logged and open to scrutiny, and the freshness
mechanisms ensure that a compromised release does not remain usable
in rollback or freeze attacks after being fixed and superseded.

a regular signing key rotation (Section 5.5) can eventually
re-establish full security of the developer keys.

Update cothority. The next point an adversary might
attack is the update-cothority’s witness servers. The wit-
nesses and build verifiers should be chosen carefully by
the software project or repository maintainers, should re-
side in different physical locations, and be controlled by
trustworthy, independent parties. For a successful attack,
the adversary must compromise at least tw witnesses to
violate the correctness or transparency of the release time-
line, and must compromise tv build verifiers to break the
source-to-binary release correspondence. As with devel-
oper keys, the regular rotation of cothority keys further
impedes a gradual compromise.

If a threshold of online cothority keys are compro-
mised, then, once this compromise is detected, the de-
velopers can use the offline ROOT keys to establish
a new cothority configuration (see Section 5.6). Non-
compromised clients (e.g., those that did not update crit-
ical software during the period of compromise) can then
“roll forward” securely to the new configuration. An un-
avoidable limitation of this (or any) recovery mechanism
using offline keys, however, is an inability to ensure time-
liness of configuration changes. Old clients, whose net-
work connectivity is attacker controlled, could be denied
the knowledge of the new configuration, hence remain
reliant on the old, compromised cothority configuration.
“Fixing” this weakness would require bringing the offline
ROOT keys online, defeating their purpose.

Update timeline. An attacker might attempt to tam-
per with the skipchain-based update timeline containing
the authoritative signing keys and the software releases,
e.g., by attempting to fork either of the logs, to modify en-
tries, or to present different views to users. The skipchain
structure relies on the security of the underlying hash and
digital signature schemes. Backward links are hashes en-
suring the immutability of the past with respect to any
valid release. An attacker can propose a release record
with incorrect back-links, but cannot produce a valid col-
lective signature on such a record without compromising a
threshold of witnesses, as honest witnesses verify the con-
sistency of new records against their view of history be-
fore cosigning. An attacker can attempt to create two dis-
tinct successors to the same prior release (a fork), but any
honest witness will cosign at most one of these branches.
If the cothority is configured with a two-thirds superma-
jority witness-threshold (tw ≥ 2nw + 1), forks are pre-
vented by the BFT-CoSi consensus mechanism.

Forward links are signatures that can be created only
once the (future) target blocks have been appended to
the skipchain. This requires that witnesses store the sign-
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ing keys associated with a given block, until all forward
links from that block onwards are generated. This longer
key-storage, gives the attacker more time to compromise
a threshold of keys. To mitigate this threat, we impose
an expiration date on signing keys (e.g., one year), after
which honest witnesses delete outdated keys uncondition-
ally, thereby imposing an effective distance limit on for-
ward links. Note that the key expiration-time should be
sufficiently long so that the direct forward links are al-
ways created to ensure secure trust delegation.

In summary, to manipulate the update timeline man-
aged by the update cothority, an attacker needs to com-
promise at least a threshold of tw witness servers. Note
that one purpose of the update timeline in CHAINIAC is to
ensure accountability so that even if the attacker manages
to slip a backdoor into a release, the corresponding source
code stays irrevocably available, enabling public scrutiny.

Update center. An adversary might also compromise
the software-update center to disseminate malicious bi-
naries, to mount freeze attacks that prevent clients from
updating, or to replay old packages with known security
vulnerabilities and force clients to downgrade.

Clients can detect that they have received a tampered
binary by verifying the associated signature using the pub-
lic key of the update cothority; the key can be retrieved se-
curely through CHAINIAC’s update timeline. The clients
will also never downgrade, as they only install packages
that are cryptographically linked to the currently installed
version through the release skipchain. Finally, assuming
the clients have a correct internal clock, they can detect
freeze and replay attacks by verifying timestamps and
package signatures, because an attacker cannot forge col-
lective signatures of the update cothority to create valid-
looking TIME blocks (see Section 5.6).

7 Prototype Implementation
We implemented CHAINIAC in Go [31] and made it pub-
licly available4, along with the instructions on how to re-
produce the evaluation experiments. We built on exist-
ing open-source code implementing CoSi [69] and BFT-
CoSi [42]. The new code implementing the CHAINIAC
prototype was about 1.8kLOC, whereas skipchains, net-
work communication, and BFT-CoSi were 1.2k, 1.5k, and
1.8k lines of code (LOC), respectively. Although the im-
plementation is not yet production quality, it is practical
and usable for experimental purposes.

We rely on Git for source-code control and use Git-
notes [30], tweaked with server hooks to be append-only,
for collecting developer approvals in the form of PGP

4https://github.com/dedis/paper_chainiac

signatures. For the build verifiers, we use Python to ex-
tract the information about the building environment of
the packages, and Docker [26] to reproduce it.

8 Experimental Evaluation
In this section, we experimentally evaluate our CHAINIAC
prototype. The main question we answer is whether
CHAINIAC is usable in practice without incurring large
overheads. We begin by measuring the cost of repro-
ducible builds using Debian packages as an example, and
we continue with the cost of witnesses who maintain an
update-timeline skipchain and the overhead of securing
multi-package projects.

8.1 Experimental Methodology
In the experiments of Sections 8.2, 8.3 and 8.4, we used
24-core Intel Xeons at 2.5 GHz with 256 GB of RAM and,
where applicable, ran up to 128 nodes on one server with
the network-delay set between any two nodes to 100ms
with the help of Mininet [54]. Because we had not yet
implemented a graceful handling of failing docker-builds,
we measured building time in a small grid of 4 nodes and
extrapolated this time to the bigger grids in Figure 6. In
Section 8.5, we simulated four collectively signing servers
on a computer with a 3.1 GHz Intel Core i7 processor and
16 GB of RAM and did not include any network-latencies,
as we measured only CPU-time and bandwidth.

To evaluate the witness cost of the long-term mainte-
nance of an update timeline, we used data from the De-
bian reproducible builds project [22] and the Debian snap-
shot archive [19]. The former provides checksums and de-
pendency information for reproducible packages. Unfor-
tunately, the information was not available for older pack-
age versions, therefore we always verified each package
against its newest version. We used the latter as an update
history to estimate average cost over time for maintaining
an individual update timeline and the overhead of running
an aggregate multi-package service. In Section 8.4, we
used real-life data from the PyPI package repository [17].
The data represented snapshots of the repository of about
58,000 packages. There were 11,000 snapshots over a pe-
riod of 30 days. Additionally, we had 1.5 million update-
requests from 400,000 clients during the same 30-day pe-
riod. Using this data, we implemented a simulation in
Ruby to compare different bandwidth usages.

8.2 Reproducing Debian Packages
To explore the feasibility of build transparency and to es-
timate the cost of it for witnesses, we ran an experiment
on automatic build reproducing. Using Docker contain-
ers, we generated a reproducible build environment for

USENIX Association 26th USENIX Security Symposium    1281



each package, measured the CPU time required to build
a binary and verified the obtained hash against a pre-
calculated hash from Debian.

We tested three sets of packages: (1) required is the set
of Debian required packages [21], 27 packages as of to-
day; (2) popular contains the 50 most installed Debian
packages [20] that are reproducible and do not appear in
required; (3) random is a set of 50 packages randomly
chosen from the full reproducible testing set [22]. Figure 5
demonstrates a CDF of the build time for each set.

10 packages from the random set, 8 from required and
2 from popular produced a hash value different from the
corresponding advertised hash. 90% of packages from
both the random and required sets were built in less than
three minutes, whereas the packages in the required-set
have a higher deviation. This is expected as, to ensure De-
bian’s correct functioning, the required packages tend to
be more security critical and complex.
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Figure 5: Reproducible build latency for Debian packages

8.3 End-to-End Witness Cost
In this experiment, we measured the cost for a witness of
adding a new release to an update timeline. We took a set
of six packages, measured the cost for each one individ-
ually and then calculated the average values over all the
packages. The build time was measured once and copied
to the other runs of the experiment, which enabled us to
test different configurations quickly and to break out re-
sults for each operation. The operations included veri-
fying developers’ signatures, reproducible builds, signing
off on the new release and generating a timestamp. The
witness cost was measured for an update cothorities com-
posed of 7, 31, and 127 nodes.

Figure 6 plots the costs in both CPU time and wall-
clock time used. The CPU time is higher than wall-clock
time for some metrics, due to the use of a multi-core pro-
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Figure 6: CPU cost of adding a new block to a timeline
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cessor. The verification and build times are constant per
node, whereas the time to sign and to generate the times-
tamp increases with the number of nodes, mostly due to
higher communication latency in a larger cothority tree.
As expected, the build time dominates the creation of
a new skipblock. Every witness spends between 5 and 30
CPU-minutes for each package. Current hosting schemes
offer simple servers for 10-US$ per month, enough to run
a node doing reproducible builds for the Debian-security
repository (about eight packages per day).

8.4 Skipchain Effect on PyPI Communica-
tion Cost

To evaluate the effect on communication cost of using
skipchains for update verification, we compare it with two
other scenarios using data from the PyPI package reposi-
tory. The scenarios are as follows:
1. Linear update: When a client requests an update,

she downloads all the diffs between snapshots, starting
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from her last update to the most recent one. This way
she validates every step.

2. Diplomat: The client only downloads the diff between
her last update and the latest update available.

3. Skipchain S1
1 : The scenario is as in Diplomat, but ev-

ery skipblock is also sent to prove the correctness of the
current update. The skipchains add security to the snap-
shots by signing it and by enabling users to efficiently
track changes in the signers.
The results over the 30-day data are presented in Fig-

ure 7. The straight lines correspond to the aforemen-
tioned scenarios. Linear updates increase the communi-
cation cost, because the cumulative updates between two
snapshots can contain different updates, which are only
transferred once, of the same package, as in the case of
Diplomat or skipchains. As it can be seen, the communi-
cation costs for Diplomat and skipchain are similar, even
in the worst case where a skipchain has height-1 only,
which corresponds to a simple double-linked list.

To further investigate the best parameters of the
skipchain, we plotted only the skipchain overhead using
the same data. In Figure 7, the dashed lines show the addi-
tional communication cost for different skipchain param-
eters. We observe that a skipchain with height > 1 can
reduce by a factor of 15 the communication cost for prov-
ing the validity of a snapshot. Using the base 5 for the
skipchain can further reduce the communication cost by
another factor of 2.

8.5 Cost of Securing Debian Distribution
In our final experiment, we measured the cost of a wit-
ness server that deploys an aggregate-layer skipchain in a
multi-package project (Section 5.7) and a client who uses
it. . We took the list of all the packages from the snap-
shot archive of the Debian-testing repository and created
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Figure 9: Communication cost to get new repository state

one skipchain per package over 1.5-year history, such that
each skipblock is one snapshot every five days. We then
formed the aggregate Debian-testing skipchain over the
same period.

In the first experiment, a witness server receives a new
repository-state to validate, verifies the signature for all
the packages, builds a Merkle tree from the heads of
the individual skipchains and signs its root, thus creating
a new aggregate skipblock. Figure 8 depicts the average
costs of the operations, over the whole history, against the
size of the repository. For a full repository of 52k pack-
ages, which corresponds to the actual Debian-testing sys-
tem, the overall CPU-cost is about 20 seconds per release.
This signifies that CHAINIAC generates negligible over-
head on the servers that update a skipchain.

The second experiment evaluates the overhead that
CHAINIAC introduces to the client-side cost of download-
ing the latest update of all packages. In order to maintain
the security guarantees of CHAINIAC, the client down-
loads all package hashes and builds a full Merkle tree to
verify them, thereby not revealing packages of interest and
preserving her privacy. Figure 9 illustrates that CHAINIAC
introduces a constant overhead of 16% to the APT man-
ager. This modest overhead suggests CHAINIAC’s good
scalability and applicability.

9 Related Work
We organize the discussion topically and avoid redun-
dancy with the commentary in Section 2.

Software-update protection. The automatic detection
and installation of software updates is a common op-
eration in computer and mobile systems, and there are
many tools for this task, such as package- and library-
managers [18, 23, 33, 76], and various app stores. There
are several security studies [10, 15, 57] that reveal weak-
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nesses in the design of software-update systems, and dif-
ferent solutions are proposed to address these weaknesses.
Solutions that reduce the trust that end users must have
in developers by involving independent intermediaries in
testing are shown [3, 4] to be beneficial in open-source
projects and content repositories. Several systems, such
as Meteor [7], DroidRanger [77] and ThinAV [37], focus
on protecting the infrastructure for mobile applications
and on detecting malware in mobile markets. Other sys-
tems [38, 47, 58] use overlay and peer-to-peer networks
for efficient dissemination of security patches, whereas
Updaticator [5] enables efficient update distribution over
untrusted cache-enabled networks.

Certificate, key, and software transparency. Bring-
ing transparency to different security-critical domains has
been actively studied. Solutions for public-key validation
infrastructure are proposed in AKI [40], ARPKI [9] and
Certificate Transparency (CT) [45] in which all issued
public-key certificates are publicly logged and validated
by auditors. Public logs are also used in Keybase [39],
which enables users to manage their online accounts and
provides checking of name-to-key bindings by verifying
ownership of third-party accounts. This is achieved via
creating a public log of identity information that third-
parties can audit. EthIKS [12] provides stronger auditabil-
ity to CONIKS [51], an end-user key verification service
based on a verifiable transparency log, by creating a Smart
Ethereum Contract [75] that guarantees that a hash chain
is not forked, as long as the ethereum system is stable
and correct. Application Transparency (AT) [27] employs
the idea of submitting information about mobile applica-
tions to a verifiable public log. Thus, users can verify that
a provided app is publicly available to everyone or that
a given version existed in the market, but was removed.
However, AT can protect only against targeted attacks but
leaves attacks against all the users outside of its scope. Fi-
nally, Baton [8] tries to address the problem of renewing
signing keys in Android by chaining them but this solution
does not help in the case of stolen signing keys.

Blockchains. The creation of Bitcoin [56] was first per-
ceived as an evolution in the domain of financial tech-
nology. Recently, however, there has been an increasing
interest in the data structure that enables the properties
of bitcoin, namely, the blockchain. There is active work
with blockchain in cryptocurrencies [13, 65], DNS alter-
natives [74] and even general-purpose decentralized com-
puting [75]. All of these systems secure clients in a dis-
tributed manner and with a timeline that can be tracked
by the clients. However, these systems force the clients
to track the full timeline, even if the clients are interested

in a very small subset of it, or to forfeit the security of
decentralization by trusting a full node.

10 Conclusion
In this work, we have presented CHAINIAC, a novel
software-update framework that decentralizes each step
of the software-update process to increase trustworthi-
ness and to eliminate single points of failure. The key
novel components of CHAINIAC’s design are multi-level
skipchains and verified builds. The distinct layers of
skipchains provide, while introducing minimal overhead
for the client, multiple functionalities such as (1) tamper-
evident and equivocation-resistant logging of the new up-
dates and (2) the secure evolution of signing keys for both
developers and the set of online witnesses. Verified builds
further unburden clients by delegating the actual repro-
ducible building process to a decentralized set of build
verifiers. The evaluation of our prototype has demon-
strated that the overhead of using CHAINIAC is accept-
able, both for the clients and for the decentralized group
of witnesses, by running experiments on real-world data
from Debian. Furthermore, we have replayed 30 days of
actual client requests to the PyPI repository and shown
that the use of skipchains limits the verification overhead.
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