Privileged Operations in the PlanetLab Virtualised Environment

Steve Muir, Larry Peterson, Marc Fiuczynski, Justin Cappos, John Hartman
Princeton University and the University of Arizona
{smuir,llp,mef}@cs.princeton.edu, {justin, jhh}@cs.arizona.edu

Abstract

Virtualised systems have experienced a resurgence in popu-
larity in recent years, whether used to support multiple OSes
running on a user’s desktop, provide commercial application
hosting facilities, or isolate a large number of users from each
other in global network testbeds. We also see an increasing
level of interest in having entities within these virtualised sys-
tems interact with each other, either as peers or as helpers
providing a service to clients.

Very little work has been previously conducted on how
such interaction between virtualised environments can take
place. We introduce Proper, a service running on the Planet-
Lab system, that allows unprivileged entities to access privi-
leged operations in a safe, tightly controlled manner.

This paper describes our work designing and implementing
Proper, including a discussion of the various architectural de-
cisions made. We describe how implementing such a system
in a traditional UNIX environment is non-trivial, and provide
a number of examples of how services running on PlanetLab
actually use Proper.

1 Introduction

Operating systems face a fundamental tension between pro-
viding isolation and sharing among applications—they simul-
taneously support the illusion that each application has the
physical machine to itself, yet allow applications to share ob-
jects (e.g., files, pipes) with each other. OSes designed for
personal computers (adapted from earlier time-sharing sys-
tems) typically provide a relatively weak form of isolation
(the process abstraction) with generous facilities for sharing
(e.g., a global file system and global process ids). In contrast,
virtual machine monitors (VMMs) strive to provide strong
performance isolation and privacy between virtual machines
(VMs), and provide no more support for sharing between
VMs than the network provides between physical machines.
The point on the design spectrum supported by any given
system depends on the workload it is designed to support.
Desktop OSes generally run multiple applications on behalf
of a single user, making it natural to favor sharing over iso-
lation. Similarly, VMMs are often designed to allow a single
machine to host multiple independent applications, possibly
running on behalf of independent organizations, as might be
the case in a hosting center. In such a scenario, the applica-
tions have no need to share information and it is important
they receive a predictable fraction of the physical machine’s
resources, hence, VMM s heavily favor isolation over sharing.

This paper investigates an alternative design point, moti-
vated by the desire to allow VMs to interact with each other
in well-defined and controlled ways. While all systems must
provide a means by which isolated components interact, we
are particularly interested in the problem of unbundling the
management of a set of VMs from the underlying VMM. To
enable multiple management services, it is necessary to ‘poke
holes’ in the isolation barriers between VMs in a controlled
manner. These holes allow one VM to see and manipulate
objects such as files and processes in another VM, providing
a natural means for one VM to manage another.

Toward this end, this paper describes Proper, a new PRivi-
leged OPERations mechanism that VMs can use to poke the
holes that they need. Proper provides global capabilities that
can be passed between VMs on a single node and is imple-
mented entirely using Linux system calls. Proper is straight-
forward to implement on a UNIX-based VMM such as that
used in PlanetLab, and enables useful management services
that run today on PlanetLab.

2 Virtualised Environment

This section investigates the isolation/sharing issue in depth,
starting with a general discussion of isolation. Our goal is not
to present a comprehensive taxonomy of isolation, but rather
to tease apart the requirements that motivate Proper.

Our discussion considers the full breadth of system-level
support for virtual machines, from traditional OSes to low-
level hypervisors. For clarity, we settle on a single set of
terminology, drawn from the recent virtual machine litera-
ture. That is, we refer to the underlying system as a virtual
machine monitor (VMM) rather than an OS, and the isolated
containers running on top of it as virtual machines rather than
processes or domains.

2.1 Isolation Landscape

Isolation between VMs involves two largely independent di-
mensions: performance isolation and namespace isolation.
Note that we do not use the term fault isolation in our char-
acterization of VMMs, instead taking the view that fault
isolation is implied by performance isolation: a VMM that
provides performance isolation protects all correctly running
VMs from both greedy and faulty VMs. After all, a fault that
crashes the machine robs all VMs of the performance they
expect.

Performance isolation corresponds to the VMM ’s ability to
isolate the resource consumption of one VM from that of an-

75

other VM, undesired interactions between VMs is sometimes
called cross-talk [12]. Providing performance isolation gen-
erally involves careful scheduling and allocation of physical
machine resources (e.g., cycles, link bandwidth, disk space),
but can also be influenced by VMs sharing logical resources,
such as file descriptors and memory buffers. A VMM that
supports strong performance isolation might guarantee that a
VM will receive 100 million cycles per second (Mcps) and
1.5Mbps of link bandwidth, independent of any other appli-
cations running on the machine. On the other hand, a VMM
that supports weak performance isolation might allow VMs
to compete with each other for cycles and bandwidth on a
demand-driven (best-effort) basis. Many hybrid approaches
are possible; for instance, a VMM may maintain strong per-
formance isolation between classes of VMs while enforcing
weaker isolation within each class (e.g., to support a low pri-
ority class of applications that are allowed to consume excess
cycles).

Namespace isolation refers to the extent to which the VMM
limits access to (and information about) logical objects, such
as files, memory addresses, port numbers, user IDs, process
IDs, and so on. A VMM that supports strong namespace iso-
lation does not reveal the names of files or process IDs be-
longing to another VM, let alone allow one VM to access or
manipulate such objects. In contrast, a VMM that supports
weak namespace isolation might support a shared namespace
(e.g., a global file system), augmented with an access control
mechanism that limits the ability of one VM to manipulate
the objects owned by another VM.

The level of namespace isolation supported by a VMM af-
fects at least two aspects of application programs. The first
is configuration independence, that is, whether names (e.g.,
of files) selected by one VM possibly conflict with names se-
lected by another VM. The second aspect is security; if one
VM is not able to see or modify data and code belonging to
another VM, then this increases the likelihood that a compro-
mise to one VM does not affect others on the same machine.

Taken together, these two dimensions of isolation provide a
simple map of the design space, with different VMMs (OSes)
corresponding to each possibility:

e Traditional timesharing systems offer both weak perfor-
mance isolation and weak namespace isolation.

e Single-user multimedia systems offer strong perfor-
mance isolation but weak namespace isolation.

e A traditional timesharing system augmented with sup-
port for security contexts, as exemplified by Linux
Vservers [13] and BSD jails [10], offer weak perfor-
mance isolation and strong namespace isolation.

e A VMM designed for application hosting centers typi-
cally offer both strong performance isolation and strong
namespace isolation.

Keep in mind that this section puts forward just one possible
view of the isolation landscape. There are certainly other cri-
teria by which VMM strategies can be evaluated—e.g., ease

of porting guest OSes to the VMM, size of the trusted code
base, scalability—but they are orthogonal to the issue of how
to trade isolation against sharing.

2.2 New Requirement

We are interested in scenarios that require both performance
and namespace isolation, but with the additional requirement
that the VMM provide a means for the hosted VMs to di-
rectly interact with each other in well-defined and controlled
ways. This might happen, for example, on a single-user ma-
chine that hosts untrusted third-party software, as well as in
planetary-scale (grid-like) settings where services distributed
across a network of hosting sites want to interact with each
other. In other words, we are interested in scenarios in which
each service runs in its own VM, but we want to support ar-
bitrary service composition.

Two distinct approaches exist to the problem of giving one
VM the ability to access another. The first is for the VMM to
maintain strict namespace isolation and VMs to interact with
each other over the network. The possibility that the two VMs
are on the same physical machine is ignored. The alternative
is to selectively circumvent namespace isolation to allow one
VM to directly access another VM on the same machine, that
is, to create well-defined holes in the VM isolation barrier by
granting one VM privileges to access state in another VM.
This paper describes just such a mechanism.

While there are potentially many scenarios in which a pair
of VMs might want to interact, one of the more compelling
occurs when one VM is responsible for managing or con-
trolling the other. The idea is that rather than consolidate all
management functionality in a single privileged VM (root do-
main) on a given machine, VM management should itself be
implemented inside one or more unprivileged VMs; a princi-
ple called unbundled management [3]. This allows the man-
agement capabilities of the system to evolve independent of
the underlying VMM, and for the hosted applications to pick
and chose from a larger set of management services (i.e., to
utilize third-party software). In essence, unbundling the man-
agement of a VMs potentially creates a market for manage-
ment services.

In this scenario, if a management service running in one
VM is forced to control a client service running in another
VM via the network, the former must acquire a vantage point
inside the latter, from which the manager can manipulate the
contents of the client. The management service could supply
the client VM with a daemon to run, and then connect to this
daemon through the network. The alternative, once again,
is to selectively define holes in the namespace isolation that
allows the management VM to directly control the client VM.
Of course, this only works when the two services run on the
same machine, but this is the nature of management services.

Clearly, there are alternatives to allowing management
VMs to “poke holes”. One is to consolidate all privileges
to manipulate other VMs in a single root VM, as happens
in Xen [2], for example. The problem with this approach is
that it limits the ability of multiple management services to
evolve at the same time. It also means that all management

76

services are granted full root privileges, whereas our strategy
gives management VMs only those privileges needed to carry
out their task, consistent with the general principle of least
privilege.

A second approach is to impose a parent-child hierarchy
on VMs and to grant parents access to the contents of its chil-
dren. However, this does not allow a single VM to have a
cooperative arrangement with multiple management services;
for this reason, a management VM and its client must be sib-
lings or peers. For example, a client might depend on one ser-
vice to keep its code base up-to-date (we call this an environ-
ment service), another service to authenticate users logging
into the VM (we call this an authentication service), and yet
another service to monitor its health and react to unexpected
events (we call this a monitoring service). Each of the corre-
sponding management VMs would be given a different set of
privileges with respect to the client VM; none would have the
full control over the client implied by a nested parent-child
scenario as occurs in Fluke [5].

2.3 Example: PlanetLab

Much of our work is conducted in the context of PlanetLab,
a global network of 400+ PCs used by researchers at over
200 institutions to develop new network services and conduct
network-based experiments. PlanetLab’s VMM is a modi-
fied Linux kernel, which provides both namespace and perfor-
mance isolation for (typically) 150 or so users on each node,
with 30—40 active on each node at any given time.

PlanetLab provides each user with one or more slices—
a set of resources bound to a virtual Linux environment and
associated with some number of PlanetLab nodes. Each Plan-
etLab runs a Linux kernel modified with the Vserver [13]
patches to support multiple virtualised Linux environments.
One difference between the Vserver approach and other vir-
tualised environments such as Xen is that virtualisation is
achieved at the system call level; consequently, each VM,
called a context in the Vserver project, presents its users with
the same kernel environment as the VMM, although with re-
stricted privileges. The fact that each VM shares the single
OS kernel turns out to have certain advantages over an ap-
proach where each VM has its own isolated OS kernel.

Each PlanetLab slice corresponds to a Vserver context,
where a context represents a set of kernel objects (files, sock-
ets, processes, etc.) that are logically isolated from all other
contexts. Isolation is provided by a combination of existing
kernel mechanisms e.g., the chroot system call that restricts
a context to a particular filesystem subtree, and modifications
to the Linux kernel to support tagging of objects with the con-
text ID.

Two special contexts exist in a Vserver system: the root
context, which is isolated from other contexts but typically
runs in the root filesystem and has full system privileges
(Linux ‘capabilities’ 1, and the ‘all-processes’ context, which
provides full system visibility; i.e., projects the processes of

'We use quotes around this term since the Linux (and POSIX) notion of
a capability is so different from that typically used in the OS community.

all contexts into one namespace, but is typically only accessi-
ble from the root context.

A key benefit of the Vserver architecture is that each slice’s
filesystem subtree can be setup to closely resemble a com-
plete Linux filesystem (modulo some differences in pseudo-
filesystems such as /proc), which combines with the ability
of aslice user to run as a restricted root user to provide a fairly
thorough virtualisation of a Linux system. The restrictions
placed on the slice root user are enforced by each slice being
given a greatly reduced subset of the standard Linux kernel
capabilities, so for example, slice root cannot change network
device settings or shutdown the system. While Linux capa-
bilities go some way towards breaking the traditional UNIX
linkage between identity—what user ID a process is running
as—and the operations that the process can perform, they un-
fortunately do not completely achieve that goal. Hence the
need for a more refined solution to control access to privi-
leged operations.

Note: to avoid confusion between the terms VM, Vserver
context, domain, and slice, we use the term “slice” in subse-
quent sections to denote a virtual machine on PlanetLab (al-
though strictly speaking, a slice is really a network of such
VMs).

3 Architecture

Proper (from PRivileged OPERations) provides unprivileged
VMs (slices) with access to privileged operations in a con-
trolled manner. Although Proper was originally targeted at
the PlanetLab environment it was intended from the out-
set to be more generally applicable, not only to other virtu-
alised UNIX systems but ideally to systems such as Xen and
VMWare.

3.1 Design Goals

The design of Proper was guided by several goals, both end-
user requirements and development guidelines:

1. Proper’s primary goal is to provide unprivileged applica-
tions with access to privileged operations in a controlled
manner.

2. Proper must provide fine-grained access control for priv-
ileged operations, ideally down to individual object (file,
port, etc.) granularity.

3. Proper must not require that the client programming
model be drastically altered from the standard UNIX
style.

4. Proper must be easily accessible from slice applications
using a standard communications protocol.

5. Proper should not be tightly bound to a specific lan-
guage.

6. Proper should be implemented as a user-space applica-
tion running in the privileged (root) slice, not as a kernel
extension.

77

The first requirement led us to consider both capability-
and ACL-based designs in order to provide the necessary
granularity of access control—we opted for the latter because
we felt that an ACL could be more easily imposed upon the
UNIX programming model of client applications (second re-
quirement) than a capability system could. The third, fourth
and fifth requirements were met by implementing Proper in
C and using HTTP over loopback sockets as the communica-
tion mechanism between clients—slice applications—and the
server.

3.2 Design Choices

Proper is conceptually similar to the UNIX sudo command,
which provides unprivileged users with access to a user-
specific set of privileged commands. A simple example is
that of a desktop system user with no special privileges being
given the ability to run the shutdown command in order to
shutdown or reboot the system, or the ability to run rpm to
install new system packages; note that we give no comment
on the wisdom of these particular examples with respect to
security.

Adapting sudo itself is not a practical solution in general
because sudo is merely a binary application that runs with
the setuid bit set so that it runs with full root privileges—
in a virtualised system this becomes full root privileges within
the virtual environment, so the client is still unable to inter-
act with the host VMM. We note that extending the Linux
filesystem and kernel with a setcapabilities bit could
potentially be a solution, at least in a PlanetLab-like system,
but the task of interpreting access control policy i.e., identi-
fying who is authorised to do what, within a virtualised envi-
ronment is complicated because the sudo command cannot
trust data obtained from that environment.

Instead, we designed Proper to run as a service in the
root context i.e., with a full set of privileges (capabilities),
that communicates with clients in virtualised environments—
slices—to perform privileged operations on their behalf.

At the highest, level Proper is simply a traditional multi-
threaded RPC server that uses HTTP as a simple RPC pro-
tocol. A listener thread waits for requests to be received on
a well-known port, then dispatches each request to a pool of
worker threads. An important benefit of this multi-threaded
approach is that requests do not have to be handled com-
pletely sequentially—if one particular requests takes a long
time to complete, others are not delayed.

Once a request is received Proper checks that the client is
authorised to perform the requested operation, performs the
operation on behalf of that client, and returns the result as a
simple text string sent as the HTTP response. In almost all
cases the operation is performed after forking a process and
reducing its privilege level to the minimum necessary, in case
of a malicious request or implementation bug.

Much of Proper’s architecture is similar to various system-
call interposition systems [16, 7]—the use of a user-space
process to interpret an access control policy, ability to pro-
vide unprivileged applications with selected elevated privi-
leged, etc. Proper differs in two important respects: it is de-

signed as an explicitly-invoked service rather than a trans-
parent security layer to be imposed upon unmodified appli-
cations, and it requires no modification of the VM environ-
ment in which client applications execute. These differences
mean that Proper can more readily present a uniform inter-
face across a variety of virtualised environments, at the cost
of imposing higher overhead on operation invocation.

3.2.1 Access Control

We decided early in the design process that Proper could be
most readily implemented in an existing UNIX environment
if an ACL-based authorisation model was adopted, since in
most cases the ACL checking can just be added to the existing
system implementation and fits easily into the programming
model (q.v. Linux Security Module [24] and SELinux [14], or
Java). In contrast, adopting a capability model, such as that
provided by, say, EROS [17] or the E language, would have
required users to embrace a radically different programming
model; such an effort, while intriguing, remains a project for
another day.

Linux and POSIX capabilities, while poorly named, go
some way towards solving the problem we are trying to ad-
dress: they provide a way for the system administrator to
grant only particular privileges to processes in an identity-
independent manner. Unfortunately, they suffer from two sig-
nificant problems: lack of operation granularity, at least in the
Linux implementation; and inability to constrain the parame-
ters used to invoke an operation. Note that the current Proper
authorisation mechanism is identity-based, but relies upon a
kernel feature to guarantee that the identity of a client can be
determined in an unforgeable manner; getting away from this
identity-based scheme is part of our future work.

Lack of operation granularity arises in the Linux capabil-
ity system because only 32 bits are used to represent the set
of capabilities, and the implementors, having seemingly run
out of bits after allocating a fair number to appropriately fine-
grained operations e.g., the chown operation, decided to as-
sociate whole swathes of privileged operations (even unre-
lated ones) with a single bit. Thus, in Linux, a system ad-
ministrator wishing to give a process the ability to execute
the mount operation also implicitly grants that process the
ability to access the NVRAM device or configure the serial
ports.

Parameter constraints are necessary to further enhance the
granularity of access to privileged operations. For example,
the open_file operation is one ‘capability’ in Proper, but
we almost certainly do not want to give all users of that op-
eration access to the same set of files. Thus, we use con-
straints to limit the set of files that a given client with access
to open_file may actually open.

Proper uses a simple text file format to define its ACL: each
statement in the text file associates a permitted user and a set
of parameter constraints with an operation, with multiple such
‘capabilities’ being supported for each operation. We have
found this level of detail sufficient for our current needs but
plan to explore this space in the future.

78

Operation Description

open_file(name, options) Open a restricted file
set_file_flags(name, flags) Change file flags

get_file_flags(name, flags) Get file flags

exec(context, cmd, args) Execute a command in the context (slice) given
wait(childid) Wait for an executed command to terminate
mount.dir(source, target, options) | Mountone directory onto another

unmount (source) Unmount a previously-mounted directory
create_socket (type, address) Create a restricted socket

bind_socket (socket, address) Bind a restricted socket

Table 1: Operations supported by Proper 0.3

3.3 Supported Operations

Our current implementation of Proper supports a small num-
ber of operations, as shown in Table 1—essentially those that
service developers have asked be made available. We do not
believe this list to be complete, but the fundamental nature
of the operations supported suggests that it should suffice to
support the majority of applications.

3.3.1 File Operations

The open_file operation is merely a thin wrapper around
the standard open system call. However, since Proper exe-
cutes outside of the chrooted filesystem that its clients exist in,
it has direct access to all files in the system. Hence, this opera-
tion is typically used to give a slice access (usually read-only)
to one or more restricted files; e.g., the root /etc/passwd
file that maps slice names to slice IDs. This example demon-
strates the need for capability constraints, since we usually
grant a slice access to only a single file or directory rather
than allowing it to pass arbitrary arguments to this operation.

The get_and set_file_flags operations allow clients
to read and modify a small number of special-purpose flags
associated with each file and directory in the filesystem. The
currently supported flags are NOCHANGE and NOUNLINK.
In Linux, these correspond to the immutable and immutable-
linkage-invert bits supported by EXT2 and EXT3 filesys-
tems, although other systems support similar functionality
e.g., BSD has both system- and user-immutable flags.

The NOCHANGE flag was added to support efficient shar-
ing of files between slices, as described in greater detail in
Section 5.1. NOUNLINK is currently unused by any service
but is used internally by Proper, as described in Section 4.3.
Supporting it is essentially required due to the semantics of
the corresponding Linux immutable-linkage-invert flag: be-
cause the Linux flag was added after the immutable flag was
already in use it is defined to negate one particular aspect—
whether the link count of a file can be changed—of that flag’s
behaviour, and so cannot be handled orthogonally. By not ex-
posing these flags directly to client services, Proper can trans-
form the orthogonal NOCHANGE and NOUNLINK flags to
the underlying inter-dependent filesystem flags.

79

3.3.2 Exec Operations

A common requirement of unprivileged slices is that they can
execute a command in another context, either another slice
or the root context. Executing a command in another slice
is the primitive operation that must be supported in order to
enable UNIX-style remote login services, while executing a
command in the root context provides a general mechanism
for unprivileged slices to perform a particular privileged op-
eration that is not directly provided by Proper (e.g., running
ps in the ‘all-processes’ context).

Proper provides an asynchronous exec operation and a
blocking wa it operation that are typically used together in a
manner equivalent to the system() function. The mechan-
ics of how child processes are forked by the Proper daemon,
constrained by Linux process semantics, prevent the new pro-
cess from being a child of the Proper client, so the client can
neither be notified by a kernel signal when the process termi-
nates, nor use standard system calls to wait for the process to
end. However, if the client forks a child process that interacts
with Proper (i.e., calls exec and wait), rather than interact-
ing directly itself, that child then reasonably approximates the
behaviour of a directly forked/executed process, particularly
if the process created by Proper receives appropriate file de-
scriptors (stdin, stdout and stderr) and environment variables.

Obviously, it is important that slices are restricted in terms
of the exec parameters they are allowed to specify: a remote
login service shouldn’t be able to spawn processes in arbitrary
slices, while those slices authorised to execute one or more
commands in the root context should only be able to execute
those specific commands, usually with tightly-constrained ar-
guments. For example, one of the PlanetLab monitoring ser-
vices, SliceStat, uses the standard top command to acquire
memory usage information for all processes in the system.
Unfortunately, t op, when run in interactive mode, allows the
user to kill any visible process, so we must restrict SliceStat
to only run top in batch mode.

3.3.3 Mount Operations

The mount_dir operation supported by Proper corresponds
to the Linux ‘bind mount’ feature, namely, the ability to at-
tach part of the filesystem tree onto another directory; i.e., al-
lowing the same filesystem subtree to be accessed from two

Before bind mount

slice B

/dev /usr

|
|
|
|
|
|
|
| /children
|
|
|
|
|

/vservers

root filesystem

After bind mount

/dev /usr

/vservers

Figure 1: Bind-mounting slice A’s filesystem into slice B

directories. Figure 1 shows the motivating example for this
feature in PlanetLab: a regular slice A wishes to have service
B maintain its filesystem configuration (e.g., set of installed
packages), so B uses the mount_dir operation to attach A’s
root directory to its own filesystem. Section 5.1 describes
how the Stork service uses Proper in this manner.

Proper also supports local—i.e., within a single slice—bind
mounts, as a convenient way of providing this limited form
of the mount system call in a safe way to clients, and a re-
versed form of the operation that attaches a directory from
the service’s slice into the client’s slice (e.g., as a read-only
repository of files exported by the service). The unmount
operation exists to undo the effect of bind-mounts created by
Proper.

The security implications of the mount _dir operation and
precautions taken by Proper are discussed later in Section 4.3.

3.3.4 Socket Operations

The final class of operations supported by Proper are those
pertaining to sockets, specifically, creating and binding of re-
stricted sockets. There are two classes of restricted sockets:
sockets that can only be created by privileged users, such as
SOCK_RAW and PF_PACKET sockets; and sockets that can be
created by any user but only a privileged user can associate
with certain addresses (e.g., TCP and UDP ports < 1024).
Proper supports both these classes of restricted sockets us-
ing the create_socket and bind_socket operations.
Although the functionality of the latter is a subset of the for-
mer, there are practical advantages to separating the function
used to bind sockets to a specific address: less application
code need be modified in order to use Proper, especially if the
application performs other operations, such as setting certain
socket options, on a socket between creating it and binding
it. For example, we created a simple wrapper library for the
Apache webserver that allowed an unmodified binary appli-

cation, compiled without any Proper hooks, to use Proper to
bind TCP port 80 in a manner that would not have been eas-
ily possible to implement using only the create_socket
operation.

4 Implementation

Although the architecture of Proper is relatively simple—a
privileged server performing operations on behalf of unpriv-
ileged clients—there are several implementation challenges
that had to be addressed to make Proper a satisfactory so-
lution from the user perspective. This section describes our
approaches to solving the most important of these challenges.

4.1 Transparent Interposition

The most obvious implementation of Proper, and one that sat-
isfies the design goals laid out earlier, is to have the privileged
server act as a proxy for client requests: when the client cre-
ates a new object, say file or socket, Proper returns a proxy
object to the client that forwards all subsequent requests to
Proper for application. This model works well for simple data
requests (e.g., reading a file or socket), and is essentially the
model adopted by systems such as CORBA [15]. However,
this approach has two serious disadvantages:

1. Lack of transparency: some objects may not be
amenable to being transparently ‘proxied’—we note that
in many ways this is analogous to the problem of virtu-
alising system resources.

2. Performance: forwarding all object requests through the
proxy to Proper imposes a significant overhead, espe-
cially given the user-space nature of the Proper service.

Transparency is a particular problem when the objects be-
ing handled are low-level kernel objects such as files and
sockets: they are not implemented in a way that makes them

80

amenable to being replaced by proxies. A concrete example
is that of opening a file: the client expects to receive a file
descriptor, so it is tempting to pass back a file descriptor for
a socket that is connected to Proper and which the contents
of the file can be read or written over; however, if the client
tries to find out the file’s mode or ownership, or perform the
1seek operation, they will be rudely awakened.

Therefore, we added two secondary design goals to the
primary goals outlined earlier: transparent interposition and
minimal datapath interference. Transparent interposition re-
quires that Proper can be interposed between a client applica-
tion and the underlying environment in a transparent manner;
i.e., a request to open a privileged object can be forwarded to
Proper without the client being aware of that forwarding tak-
ing place. Minimal datapath interference dictates that Proper
should return objects to clients that connect the client directly
to the desired resource (at the kernel level) rather than forcing
subsequent object requests to be proxied.

Taken together, these two goals suggest that Proper should
respond to client requests with exactly the same object which
the client would receive if executing in a non-virtualised envi-
ronment. Note that we are not so much concerned with clients
determined to discover whether they are executing in a virtu-
alised environment, but rather just presenting a sufficiently-
good illusion to regular applications that they are operating in
a non-virtualised world. In other words, it should be possi-
ble to insert Proper into a standard application without hav-
ing to modify the application and its operation should be un-
changed.

To clarify these considerations, we briefly consider each of
the operation classes supported by Proper and describe how
(indeed, whether) these goals are met. Note that a number
of operations—get._ and set_file_flags, unmount,
wait, and bind_socket—do not return objects to the
client and so are much simpler to handle.

4.1.1 File Opening and Socket Creation

The open_file operation was the first ‘object’ operation
considered and thus motivated much of the transparency as-
pect of the Proper design. Fortunately, it is sufficiently clean
and simple that the ‘right’ answer becomes quickly evident:
just return a file descriptor opened by Proper directly to the
client, which will be indistinguishable from a file descriptor
that would be obtained if the client had permission to open the
file directly. This is the most transparent solution possible,
and also meets our goal of minimal datapath interference—
subsequent read and write operations take place directly with
the kernel, without either client or kernel being aware that the
file was originally opened by Proper.

The key piece of mechanism that enables this solution is the
ability to use UNIX-domain sockets to pass file descriptors
between processes, even those executing in ‘isolated’ virtual
machines: in this case the client creates a socket in its own
filesystem subtree and passes the name of that socket as a pa-
rameter of the request to Proper, which subsequently sends
the file descriptor back to that socket as the final phase of the
RPC operation. This mechanism turned out to be a commonly

81

used part of Proper; we believe that its availability in the
UNIX environment makes a service like Proper straightfor-
ward, whereas other virtualised environments without a sim-
ilar feature would not readily be able to support transparent
interposition.

Creating a socket using create_socket is almost di-
rectly analogous to opening a file and so the same solution
applies. One minor complication is the necessity to also pro-
vide a separate bind_socket operation, as described ear-
lier, to support simpler interposition into client applications.

4.1.2 Inter-Slice Filesystem Access

Although the mount_dir operation doesn’t directly return
an object to the client, similar considerations can be applied
since there are a number of approaches to providing the facil-
ity of one slice to read another’s filesystem. For example, we
could use NFS over loopback sockets to do so, but this suffers
from both lack of transparency (NFS doesn’t export the same
filesystem semantics as a local filesystem such as EXT2) and
performance overhead; we return to this point in Section 7.1.

4.1.3 Process Execution

Executing a process is the most difficult operation to trans-
parently support, particularly given UNIX process seman-
tics, namely the fixed child/parent process relationship. For
example, Proper could more closely follow the standard
fork/exec model if it was possible to ‘reparent’ a process
i.e., attach a child of one process to another process. In Sec-
tion 7.4.3 we briefly describe another possibility to increase
transparency—kernel support for a join system call as a
counterpart to fork that would allow one process to join it-
self with another.

4.2 File Descriptor Pool

As described earlier, file descriptor passing from Proper to
clients is an appealing approach to transparent interposition
because it gives the client exactly the same object that would
have been obtained if running in a non-virtualised environ-
ment. Passing of file descriptors from clients to Proper is also
a key part of the system because it allows the client to request
that privileged operations be performed on objects it already
holds.

While passing file descriptors from Proper to clients is rel-
atively straightforward, the reverse direction is more compli-
cated. The virtualised slice environment prevents the client
from sending messages directly to a UNIX-domain socket
created by Proper, unless that socket was created in the slice
filesystem, which would in turn require that an equivalent
socket be created in the filesystem of every client slice. In
addition to the problems of managing a multiplicity of such
sockets, Proper would also have to make sure that its usage of
sockets in the client slice namespace did not conflict with the
client slice’s own sockets. Finally, there needs to be a way for
clients to identify file descriptors that they have sent to Proper
for use in subsequent operations.

We address all of these problems with a file descriptor
pool. This is a set of file descriptors received by Proper

for dir in path
dl = open (dir)

set_file_flags(dl, NOUNLINK)

d2 = 1lstat(dir)

if issymlink(d2) ordl.inode !=d2.inode
return NotTrusted

return Trusted

Figure 2: Algorithm for verifying trusted paths

on a single socket opened in its own namespace, with each
member of the set being allocated a random 31-digit hex
string as an identifier. Prior to sending file descriptors to the
pool, a client application must use a special one-time method,
create_fdsock, to open a connection to the pool—Proper
allocates a new socket that is connected to the pool socket,
then uses the standard Proper-to-client file descriptor passing
to return that connected socket to the client.

When a client subsequently wishes to send a file descriptor
to Proper (e.g., for use in exec or bind_socket opera-
tions), it performs a standard UNIX-domain sendmsg oper-
ation to send that descriptor. Upon receipt, Proper sends the
random identifier back to the client so that the client can iden-
tify the file descriptor in later operations. In order to prevent
the pool from growing too large, there is a periodic cleanup
that removes file descriptors unused in a small period of time
(currently 5 seconds), and file descriptors are also removed
when they are actually referenced by an operation.

4.3 Filesystem Security

The PlanetLab environment places each slice and all of its
associated processes in a chrooted filesystem tree, so most
filesystem operations performed by Proper (e.g., get_ and
set_file_flags) can be safely performed just by forking
a child process and using the chroot system call to switch
into the same subtree before performing the operation; this
eliminates potential problems caused by malicious symbolic
links, for example. Consider a malicious client that creates a
symlink of the form ../../etc in its root directory, then
requests that Proper mount the client’s /bad—etc directory
onto that directory: after following the symlinks up through
a couple of directories in the root filesystem the /bad-etc
directory ends up mounted on top of the system’s /et c direc-
tory. Calling chroot before performing the mount operation
prevents this form of attack.

Unfortunately, not all privileged operations are confined to
a single slice, in particular the mount_dir operation must
often interact with two slices at once. There are general solu-
tions to this problem, such as opening a file descriptor before
using the chroot operation, thus allowing the opened file to
be referenced in an environment where it is not directly visi-
ble, but unfortunately the syntax of the UNIX mount system
call, specifically its use of filenames rather than file descrip-
tors, make such solutions inapplicable.

The alternative derived for Proper is to verify that the paths

used for mount do not include malicious symbolic links while
simultaneously ‘pinning’ each path component so that a ma-
licious client cannot replace it with a symbolic link between
the verification and execution phases. This pinning is ac-
complished using the NOUNLINK flag according to the al-
gorithm shown in Figure 2. The key insight is that setting
the NOUNLINK flag prevents a directory being subsequently
removed, opening a second time with 1stat lets us detect
a symlink that already was in place, and inode comparison?
protects against the race condition between opening and set-
ting the flag from being exploited.

We refer to a path where each component has been pinned
in this manner as a trusted path. A path can only be trusted if
it is rooted in a trusted path—as a base case we assume that
the root directory of any slice is trusted since a slice cannot
replace its own root directory.

The second security measure taken by Proper with respect
to mount operations is to check against a slice-supplied ACL
that the operation requester is permitted to modify the slice’s
filesystem (either mounting or unmounting a directory) in the
requested manner. For example, when a service attempts to
mount client A’s root directory, Proper checks that the service
slice name is present in the file .exportdir in that direc-
tory. This gives slices control over exactly which services can
access their filesystem and thus removes the need for the sys-
tem default ACL to specify every permitted mount operation.

4.4 Complications in Exec

Implementing the exec operation presented several chal-
lenges. In addition to the difficulties in transparently emu-
lating fork/exec, a number of other practical details must
be addressed:

e Standard I/O descriptors: when running a new command
it must be possible for the client to setup standard input
and output correctly. For example, a remote login ser-
vice that wishes to start a new shell must be able to pass
a terminal file descriptor to Proper for that purpose. We
use the aforementioned file descriptor pool to support
this.

e Process termination: ideally the client application would
be able to interact with the new process using standard

2This comparison should also take devices into account since inode num-
bers are not unique across block devices

82

Operation Normal Latency/ms | Proper Latency/ms | Overhead/ms
Read empty file 1.0 13.5 12.5
Count lines in 170MB log file 270.8 282.8 12.0
Execute /bin/true 0.95 22.9 22.0
Execute batch-mode top 508 527 19.0

Table 2: Measured Latency of Proper Operations

operations, including using wait () to wait for termi-
nation. As stated earlier, this particular form of trans-
parency is not easily supported in Proper, but a proxy
process that does nothing other than call the Proper op-
erations exec and wait can be used to achieve some
degree of transparency.

e Signal handling: our goal of transparent interposition re-
quires that the client should be able to send signals to the
newly created process in exactly the same way as if it had
created (and exec’d) the process itself. A proxy process
that catches all signals and uses a Proper operation ki1l
(currently unimplemented) to forward to the actual child
suffices for many cases, but unfortunately cannot handle
uncatchable signals such as SIGKILL. We continue to
look for a solution to this specific problem.

The most significant practical complication arising in the
implementation of exec was the need for wait operations
to potentially block for an unbounded amount of time, since
this means the server-side RPC implementation must be able
to handle such requests. Our original choice of HTTP server
library, the Hughes Technologies LibHTTPD library, was de-
signed to be single-threaded with no support for deferring the
result of a particular request i.e., requests must be completed
in the same order they are received. Fortunately, we were able
to leverage Matt Massie’s LibHTTPD++, a multi-threaded
extension of LIbHTTPD, to extend Proper with the ability to
handle each incoming request in a separate thread, so that
wait requests can be completed non-sequentially. One con-
cern is that scalability (i.e., number of outstanding request
threads), may prove to be a problem, but we will address that
at the appropriate time.

4.5 Evaluation of Proper Overhead

One potential concern with our current implementation of
Proper is that requiring the client to invoke services using
RPC over HTTP will impose significant overhead on each
operation. Although we made the assumption when design-
ing Proper that operations would not typically be used in a
performance-critical manner i.e., the overhead is not impor-
tant, it is of course preferable that it not be excessive.

Table 2 shows the measured performance of a pair of op-
erations performed using Proper: open_file and exec.
For each we measured the overhead for a trivial base case—
opening an empty file or executing a program that does
nothing—and also for a more realistic example derived from
the actual operations performed by PlanetLab’s users of

Proper: reading a large (170MB) traffic log, and executing
top in batch mode to get a list of all processes currently ac-
tive. All results were measured using a tight loop executing
only the command being tested, with a number of repetitions
set to make the total execution time sufficiently large that
timing inaccuracies can be ignored; the test system was an
otherwise-idle 3.0GHz Pentium 4 with 1.25GB of memory,
running the PlanetLab kernel derived from Linux 2.6.10.

The results show that the overhead of using Proper to in-
voke an operation is 12-22ms, depending upon the operation;
a breakdown of the results for Proper show that the amount
of overhead incurred by the client consists of an operation-
independent value of about 7.5ms due to the RPC protocol,
with the remainder being operation-dependent delay waiting
for the Proper service to perform the operation and send back
object handles (file descriptor or child process identifier). Be-
cause Proper is not involved in the application task once a file
has been opened or process created, the overhead imposed is
also task-independent, as shown in the table.

The measurements for the non-trivial tasks demonstrate
that Proper’s overhead is negligible—a few percent—in those
cases; note that our chosen examples are actually less time-
consuming than the operations used by our PlanetLab users:
users who analyse log files are often doing something more
complex than counting lines, and listing all processes takes
significantly longer on real PlanetLab nodes with hundreds of
processes rather than the 50 or so on our test box.

5 Client Services

Proper’s current design was motivated in some part by the
needs of various PlanetLab services that required access to
privileged operations. This section describes a number of
these services to give the reader concrete examples of how
Proper is used in practice.

5.1 Stork: Service Infrastructure

Stork is a PlanetLab service that provides infrastructure to
other services in the form of package management and boot-
strapping functions. Stork allows users to associate software
with slices, and takes care of downloading and installing the
software into the slices and keeping it up-to-date. A client
service specifies the set of packages it wants installed in its
slice; Stork is responsible for downloading and installing
those packages into the slice efficiently and securely. Stork al-
lows package contents to be shared between slices, reducing
the software footprint on a PlanetLab node. Stork also pro-
vides authentication between the Stork service and its clients,

83

ensuring that malicious entities cannot impersonate clients or
Stork. Other package management tools such as apt [1] or
yum [26] exist, but they are merely tools for managing pack-
ages on independent machines, and not in a distributed slice
that spans multiple PlanetLab nodes.

Ideally, the Stork service would run in an unprivileged
slice. Unfortunately, this isn’t possible because services must
give Stork access to their file systems so that Stork can man-
age packages efficiently. Also, authentication between Stork
and its clients is simplified if Stork is privileged. We address
each of these issues in the following sections.

5.1.1 Inter-Slice File Access

Stork is responsible for downloading packages from a pack-
age repository and installing them in a client slice. Stork
maintains a copy of every installed package so that each is
downloaded onto a node only once, even if multiple slices
have it installed. When a package is installed in a client
slice the package contents must be transferred from Stork
to the client. One way to do this is over a socket, but this
is relatively inefficient and doesn’t allow for sharing of files
between slices (see the next section). Instead, Stork un-
packs each package into a separate directory and uses the
set_file_flags operation to set the NOCHANGE flag
that makes the files unmodifiable. To install a package in a
client, Stork mounts the appropriate package directory read-
only into the client’s filesystem using mount._dir. This
gives the client access to the files in the package directory
without being able to modify the directory structure.

5.1.2 File Sharing

Stork relies on Proper to share files between slices securely.
Many slices may install the same packages, making it desir-
able to share the package contents between the slices. Of
course, modifications made by one slice should not be visi-
ble to any other. The ideal solution is for each slice to have
a copy-on-write version of each file; unfortunately, this func-
tionality is not available in PlanetLab. Instead, Stork relies
on sharing files read-only between slices. Files that may be
modified are not shared; typically these are a few configura-
tion files for each package. Most files are shared, dramatically
reducing the amount of disk space required to install packages
in slices.

Stork makes shared files read-only using the Proper
set_file_flags operation to set the NOCHANGE flag on
the files when it unpacks them. After mount_dir is used to
give the client access to the package directory as described
in the previous section, the Stork software running in the
client slice then creates hard links to the read-only files to put
the files in the proper locations inside the client filesystem;
writable files are copied instead of linked. The installation
scripts are then run in the client slice, and the package direc-
tory is unmounted. At this point the client slice has either hard
links to or copies of the files in Stork’s file system. The client
is prevented from modifying linked files by the NOCHANGE
flag. The NOUNLINK flag is not set on the shared files; this
allows the client to unlink a file and replace it with a private

copy if desired.
5.1.3 Authentication

Another Stork function that is facilitated by Proper is authen-
tication of the client to Stork and vice versa. Authentication is
a common problem and there are many well-known solutions.
All of them require the slices to contain secrets and prove to
each other that they know the proper secret. For example, the
slices could contain private keys and know each other’s public
keys, and the authentication protocol require that they prove
to each other that each has the private key that matches their
public key. This solution not only requires inserting private
keys in the slices, but also a key distribution mechanism for
distributing public keys.

Rather than go this route, Stork relies on Proper’s opera-
tions to authenticate the client and Stork to each other. A
client makes a request of Stork by sending it to a well-known
port. Unfortunately, there is no guarantee that the Stork slice
is listening on that port. Fortunately, the mount_dir opera-
tion relies on the . exportdir file to control who can mount
a particular directory. This file contains service names, and its
presence in a particular directory indicates that only the ser-
vices it contains are permitted to mount the directory. Plan-
etLab ensures that service names are unique and cannot be
forged. By putting Stork’s name in the . exportdir file the
client can ensure that only Stork has access to its file system.

The other part of the equation is for the client to authenti-
cate itself to Stork. When Stork receives a request it has no
direct way of verifying which client sent it. Without authenti-
cating the client, it is possible for one client to convince Stork
to modify another client’s file system. Stork uses the follow-
ing procedure to authenticate the client sending the request.
Stork replies to the request telling the client to create a direc-
tory in its file system with a random name and make it ac-
cessible for Stork to mount. Stork then uses the mount_dir
operation to mount the directory from the client’s file system.
If the correct client sent the request then it will have created
the proper directory and the mount will succeed. Client slices
do not have access to each other’s file system, making it im-
possible for a malicious slice to create the proper directory
and the mount will therefore fail.

5.2 Remote Login Service

Our second example is that of a remote login service that pro-
vides SSH access to client slices. The basic operation model
of this service is unchanged from the standard SSH server: in-
coming TCP requests to port 22 are authenticated using a va-
riety of methods, and a successfully authenticated client gets
a connection to a new shell process running as the requested
user, or slice in the PlanetLab case. One simple reason for
taking this approach to remote login is that only one server
can be listening on a given TCP port, so it is not possible to
directly run an SSH server on the well-known port in each
slice. Although it is perfectly feasible to run the SSH server
in the root context, we chose to place it in a regular slice as
an example of how one might create other authentication ser-
vices.

84

The primary requirement of this service is the ability to ex-
ecute a new command in a client slice. Although the Proper
exec operation readily supports this, one outstanding prob-
lem is how clients indicate to Proper that they are prepared
to allow the login service to start a new process in their slice.
As discussed later (see Section 7.2), we envision a mecha-
nism whereby a client can obtain a capability for a particular
command, then give that capability to the login service for
subsequent presentation to Proper. In this way the service is
only able to run those commands explicitly authorised by the
client slice.

5.3 Monitoring & Anomaly Detection

A key part of the PlanetLab infrastructure is auditing of out-
going network traffic in order to be able to record the source
of packets that may generate adverse reactions on the des-
tination systems: a number of PlanetLab experiments have
network traffic characteristics that unfortunately trigger fire-
walls and IDS. Originally, this PlanetFlow tool was part of
the root context, but a recent upgrade to the PlanetLab node
infrastructure has relocated this functionality into a slice, with
Proper used to provide privileged access to various network
objects. Again, this enables the development of alternative
auditing services.

PlanetFlow’s primary requirement is the ability to open a
raw (actually PF_PACKET socket) that can receive all out-
going packets. Since the bandwidth of outgoing traffic on
a PlanetLab node can be significant—several GB in a single
day, with bursts up to 10s of Mb/s—this is one situation where
having the client (PlanetFlow) be able to receive data directly
from the kernel rather than having to use a proxy object is im-
portant, since PlanetLab nodes are always heavily loaded and
thus we wish the monitoring service to be as lightweight as
possible.

A similar service that matches Proper very nicely, but has
not yet been implemented, is a intrusion detection service that
sweeps through a slice’s file system looking for the modifica-
tion, insertion, and deletion of configuration files, binary files,
and log files. Such a service, as exemplified by Seurat [25],
would benefit from Proper in much the same way as Stork.

6 Related Work

Although virtualisation has been a long-standing topic of re-
search, and has recently seen a revitalisation in interest, there
is little prior work on the subject of cooperation and commu-
nication between virtualised environments. For the most part,
this is simply due to the fact that virtualised systems have not
needed to address the problem—in most cases users actually
desire complete isolation between VMs (slices).

A number of research projects have addressed the problem
of isolation in traditional UNIX-based systems by proposing
fine-grained access control at the system call level—system
call interposition. Both Ostia [7] and Systrace [16] have
a number of similarities to Proper, particularly the use of a
user-space process to implement the access control policy,
but require some amount of kernel code in order to inter-
pose themselves on the system call path of arbitrary appli-

cations. This requirement reflects a difference in motivation:
Proper assumes that applications are aware that they are us-
ing Proper (although shared library tricks can be used to hide
this). We believe that the Proper API can thus be more read-
ily adopted as a common interface across diverse virtualised
environments.

Another direction one might look to for similar work is the
development of new security architectures for existing sys-
tems, such as the Flask Security Architecture [18)] and Linux
Security Modules (LSM) [24]. Flask introduced the concept
of a security manager as a component external to the OS ker-
nel that implements a security policy; i.e., determines which
principals can perform which operations. The LSM project
enhances the Linux kernel with a large number of security
hooks that can be handled by loadable modules, thus provid-
ing increased flexibility in security policy. The Flask archi-
tecture has been successfully implemented in the LSM frame-
work by the SELinux [14] project.

Java’s security model [8] adopts the stack inspection
method [6] as a means of safely allowing unprivileged code to
call into and be called from privileged code in a constrained
manner, with the access policy being externally defined. This
approach, conceptually similar to Proper, looks to have some
interesting properties but focuses on providing a secure sand-
box for subsystems within a process and is not immediately
applicable to a multi-process environment.

Proper can, of course, be applied to other virtualised
environments. Solaris Zones [19] are conceptually very
similar to Linux Vservers in that multiple virtual environ-
ments/namespaces are created within a single OS kernel.
Proper thus fits naturally into the Zones environment just as it
does Vservers.

Fully virtualised systems such as VMWare [22], Ensim [4]
and Virtual PC [21] provide users with virtualisation at the
hardware level, thus allowing any unmodified operating sys-
tem to be run as an application, although frequently the cost
of virtualisation is sufficiently high that only a very small
number of such virtual environments can be concurrently sup-
ported. In many of those systems a Proper-like mechanism is
used to allow the OS running in the virtualised environment
to bypass virtualisation in a controlled manner and obtain di-
rect access to certain elements of the host system e.g., access
to host system files. Unfortunately the protocol for access-
ing these features is typically proprietary and thus compari-
son with Proper is difficult.

Paravirtualised systems such as Xen [2], Denali [23] and
User-Mode Linux [20] provide a compromise between ap-
proaches such as Zones and Vservers, running ‘thin’ virtu-
alised environments on a single kernel, and the heavyweight
hardware virtualisation of VMWare et al. Such systems re-
quire that the guest OS be modified to run within the par-
avirtualised environment, but the advantage over a fully vir-
tualised system is efficiency and scalability. Of particular rel-
evance to Proper is the support in version 2.0 of Xen for run-
ning unmodified Linux device drivers in a special domain and
modifying each guest OS to communicate with that domain.

85

354
352
175
172

528
520
759
751

dbench postmark
(score) (transactions/s)
B LINUX M PLK+Proper

postmark
(read KB/s)
XenoLinux+NFS B PLK+NFS

postmark
(write KB/s)

Figure 3: Relative performance of different filesystem configurations

We hope to be able to compare Proper and Xen 2.0 in the near
future.

7 Discussion

Proper was originally intended as a simple service that would
satisfy the needs of a small number of PlanetLab users that
wanted to implement alternative management services. How-
ever, it soon became clear that many of the design and imple-
mentation decisions raise a number of more interesting archi-
tectural questions, and open avenues for future work.

7.1 Inter-VM Filesystem Sharing

Perhaps the only form of inter-VM communication that has
been studied to date is the sharing of filesystems between
VMs. Kotsovinos et. al. [11] describe various filesystem
mechanisms used in the XenoServer environment to effi-
ciently share filesystem images between multiple Xen do-
mains. The basic idea is that each client mounts its filesys-
tem from a trusted domain, the management virtual machine,
using NFS over the loopback interface. While this solution
fits easily into the model of most guest OSes, a simple mea-
surement we performed shows that loopback NES provides
significantly lower filesystem bandwidth than the bind mount
facility used by Proper.

Figure 3 shows the performance measured for a number of
filesystem configurations when tested with a pair of popular
filesystem benchmarking tools: dbench and postmark. The
four filesystem configurations compared are a stock Linux
system (version 2.4.22), the PlanetLab Linux kernel (PLK,
essentially also 2.4.22) using one slice bind-mounted into an-
other using Proper, XenoLinux i.e., Linux (2.4.26) on Xen,
using loopback NFS to share files, and PLK using loopback
NFS. We added this fourth system to give us a second value
for loopback NFS after private communication with the Xen
team revealed the existence of a known IDE disk perfor-
mance problem. All systems were tested on the same hard-
ware platform, a Penguin Computing Relion 1X equipped

with a 2.66GHz Pentium 4 CPU, 1GB RAM and a Seagate
ST3120026A 120GB 7.2k RPM IDE disk.

The graphs show that, as expected, bind mounts incur neg-
ligible overhead over direct access to the filesystem (first
two columns of each test). Loopback NFS however offers
much lower performance, approximately a factor of 4 or 5 in
throughput measurements and the corresponding transaction
rate for the postmark test, and a much lower score for dbench.
While we believe that various optimisations can be applied at
the VMM and guest OS level to increase the performance of
loopback NFS, the greater transparency and performance of
bind mounts will be hard to match.

7.2 Capabilities and the Object Pool

During development of Proper we realised that certain sub-
systems in Proper have acquired a capability-like flavour;
e.g., the file descriptor pool. One interesting direction for fu-
ture development would be to embrace the capability model
more fully, augmenting and/or replacing the ACL-based au-
thentication and also supporting operations traditionally asso-
ciated with capability systems, such as passing of capabilities
from one principal to another.

One area where this might be practically beneficially is as a
mechanism for a third-party slice to authorise a Proper client
to perform a specific action within that slice. Examples within
the currently implemented set of Proper operations include
executing a process within a slice, where the third-party slice
may wish to restrict the remote login slice to only being able
to run a specific command, or mounting a subtree of the third-
party slice’s filesystem, where a capability referring to that
subtree could replace the current system of client-specified
ACLs.

A simple extension to Proper to support such capabilities
is to generalise the file descriptor pool such it now becomes
an object pool used to store a variety of objects. Clients and
third-parties can now upload objects to the pool and receive
capabilities that can be subsequently passed to other clients.

86

One complication is that it may be desirable for certain capa-
bilities e.g., a third-party slice’s ‘exec a new shell in my slice’
capability, may need to persist across restarts of the Proper
service; an obvious solution is to store those capabilities in a
persistent database, but a more interesting, perhaps comple-
mentary, approach is to incorporate dynamic updating (see
below) into Proper as a way to maintain state across upgrades

of the service?.

7.3 Port to other Virtualised Environments

A key initial goal for Proper was that it could be ported,
and be useful, in virtualised environments other than Planet-
Lab/Linux. For example, consider how such a service might
function in Xen: an authentication domain (domains being
Xen’s entity corresponding to PlanetLab slices) wishes to pro-
vide remote shell access to a number of users, each with their
own Xen domain. How would Proper work in this environ-
ment?

Our initial response to this question is that it is not obvious
how one would implement Xen-Proper in order to support the
exec operation as required by this example. Possible solu-
tions include modifying the paravirtualised kernel (i.e., the
kernel running in each domain, to support creation of a pro-
cess by an outside entity), or a regular process running inside
the domain could be used to perform process creation on be-
half of Xen-Proper.

Similarly, enabling filesystem sharing equivalent to the
‘bind mount’ functionality available in the PlanetLab Linux
environment is not as straightforward; one possible solution
uses a low-level copy-on-write filesystem to share files be-
tween domains.

Overall, we believe that much of the ease of implementing
Proper that was derived from having Proper run in exactly
the same OS namespace as the clients that it interacts with
would be lost in a system with a higher degree of virtuali-
sation, such as Xen. Furthermore, certain inherent benefits
of every client sharing a single OS kernel appear difficult to
achieve in a one-kernel-per-domain virtualised environment.
However, we believe this is potentially a very fruitful area for
further investigation.

7.4 Future Directions

Although Proper has been deployed and operational on Plan-
etLab for some time now, there are several future directions
that we plan to investigate.

7.4.1 Dynamic Updates

It is often necessary to upgrade an infrastructure service such
as Proper, either to fix bugs or to add support for new opera-
tions. Although this is normally accomplished by uploading
anew version of the software and restarting the server, we are
looking at ways of dynamically updating the server without
restarting it. Being able to do so can potentially reduce the
amount of state that must be made persistent by Proper, such

30f course, some persistent state is always needed to handle unavoidable
restarts such as node reboots and unrecoverable errors.

as the contents of the object pool, especially the mapping of
capability strings to low-level objects.

7.4.2 Pool-based Memory Management

Another concern for long-running services is memory leaks,
or more generally, resource leaks. The structure of Proper
as an RPC server makes it amenable to a resource manage-
ment strategy similar to the region-based memory manage-
ment used in the Cyclone [9] language; a new resource pool
is created at the beginning of each RPC request, and the com-
plete pool deallocated once the request has been handled—
this way, no resources allocated in the context of a particular
request can leak outside that request. Of course, some mech-
anism must be made to allocate objects that persist beyond a
particular request, but we believe this to be an approach worth
investigating.

7.4.3 Kernel Integration

An explicit goal in our original design of Proper was that it be
implemented as a user-space service: this eases implementa-
tion, debugging and testing but also makes it potentially easier
to port to other virtualised environments. However, there are
certain types of operation, such as exec/wait, that cannot
easily be transparently invoked in a UNIX-like environment,
for reasons described earlier. Thus it becomes necessary to
contemplate the integration of Proper with the underlying ker-
nel. Note that this doesn’t necessarily require that Proper in
its entirety be implemented as kernel code, although that is
one, albeit unappealing, option. It just means that certain ker-
nel modifications to aid Proper be considered.

For example, we imagine adding support for a join sys-
tem call, that would permit a process to retain its current pro-
cess ID and position in the process hierarchy, but have its
system state replaced with that of another specified process
(of course, the latter process must somehow indicate that it
wishes to be joined to). This is essentially the same as the
exec system call but using an existing process to create the
new process state rather than a binary application. Such a fa-
cility would permit Proper to create child processes on behalf
of unprivileged clients, then have the client join with that
new process to have it attached into the appropriate place in
the client’s process tree, thereby allowing subsequent interac-
tions with that child in a completely transparent manner.

7.4.4 Resource Accounting

While PlanetLab is interested in both performance and name-
space isolation, Proper primarily punches holes in namespace
isolation without answering the question of who gets charged
for any work that is performed: the client slice or the slice
providing the service. The current implementation charges
the service provider, on the premise that that PlanetLab grants
this slice enough resources to do its job on behalf of a multi-
ple clients. Determining how to pass charges for work from
one slice to another, or account for multiple slices that take
advantage of files stored in a Stork-like slice is also a subject
of future work.

87

8 Conclusions

As part of the PlanetLab project we found that it was neces-
sary to give unprivileged clients running inside a virtual ma-
chine (VM) access to certain privileged operations, but in a
safe and controlled manner. To meet this requirement we de-
signed and implemented Proper, a user-level service running
in the privileged root VM that performs operations on behalf
of those unprivileged clients, using a simple ACL to deter-
mine which operations are permitted for each client.

We believe that a key part of this work is implementing
these operations in a manner that is transparent, as far as can
be reasonably achieved by a user-space application, to client
programs. For example, when opening a file we return a file
descriptor object to the client that is indistinguishable from
that which would be given to the client by the kernel if the
client had full privileges. This allows us to remove Proper
from the critical path of subsequent data manipulation opera-
tions by clients.

Although brokering access to restricted objects is an impor-
tant part of Proper, a more interesting challenge is how one
allows one VM to directly interact with another VM, delib-
erately breaking the isolation between virtual machines. For
example, Proper supports both execution of a process in an-
other VM and attaching another VM'’s filesystem to the client
VM’s.

The key insight from this work is that supporting communi-
cation between VMs requires a degree of support from the un-
derlying virtual machine monitor (VMM). Systems that virtu-
alise at the system call level, such as Linux Vservers, readily
support certain forms of inter-VM communication, whereas
systems like Xen that are more thoroughly virtualised are
likely to require some modification to support the required
forms of sharing and communication.

References

[1] Debian APT tool ported RedHat Linux.

http://www.apt—-get.org/.

to

[2] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A.,
NEUGEBAUER, R., PRATT, 1., AND WARFIELD, A. Xen and the Art of Virtual-
ization. In Proc. 19th SOSP (Lake George, NY, Oct 2003).

[3] BAVIER, A., BOWMAN, M., CULLER, D., CHUN, B., KARLIN, S., MUIR, S., ,,
AND AND, T. S. Operating System Support for Planetary-Scale Network Services.
In Proc. 1st NSDI (San Francisco, CA, Mar. 2004).
ENSIM CORP. Ensim Virtual Private Server.
http://www.ensim.com/products/
privateservers/index.html.

[4]

[5] ForD, B., HIBLER, M., LEPREAU, J., MCGRATH, R., AND TULLMANN, P.
Interface and Execution Models in the Fluke Kernel. In Proc. 3rd OSDI (New
Orleans, LA, Feb 1999).

[6] FOURNET, C., AND GORDON, A. D. Stack Inspection: Theory and Variants.
In Proceedings of the 29th ACM Symposium on Principles of Programming Lan-
guages (Portland, OR, Jan 2002).

[7] GARFINKEL, T., PFAFF, B., AND ROSENBLUM, M. Ostia: A Delegating Ar-
chitecture for Secure System Call Interposition. In Proc. 2004 Symposium on
Network and Distributed System Security (2004).

[8] GONG, L. Inside Java 2 Platform Security. Addison Wesley, 1999.

[9] JiM, T., MORRISETT, G., GROSSMAN, D., AND HIcks, M. Cyclone: A Safe

Dialect of C. In Proc. USENIX '02 (Monterey, CA, Jun 2002).

88

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

KAMP, P.-H., AND WATSON, R. N. M. Jails: Confining the Omnipotent Root.
In Proc. 2nd Int. SANE Conf. (Maastricht, The Netherlands, May 2000).

KoTsovINOS, E., MORETON, T., PRATT, 1., Ross, R., FRASER, K., HAND,
S., AND HARRIS, T. Global-scale service deployment in the XenoServer plat-
form. 1In Proc. of the Ist Workshop on Real, Large Distributed Systems (San
Francisco, CA, Dec 2004).

LESLIE, I. M., MCAULEY, D., BLACK, R., ROSCOE, T., BARHAM, P. T., Ev-
ERS, D., FAIRBAIRNS, R., AND HYDEN, E. The Design and Implementation of
an Operating System to Support Distributed Multimedia Applications. IEEE J.
Sel. Areas Comm. 14,7 (1996), 1280-1297.

LINUX VSERVERS PROJECT.
http://linux-vserver.org/.

Loscocco, P., AND SMALLEY, S. Integrating Flexible Support for Security
Policies into the Linux Operating System. In Proc. of the 2001 USENIX Annual
Technical Conference (FREENIX Track) (Boston, MA, Jun 2001).

OBJECT MANAGEMENT GROUP (OMG). Common Object Request Broker Ar-
chitecture (CORBA). http://www.corba.org/.

PrOVOS, N. Improving Host Security with System Call Policies. In Proc. 12th
USENIX Security Symposium (Washington, DC, Aug 2003), pp. 257-272.

SHAPIRO, J. S., SMITH, J. M., AND FARBER, D. J. EROS: A Capability System.
In Proc. 17th SOSP (Kiawah Island Resort, SC, Dec 1999).

SPENCER, R., SMALLEY, S., Loscocco, P., HIBLER, M., ANDERSEN, D.,
AND LEPREAU, J. The Flask Security Architecture: System Support for Diverse
Security Policies. In Proc. 8th USENIX Security Symposium (WA, Aug 1999).

TUCKER, A., AND COMAY, D. Solaris Zones: Operating System Support for
Server Consolidation. In 3rd Virtual Machine Research and Technology Sympo-
sium Works-in-Progress (San Jose, CA, May 2004).

User-Mode Linux.
http://user-mode-linux.sourceforge.net/.

Virtual PC.
http://www.microsoft.com/windows/
virtualpc/default.mspx.

VMWare.
http://www.vmware.com/.

WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. Scale and Performance in
the Denali Isolation Kernel. In Proc. 5th OSDI (Boston, MA, December 2002),
pp. 195-209.

WRIGHT, C., COWAN, C., SMALLEY, S., MORRIS, J., AND KROAH-
HARTMAN, G. Linux Security Modules: General Security Support for the Linux
Kernel. In Proceedings of the 11th USENIX Security Symposium (San Francisco,
CA, Aug 2002).

XiE, Y., KiM, H., O’HALLARON, D., REITER, M., AND ZHANG, H. Seurat:
A Pointillist Approach to Anomaly Detection. In Proceedings of the 7th Interna-
tional Symposium on Recent Advances in Intrusion Detection (RAID 2004) (Sep
2004).

Yum: Yellow Dog Updater Modified.
http://linux.duke.edu/projects/yum/.

