
Towards a Representive Testbed:
Harnessing Volunteers for Networks Research

Monzur Muhammad, Justin Cappos
Polytechnic Institute of New York

University

1. ABSTRACT
A steady rise in home systems has been seen over the past

few years. As more systems are designed and deployed, an
appropriate testbed is required to test these systems. Sev-
eral systems exist, such as PlanetLab, that currently provide
a networking testbed allowing researchers and developers to
test and measure various applications. However in the long
run such testbeds will be unable to keep up and meet all the
demands of many of the large scale modern day peer-to-peer
systems. We outline the various challenges and essentials of
a networking testbed and we provide an alternate network-
ing testbed that is driven by resources that are voluntarily
contributed. We talk about the various advantages and dis-
advantages of the Seattle system, an open source peer-to-
peer computing testbed that has the potential to meet these
demands. The testbed is composed of sandboxed resources
that are donated by volunteers. Seattle has been deployed
for about three years and supports many researchers who
are interested in a networking testbed. The testbed consists
of over 4100 nodes and is constantly growing. Seattle looks
to grow and meet the demands of networking testbeds as
they are made.

2. INTRODUCTION
Home computing has risen in popularity over the last few

years as smartphones and tablets and various other devices
have become an integral part of the Internet, driving an
increase in demand for a suitable peer-to-peer testbed. Var-
ious different systems have emerged over time to meet these
demands and produce a feasible testbed. Systems such as
RON [3], PlanetLab [28], and VINI [8] are some of the more
popular systems that have been widely used by researchers.
These systems allow users to test network applications on
them in order to verify and validate their functionalities.

However, all of these testbeds have similar designs and
consist of a model of dedicated resources. Although this
design may be suited for evaluating most applications, it
may still restrict the user from performing various different
tasks. The many limitations of existing testbeds have been
well noted [36], and attempts have been made to improve
and solve these challenges [29, 39, 14]. Despite the growing
importance of home systems, networked testbeds have unfor-
tunately not kept up in supporting the various peer-to-peer
system designs. We provide three different limitations in the
existing testbeds and how these limitations may need to be
addressed in order to have a viable peer-to-peer testbed.

2.1 Limitations of Current Testbeds

2.1.1 Representation of real users
Many of the current testbeds are primarily deployed on

universities and are akin to the same network settings, thus
lacking in diversity. Similarly, other testbeds are deployed
on dedicated servers that typically do not accurately model
users and network trends of every day machines [14, 37, 42,
7]. Machines in the universities often consist of high end
nodes with a very high speed Internet access. Even though
high-speed Internet access has become more common over
the past few years, many end-users still own average ma-
chines with standard Internet connection and only mediocre
amounts of bandwidth. Furthermore residential nodes con-
sists of wireless nodes, NAT devices, and many other net-
work diversity that are not found in many testbeds. A di-
verse set of devices such as laptops and various other hand-
held devices have also become more popular over the last
few years that have a rich mobility and availability pat-
tern that cannot be represented by machines with static
IP addresses [9, 6]. The dedicated machines in the various
testbeds however fail to take into account the wide diversity
that is seen in the real world. Simulating experiments on a
system like PlanetLab will often not result in the most accu-
rate representation of real world users [20]. Understandibly
it is easier to administrate a controlled system. However
to understand the behavior of home system, a diverse set
of nodes and configurations is required. This is essential to
understand peer-to-peer systems. In this paper we present a
system that uses actual user machines as part of the testbed
in attempts to get a better representation of the real world,
thus respresnting the Internet as a testbed.

2.1.2 Limited scalability issues
Current peer-to-peer systems and cloud computing sys-

tems have somewhere between ten thousand to about a mil-
lion nodes [2, 38, 15]. However, existing testbeds currently
do not have the capacity to handle systems this large, as
they mostly rely on dedicated servers and machines. In order
for these testbeds to expand, new hardware and resources
must be obtained, thus placing an upper bound on its ca-
pability to grow. Furthermore maintining individual nodes
in the testbed becomes a challenge as the testbed grows.
This means these testbeds cannot be reliably used to dis-
cover the complete behavior of many peer-to-peer systems.
Thus we propose a testbed which consists of volunteered re-
sources and has the potential to scale with demand. Popular
peer-to-peer systems that need a testbed that meets their de-

1



mand can themselves donate resources in order help increase
the size of the testbed as well as add resources that meet
their criteria. The growth of the testbed will also attract
other applications and many researchers who are interested
in running experiments on a large scale testbed. Donated
resources will be maintained by the donors, removing the
necessity for a single administrator to manage the entire sys-
tem. Since the size of the testbed will grow proportionally
to how much resources are donated, it will encourage devel-
opers and researchers to donate enough resources in order
to test their system at a large scale. This will encourage and
attract not only big systems, but individuals and researchers
as well, who would like to run experiments on a large scale,
but are unable to do so due to insufficient resources.

2.1.3 Deployment of testbed
Internet testbeds were promoted in part because the re-

search community values the importance of realistic deploy-
ment. However, today’s testbeds serve few end-users and do
not concern themselves with attracting them. When an ap-
plication is lucky enough to attract users (e.g. Coral [18]),
it begins to adversely impact the testbed by over-utilizing
the available resources. This leaves researchers whose pro-
totypes are deployed on PlanetLab with no means by which
they may release their software into the wild. Some re-
searchers do build and release their systems directly to end-
users [27, 13]. However, this methodology has a high bar for
success and limits researchers to developing systems with
capabilities that appeal to end-users (e.g. file-sharing).

2.2 Are Volunteer Resources Plausible?
A question that may come to mind is whether resources

donated by end users and researchers are capable of running
the various tests and experiments. Certainly a testbed con-
sisting of contributed resources has the potential to grow,
however the resources that are donated will vary widely. In
order to determine whether an end-user machine has suffi-
cient resources to build a testbed on, we looked at some of
the existing testbeds in order to understand how much re-
sources are consumed by current experiments. We analyzed
the PlanetLab system by using data from CoMon [24], a site
that provides periodic statistics on resource usage of Plan-
etLab nodes. This information is publicly available and is
updated at 15 minute intervals.

Resource usage data from the second week of February
2012 presented that on average a node with network activity
has about 141 Kb/s upload rate and 120 Kb/s download
rate. We also found that on average less then 100MB of
physical memory is used by an application on 97% of the
nodes (average memory used by a given slice, where a slice
consists of several nodes).

As of January 2012, around 92% of the OS market share
is owned by Microsoft Windows [22]. Of this share, roughly
47% consists of Windows XP and 36% of the market con-
sists of Windows 7. Looking at the the OS share trend,
there has been a steady rise of Windows 7 market share as
Windows XP slowly decreases. Analysing the average re-
source consumptions of experiments run on PlanetLab and
comparing it to the minimum hardware requirement of Win-
dows XP1 [41] and the requirements of Windows 72 [40]

1233 MHz processor, 128MB RAM, 1.5GB free disk space
21 GHz processor, 1GB RAM, 16GB free disk space

Node Type Quantity

Testbed 607
University 548
Home machines 1455
Unknown 1513

Total 4123

Figure 1: Seattle node types determined via reverse

DNS lookups on systems that retrieve software updates.

shows that end-user machines are capable of handling most
experiments and tests that are run on popular networking
testbeds.

2.3 Incentive for Volunteers to Contribute Re-
sources

Unlike traditional testbeds, a volunteer-supported testbed
must attract volunteers to have any resources. The volun-
teers will determine the heterogeneity of the testbed and two
key non-technical challenges are how to attract volunteers,
and how to retain them.

Volunteer based distributed computing projects have suc-
ceeded in attracting tremendous resources to their cause.
For example, the DIMES project [33] has a user base num-
bering in the thousands, while SETI@home [5] is one of the
longest running and best supported volunteer efforts with
over 1.36 million computers in the system and a compu-
tational power rivaling that of the fastest supercomputer.
The popularity of Wikipedia, Yahoo! Answers, and numer-
ous other volunteer-supported online projects indicate that
individuals are eager to join such projects and donate their
resources in the form of time, knowledge, bandwidth, and
other resources.

Similarly, we believe that similar levels of participation
can be generated for a network testbed. We designed, im-
plemented, and deployed a P2P network testbed called Seat-
tle [31]. We attracted more than 4100 nodes to our system in
just under two years of coming online. This total is broken
down by categories in Figure 1. To attract volunteers we re-
lied on word of mouth and incentivized the use of Seattle for
teaching distributed systems and networking courses [11].

Once a volunteer decides to donate their resources, they
must then be incentivized to remain, potentially increase
their contributions over time, and hopefully induce others to
volunteer. The technical challenge is in keeping experiments
as unobtrusive as possible while the user is actively using
the machine. The non-technical challenge in retaining users
is to design an incentives strategy such that the incentive
to contribute outweighs concern and the effort necessary to
continue participation.

2.4 Attracting Users for Educational Purposes
Network testbeds are prone to attract researchers and

software develoers, however it has the potential to attract
a vast community of users in the education community as
well. A wide peer-to-peer testbed that consists of nodes that
are geographically diverse gives educators a way to teach stu-
dents about the various challenges and difficulties of network
programming. Students are able to produce software and
test them on a set of diverse nodes allowing them to fully
understand many networking concepts first hand. Seattle
also provides a set of API calls [30] that simplify network

2



programming for beginners. It allows students to concen-
trate on the networking aspects of a program rather then
worry about the complex set of networking API calls, thus
making it easier for students to understand the issues of
distributed and networked systems, instead of wasting time
debugging complex network API calls. Educators are mo-
tivated to contribute to the testbed in order to add more
diversity to it as well as enlarge it, allowing students to have
a better learning experience and better understand network
concepts. Furthermore, students that have a positive expe-
rience from running experiments on the testbed may also be
motivated to continue working with it and donate personal
resources to the testbed.

In the next section we outline the challenges facing a P2P
network testbed design, and then present the Seattle archi-
tecture in Section 4. We detail one of Seattle’s essential
components – the programming language virtual machine –
in Section 5. Section 6 describes how Seattle has been used,
and details our experiences with the platform. We describe
related work in Section 7 and conclude with Section 8.

3. CHALLENGES IN DESIGNING A PEER-
TO-PEER TESTBED

In this section we provide an overview of the challenges a
successful peer-to-peer testbed design must address.

Safety. The highest priority in designing and implement-
ing an open testbed is end-user security. Volunteer machines
must be able to execute general purpose code, and yet rep-
resent as little risk to the end-user as possible. Since a mali-
cious researcher has the ability to run code on user machines,
the testbed node hosting researcher code must provide a rea-
sonable expectation of security even with unpatched vulnera-
bilities on the underlying system. Additionally, code execut-
ing on the testbed must not interfere with the performance
of the volunteer’s other applications or cause the volunteer
to be notified about illegal or unwanted traffic [12].

Usability. The testbed must have tools to make it easy
for researchers to use it. In particular, this involves tool sup-
port. For example, as PlanetLab grew, tools like PLuSH [1],
Stork [10], and CoDeploy [23] have significantly simplified its
use.

Scalability. The testbed must be able to grow to a large
size. The management overhead must remain low regardless
of the size of the testbed.

Simplicity. A peer-to-peer testbed software stack must
operate without any volunteer intervention. Volunteers
should not have to report problems or install security up-
dates, and volunteering resources must be trivial.

Flexibility. Researchers must be able to write useful
programs, and when permitted, the volunteer’s applications
must be able to interact with testbed code to allow pro-
duction services to use the testbed. While an end host
testbed may not be as general as PlanetLab, it should allow
researchers to execute general purpose code.

Portability. A peer-to-peer testbed must run on a wide
variety of operating systems and architectures. Nodes must
be able to handle real-world network conditions like discon-
nected operation, IP address changes, and middle boxes like
NATs and firewalls. Without portability, it is unlikely that
the testbed will be representative of the variety of devices
and networks making up the internet.

Incentives. There must be incentives for volunteers to

join the testbed. Altruism can grow a testbed to a very
large size [4, 5], but providing volunteers with other incen-
tives, like desirable software features or better application
performance, may attract even more participation. Simi-
larly, there must be incentives to attract new researchers to
the testbed.

In the next section we give an overview of the Seattle ar-
chitecture and due to space constraints only briefly mention
how Seattle addresses the challenges listed above. Section 5
gives a more in-depth look at the design of the Seattle virtual
machine – a crucial component responsible for addressing
the safety challenge.

4. SEATTLE ARCHITECTURE OVERVIEW
We term a program that a researcher wants to run on

the testbed a service. A researcher’s code is executed in a
programming language virtual machine that runs python
code, of which multiple separate instances can run on a sys-
tem. Each Seattle node runs a node manager to mediate
access to the system’s set of VMs. This makes the system
usable by allowing authorized researchers to perform actions
such as starting, stopping, and reading the log from a vir-
tual machine. Software on a Seattle node is updated using
a push-based software updater, which updates the node
manager, the virtual machine code, as well as the software
updater itself. The software updater requires no user in-
tervention and helps to address the simplicity challenge. A
service manager provides researchers with a simpler inter-
face to interact with the node manager. The service man-
ager enables researchers to upload service code, to monitor
the service, and to perform various other actions. A service
manager addresses the usability challenge.

Seattle uses a clearinghouse. to mediate access to a
shared pool of VMs. Researchers make requests to the clear-
inghouse for additional VMs on the testbed, which may be
granted or denied according to a policy. Researchers may
also choose not to use a clearinghouse, preferring to directly
control the donated virtual machines.

Several DHT-like lookup services are leveraged to help
a service manager or a clearinghouse to locate VMs under
their control. A node manager associates its IP and port
with the public key of all of the keys that control a VM.
The service manager or clearinghouse can then look up its
key to locate the virtual machines it controls. A scalable
lookup service, like a DHT, is important for meeting the
scalability challenge of the testbed.

Finally, there are other services that run inside and out-
side of the testbed that enhance its functionality. These
services mediate connections to nodes behind NATs, ensure
that network traffic is confined to the testbed, and help to
reduce the testbed’s load on public servers.

5. SEATTLE VIRTUAL MACHINE
The Seattle programming language VM can execute gen-

eral purpose code with a few limitations intended to protect
the host system from the experiment code. In this way, the
VM most directly represents the tension between the chal-
lenges of flexibility, portability, and safety from Section 3.
The Seattle VM is, in purpose, but not in implementation,
analogous to a sliver on PlanetLab. For example, untrusted
researchers are allowed to execute code on Seattle end-user
systems because certain actions are disallowed through tech-

3



nical means instead of through policy. For example it is not
possible to send ICMP packets, only TCP and UDP. A flaw
in the VM implementation does not allow an attacker to es-
cape the VM or consume undue resources on the end user’s
machine. The rest of this section overviews the design of the
Seattle VM.

5.1 Programming Language.
The Seattle VM executes service code written in a subset

of the Python language. In order to minimize the risk of
bugs, the VM attempts to use only parts of the underlying
trusted computing base that are stable, conceptually simple
and widely used. For example, we allow use of a vanilla type
of the Python interpreter’s style of classes as well as only
simple types; we do not allow classes that subclass basic
types, provide their own namespace storage mechanisms, or
utilize other rarely used or new functionality.

The VM language supports a subset of Python language
primitives and constructs — it is, in fact, executed by the
Python interpreter. The VM loads the service code as text
and then uses a standard module built into the interpreter to
build a parse tree. The VM verifies that the parse tree of the
service only contains the supported subset of the language.
If there is a disallowed language construct, the service code
is rejected without executing.

The VM verifies multiple aspects of the Python interpreter
before it begins executing service code. Built-in Python
functions that are allowed are checked to ensure their sig-
natures (i.e. arguments) are as expected. This is done to
prevent changes to built-in functions due to different inter-
preter implementations or versions resulting in unintended
functionality being exposed to untrusted researcher code.

The set of allowed built-ins consists of 87 items obtained
directly from Python’s interpreter. This includes definitions
of constants such as True and exceptions (53), type conver-
sion functions like float or chr (15), math functions like max
and pow (8), as well as miscellaneous Python operations
like len and range (11). Notice that operations like import
(which includes code from another module), eval, and exec
are not allowed because verifying their safety is known to be
difficult. Further, to prevent escape of user code from within
the VM we minimize the trusted computing base by employ-
ing a novel layering approach to move numerous standard
libraries out of the trusted computing base. [12].

5.2 API
The set of built-in Python functions mapped into a VM

excludes all functions that write data to disk, utilize network
bandwidth, or perform other complex tasks. To handle these
tasks, we provide a high-level API containing 17 API calls
with another 14 calls accessible through objects. This pro-
vides programmers with the ability to read and write files
on the disk, start threads, obtain locks, and send TCP and
UDP traffic, and other abilities [30].

The API provides a high-level interface and has calls like
send_UDP_packet and getmyip instead of calls like bind and
setsockopt. This high-level interface makes it easier to infer
the programmer’s intent, which simplifies reasoning about
security, and prevents exploitability of low-level bugs such
as many syscall vulnerabilities. For example, our API does
not allow the researcher to directly set socket options. It
therefore protects against almost all exploits in setsockopt,
which have been previously exploited in multiple operat-

ing systems (CVE-2004-0370, CVE-2004-0424). Some of our
API calls will indirectly set socket options on some operat-
ing systems to provide consistent behavior across operating
systems. However, our API implementation will only call a
specific set of calls in a specific order. This is more secure,
but less flexible than allowing the service to pass arbitrary
socket options to the underlying OS.

5.3 Resource Accounting and Restriction
It is essential that services are performance isolated from

the other applications on an end-user’s machine. The re-
source accounting and restrictions layer of the Seattle VM
tracks 17 resources, including CPU, memory, total disk
space, read and write rates for the network and disk, TCP
and UDP ports, and a few others [30]. If the service at-
tempts to use a resource that is not assigned to the VM,
such as a disallowed UDP port, the layer will prevent access
to it. If the service attempts to consume too much of a
resource, the call will either be denied or, for rate limited
resources, the call will be delayed.

Most actions that consume resources are API calls that
pass through the the resource accounting and restrictions
layer. However, CPU and memory may be consumed with-
out making any API calls. These resources are monitored
by a separate thread or process (depending on the OS). If
a service’s memory use becomes too high, the service is ter-
minated. To meter CPU use, the service is checked period-
ically. If the CPU use exceeds the allowance, the service’s
execution is temporarily suspended to compensate.

The resource metering that is done by Seattle is based
upon hard resource limits. This means that a VM is ex-
pected to have a fixed amount of the resources on the un-
derlying user’s machine regardless of the other programs or
VMs that are executing. This ensures that experiments only
minimally conflict with user programs.

6. EXPERIENCES WITH SEATTLE
In this section, we describe the current state of the Seat-

tle testbed, including its use by educators and researchers.
Then we describe our ongoing efforts to grow the scale of
the testbed by involving developers.

6.1 Current State of Seattle
The Seattle testbed is deployed on a wide variety of sys-

tems. As Figure 1 shows, from Jan 2010 to Jan 2011, 4123
unique IP addresses have retrieved update information from
our software update server (omitting indexing bots). This
does not mean that there are this many actual Seattle nodes,
however, as there may be multiple nodes behind a single
public IP. Also, nodes may change IP addresses or may have
uninstalled the software. Additionally, a significant number
of Seattle installations are behind NATs and firewalls. The
NAT traversal service has been contacted by several hun-
dred unique Seattle installations. Thus the Seattle testbed
is comprised of a diverse set of resources that come from
different sources.

We began with an in-house deployment on about 10 het-
erogeneous systems including Linux, Windows, Mac, and
even mobile devices. These provided baseline tests for the
portability of our virtual machine implementation and the
remainder of the Seattle environment. Once we were com-
fortable with a small number of diverse nodes, we deployed
onto all of PlanetLab. Educational use drove our software’s

4



adoption at both universities and with home users. In the
meantime, we have continued to aggressively pursue other
deployment avenues. For instance, we have deployed Seat-
tle onto buses through a partnership with Dome [35], al-
though these nodes have not been made available on our
public clearinghouse.

We currently run two clearinghouses, a public clearing-
house and a beta clearinghouse. The beta clearinghouse is
used internally to test nodes and network environments that
are not ready for production use, such as our containment
service and buses. The beta clearinghouse previously con-
tained nodes behind NATs or firewalls, but as we vetted
our support for these systems, we moved them to the public
clearinghouse and made them available to end-users.

The public clearinghouse is available for anyone to sign
up for an account [32]. The clearinghouse uses a resource
incentives model where each computer a researcher adds to
the clearinghouse gives the researcher access to ten virtual
machines at a time, generally on different physical machines.
This is sustainable because each virtual machine consumes
only about one eighth of the donated resources and all re-
sources aren’t fully utilized at all times. This provides in-
centives for educators and researchers to grow the testbed
in exchange for a large and diverse set of resources

6.2 Research Use
Currently the Seattle testbed is being used by research

groups in the US, Canada, and Europe. Despite the fact that
development of Seattle started in July of 2008 and it was
not made available to researchers until June of 2009, some
interesting applications have already been constructed. In
particular, researchers have found Seattle useful for accurate
modeling of the diverse networking properties of Internet
hosts. Here we give two example applications deployed on
Seattle.

HuXiang: This service leverages the distributed nature of
Seattle to implement an end-user-based web server. The
server instances run on Seattle nodes and register a common
domain name with a dynamic DNS service, or announce the
same key in another lookup service. When their browser
resolves the domain name or looks up the key, users are
directed to one of the server instances, with the total load
distributed over all participating nodes. Since nodes may
join and leave the HuXiang formation over time, the web
content can also evade IP address filters.

TryRepy: This web-based IDE allows users to write simple
Repy programs and evaluate them without having to install
Seattle. It allows users to try out the Repy programming
language and get a feel for the language before writing com-
plex applications. TryRepy itself runs on Seattle nodes and
deploys the user written code onto various nodes in order to
evaluate and return the result to the user. The code that
the user inputs to evaluate is run in the safe sandboxed en-
vironment that Seattle provides.

6.3 Educational Use
We made a significant effort to make it as easy as possible

to use the platform in an education context [11]. Seattle pro-
vides instructors with an environment where students can
safely and easily experiment with real-world distributed sys-
tems. To assist instructors we created educational resources
in the form of tutorials and references to teach how to use

the platform and our Python subset. Seattle has been used
in over 18 networking or distributed systems classes. The
students have helped us tremendously to debug our doc-
umentation and implementation as they discovered corner
cases. The experience we have gained from instructional
use has been invaluable.

6.4 Large-Scale Adoption
To reach a larger scale, we aim to expand our outreach be-

yond educators and researchers. We feel that the existence
of a safe, peer-to-peer application platform where resources
can be shared, data and tasks distributed, and new applica-
tion space explored will be of interest to software develop-
ers, including those developing for profit. In the case that
a piece of software has a Seattle dependency, it will have
Seattle bundled along. This will result in increased utility
as the user base grows.

Whether software developers would choose to participate
in an existing clearinghouse, such as the one we maintain,
or would prefer to create a private clearinghouse is unclear.
However, we do feel that there is a strong incentive for de-
velopers to have their software participate in an open clear-
inghouse rather than a private one as this will allow an ap-
plication to benefit from greater network diversity and for
applications with different resource bottlenecks to efficiently
share resources.

In addition to providing users with software or other ben-
efits, we support altruistic users. Relying on the altruism of
Internet users has paid huge dividends for other computing
efforts [4, 5]. In future work, we intend to adopt similar
mechanisms to make our platform more attractive to this
user base.

7. RELATED WORK
Whereas other systems have been developed to harness

volunteers, none have aimed at creating a scalable general-
purpose testbed. Volunteer computing efforts like BOINC [4]
and SETI@Home [5] leverage unused compute resources on
end-user computers. Access to volunteer computing re-
sources is tightly controlled because developers are given
low-level access to the machine without any security-conscious
restrictions. Also, a volunteer computing platform will usu-
ally only execute when the system is idle so resource isolation
is not a major concern.

There have also been a variety of efforts to gather mea-
surements from end user machines [34, 25]. These systems
do not allow researchers to measure paths between users
(unless those intersect) or provide a mechanism for in-situ
experimentation.

Grid computing [17] and testbeds like PlanetLab [26]
leverage resources on dedicated machines. SatelliteLab [14]
sends traffic from end-user systems through PlanetLab
nodes to emulate home node link characteristics. This pro-
vides limited fidelity because traffic does not flow directly
between end nodes. There have been efforts in FIRE [16]
and GENI [19] to increase the scale and diversity of testbed
resources. Seattle is involved in GENI, where it is called the
Million Node GENI project [21], as one of the only projects
that does not rely on dedicated hardware.

Like Java and Lua, Seattle’s virtual machine is a pro-
gramming language VM – it runs as a process and requires
an interpreted language. It has many safety and security
features that are similar to languages like Java. However,

5



compared to other programming language VMs the Seattle
VM has a much smaller trusted computing base due to its
small API and use of security layers [12]. The Seattle VM
also provides stronger resource isolation guarantees.

8. CONCLUSION
In this paper we identified the various problems with the

traditional design of building internet testbeds relying on
dedicated resources. We motivated the need to consider new
testbed designs and presented evidence for why a volunteer
supported testbed of end hosts is a viable design choice. We
then presented a set of challenges for such a design, and gave
an overview of the design and our experiences with Seattle
– a peer-to-peer testbed that we developed and deployed on
over four thousand computers world-wide. We hope that
this paper informs future progress in the research area of
internet testbeds.

9. REFERENCES
[1] J. Albrecht, R. Braud, D. Dao, N. Topilski, C. Tuttle,

A. C. Snoeren, and A. Vahdat. Remote Control:
Distributed Application Configuration, Management,
and Visualization with Plush. In Proc. 21th LISA
(LISA ’07), Dallas, TX, Nov 2007.

[2] Amazon EC2 - Amazon Web Services @ Amazon.com.
http:
//www.amazon.com/gp/browse.html?node=201590011.

[3] D. Andersen, H. Balakrishnan, F. Kaashoek, and
R. Morris. Resilient Overlay Networks. In Proc. 18th
SOSP, pages 131–145, Banff, Alberta, Canada, Oct
2001.

[4] D. P. Anderson. Boinc: A system for public-resource
computing and storage. In GRID ’04, pages 4–10,
Washington, DC, USA, 2004. IEEE Computer Society.

[5] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky,
and D. Werthimer. SETI@home: An Experiment in
Public-Resource Computing. Commun. ACM,
45(11):56–61, 2002.

[6] A. Balachandran, G. M. Voelker, P. Bahl, and P. V.
Rangan. Characterizing user behavior and network
performance in a public wireless lan. In SIGMETRICS
’02, pages 195–205, New York, NY, USA, 2002. ACM.

[7] S. Banerjee, T. Griffin, and M. Pias. The interdomain
connectivity of PlanetLab nodes.

[8] A. Bavier, N. Feamster, M. Huang, L. Peterson, and
J. Rexford. In VINI veritas: realistic and controlled
network experimentation. SIGCOMM CCR,
36(4):3–14, 2006.

[9] R. Bhagwan, S. Savage, and G. Voelker.
Understanding Availability. In IPTPS’03, page 256.
Springer-Verlag New York Inc, 2003.

[10] J. Cappos, S. Baker, J. Plichta, D. Nyugen,
J. Hardies, M. Borgard, J. Johnston, and J. Hartman.
Stork: Package Management for Distributed VM
Environments. In Proc. 21th LISA (LISA ’07), Dallas,
TX, 2007.

[11] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and
T. Anderson. Seattle: a platform for educational cloud
computing. SIGCSE Bull., 41(1):111–115, 2009.

[12] J. Cappos, A. Dadgar, J. Rasley, J. Samuel,
I. Beschastnikh, C. Barsan, A. Krishnamurthy, and
T. Anderson. Retaining sandbox containment despite
bugs in privileged memory-safe code. In Proceedings of
the 17th ACM conference on Computer and
communications security, CCS ’10, pages 212–223,
New York, NY, USA, 2010. ACM.

[13] D. R. Choffnes, F. E. Bustamante, and Z. Ge.
Crowdsourcing service-level network event detection.

In Proceedings of the ACM SIGCOMM 2010
conference, SIGCOMM ’10, pages 387–398, New York,
NY, USA, 2010. ACM Press.

[14] M. Dischinger, A. Haeberlen, I. Beschastnikh, K. P.
Gummadi, and S. Saroiu. Satellitelab: adding
heterogeneity to planetary-scale network testbeds.
SIGCOMM CCR, 38(4):315–326, 2008.

[15] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy,
and T. Anderson. Profiling a million user dht. In IMC
’07, pages 129–134, New York, NY, USA, 2007. ACM.

[16] FIRE: Future Internet Research and Experimentation.
http://cordis.europa.eu/fp7/ict/fire/.

[17] I. Foster and C. Kesselman, editors. The Grid:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, Inc., 1999.

[18] M. J. Freedman, E. Freudenthal, and D. Mazières.
Democratizing content publication with Coral. In
NSDI’04, March 2004.

[19] GENI: Global Environment for Network Innovations.
http://www.geni.net/.

[20] J. Ledlie, P. Gardner, and M. Seltzer. Network
Coordinates in the Wild. In Proc. 4th NSDI,
Cambridge, MA, Apr 2007.

[21] MillionNodeGENI – GENI: geni – Trac. http:
//groups.geni.net/geni/wiki/MillionNodeGENI.

[22] Netmarketshare. http://www.netmarketshare.com/
os-market-share.aspx?qprid=9, Accessed February
14, 2012.

[23] K. Park and V. S. Pai. Deploying Large File Transfer
on an HTTP Content Distribution Network. In
WORLDS’04, San Francisco, CA, Dec 2004.

[24] K. Park and V. S. Pai. Comon: a mostly-scalable
monitoring system for planetlab. SIGOPS OSR,
40(1):65–74, 2006.

[25] V. Paxson, A. Adams, and M. Mathis. Experiences
with NIMI. In SAINT’02. IEEE Computer Society
Washington, DC, USA, 2002.

[26] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into
the Internet. In Proc. HotNets–I, Princeton, NJ, Oct
2002.

[27] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy,
and A. Venkataramani. Do incentives build robustness
in BitTorrent? In Proc. 4th NSDI, Cambridge, MA,
Apr 2007.

[28] PlanetLab. http://www.planet-lab.org. Accessed
February 15, 2012.

[29] H. Pucha, Y. C. Hu, and Z. M. Mao. On the impact of
research network based testbeds on wide-area
experiments. In IMC ’06, pages 133–146, New York,
NY, USA, 2006. ACM.

[30] RepyLibrary – Seattle – Trac.
https://seattle.cs.washington.edu/wiki/RepyApi.
Accessed February 15, 2012.

[31] Seattle: Open Peer-to-Peer Computing.
http://seattle.cs.washington.edu/. Accessed
February 15, 2012.

[32] SeattleGENI - Global Environment for Network
Innovations using Seattle.
https://seattlegeni.cs.washington.edu/. Accessed
February 15, 2012.

[33] Y. Shavitt and E. Shir. Dimes: let the internet
measure itself. SIGCOMM CCR, 35(5):71–74, 2005.

[34] C. Simpson, D. Reddy, and G. Riley. Empirical models
of TCP and UDP end-user network traffic from
NETI@ home data analysis. In PADS’06, pages
166–174, 2006.

[35] H. Soroush, N. Banerjee, A. Balasubramanian, M. D.
Corner, B. N. Levine, and B. Lynn. DOME: A Diverse
Outdoor Mobile Testbed. In HotPlanet, June 2009.

[36] N. Spring, L. Peterson, A. Bavier, and V. Pai. Using

6



planetlab for network research: myths, realities, and
best practices. SIGOPS OSR, 40(1):17–24, 2006.

[37] N. Spring, L. Peterson, A. Bavier, and V. Pai. Using
PlanetLab for network research: myths, realities, and
best practices. ACM SIGOPS Operating Systems
Review, 40(1):17–24, 2006.

[38] Storm worm: More powerful than Blue Gene? -
ZDNet UK. http://news.zdnet.co.uk/security/0,
1000000189,39289226,00.htm.

[39] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan,
D. Kostić, J. Chase, and D. Becker. Scalability and
accuracy in a large-scale network emulator. In OSDI
’02, pages 271–284, New York, NY, USA, 2002. ACM.

[40] Windows 7 system requirements.
http://windows.microsoft.com/en-US/windows7/
products/system-requirements, Accessed February
15, 2012.

[41] How to upgrade to windows xp.
http://support.microsoft.com/kb/316639, Accessed
February 15, 2012.

[42] H. Zheng, E. K. Lua, M. Pias, and T. G. Griffin.
Internet routing policies and round-trip-times. In In
PAM, 2005.

7


