DE GRUYTER

DOI10.1515/pik-2013-0043 === PIK 2014; aop

Paul Miiller*, Dennis Schwerdel and Justin Cappos

ToMaTo a Virtual Research Environment for Large
Scale Distributed Systems Research

*Paul Miiller: E-Mail: pmueller@informatik.uni-kl.de
Dennis Schwerdel: E-Mail: schwerdel@informatik.uni-kl.de
Justin Cappos: E-Mail: jcappos@poly.edu

Abstract: Networks and distributed systems are an impor-
tant field of research. To enable experimental research in
this field we propose a new tool ToMaTo (Topology Man-
agement Tool) which was developed to support research
projects within the BMBF funded project G-Lab. It should
support researchers from various branches of science who
investigate distributed systems by providing a virtual en-
vironment for their research.

Using various virtualization technologies, ToMaTo is
able to provide realistic components that can run real-
world software as well as lightweight components that can
be used to analyze algorithms at large scale.

This paper describes how an additional virtualization
technology from the Seattle testbed has been added to
ToMaTo to allow even larger experiments with distributed
algorithms. Moreover the paper describes some concrete
experiments that are carried out with ToMaTo.

1 Introduction

Many research projects focus on improving various aspects
of distributed networks e.g. networking concepts and ar-
chitecture of networks in general [MROS8]. All of these
research projects need ways to evaluate their ideas and
results. Simulations can model reality, but will never show
unforeseen behavior as real systems do. Therefore re-
search environments aim to provide a realistic environ-
ment for experiments.

Realism is an important aspect of a virtualized envir-
onment it describes how similar the environment is to the
real world. Some effects of reality are only visible in
environments with a certain degree of realism, which
restricts the kinds of experiments that can use the re-
search environment. On the other hand it is important to
use the resources efficiently and run as many experiments
as possible on as few resources as possible since research
environments are expensive in both acquisition and op-
eration. There exists an obvious trade-off between paralle-

lism and realism in practice. Real systems offer the best
realism possible but only allow one experiment to use the
resources at a time. Research environments can use vir-
tualization technologies to achieve parallelism at the cost
of losing realism.

Most existing research environments for distributed
systems (testbeds) operate on a fixed level of realism and
parallelism. A lack of parallelism results in highly limited
resources so that only a small number of instances can be
used across all researchers. Conversely, if an environment
has a limited amount of realism, certain types of experi-
ments cannot be run at all. Federations allow users to
create experiments spanning testbeds with different de-
grees of realism and parallelism. This reduces resource
wastage but also causes new problems since some testbed
features are not usable across testbed boundaries.

The topology management tool (ToMaTo) [SHG+11]
has been developed as part of the German-Lab project
[Ger, SGH+10] to provide a virtualized research environ-
ment for networking experiments. ToMaTo uses a unique
approach to reduce resource wastage: Users can select
between multiple virtualization technologies for each
component of their experiment. This way each component
uses only the resources it needs to provide the realism that
the experiment needs and thus parallelism is maximized
and resource wastage minimized. ToMaTo effectively oper-
ates on multiple levels on the realism/parallelism scale as
shown in Figure 1.

Seattle

oo et e Comng

2.

PLANETLAB

Paralellism

Realism

Figure 1: Realism/Parallelism scale.



2 —— Paul Miiller, Dennis Schwerdel and Justin Cappos

This paper describes how the restricted python language
(Repy) [CDR+10] developed as part of the Seattle testbed
[CBKAO09] has been added to ToMaTo as a new virtualiza-
tion technology that offers extremely lightweight program-
mable devices. Section 2 analyses related work and discuss
virtualization technology used by different testbeds. The
ToMaTo testbed is described in Section 3 and Section 4
explains the integration of the Repy technology. Section 5
explains the usage of ToMaTo in experimentation and sec-
tion 6 explains three experiments that have been con-
ducted using ToMaTo before section 7 concludes.

2 Related work

Emulab [GRLO5, ESLO7] is a testbed that does not use
virtualization technology for its hosts, so physical compu-
ters can be used for experiments. While this setup offers
the best possible realism, it may waste resources since only
one experiment component can be run on a host at a time.
To mitigate this, Emulab also provides a small number of
nodes that have operating system virtualization and may
act as multiple different nodes. This turns one physical
node into several virtual nodes. These virtual nodes have
an increased parallelism since multiple instances can be
run on one host, but the hosts are still exclusively used by
one experiment. The virtual nodes also have reduced rea-
lism when compared to physical nodes.

The Planet-Lab testbed [PBFM06, PRO6] uses contain-
er-based virtualization technology and offers its users ac-
cess to Linux hosts with limited kernel-space access. This
virtualization technology is a good compromise of realism
and parallelism from an operating system point of view.
Still, some experiments can not be executed if they need
more access to the operating system or, more likely, the
network configuration. The parallelism is much greater
than dedicated environments like Emulab offers. However,
resources are still wasted since the container-based virtua-
lization runs one complete user space system for each
virtual device.

The Seattle testbed [CBKAO9] allows its users to
execute Repy programs on the testbed nodes. Testbed
nodes are actually multi-use devices like laptops, phones,
desktops, etc. that are used by end users around the
world. Repy programs can use limited memory and proces-
sor resources on the host computer, and network resources
are shared by assigning different port ranges to different
Repy programs. The Repy language and the restrictions
enforced on Repy programs hugely limit the realism of the
Seattle testbed. On the other hand, the Seattle testbed
offers a very high parallelism. There are only few dedicated

DE GRUYTER

Seattle servers as the parallelism would be limited by
port number restrictions, in fact most Seattle resources are
obtained by volunteer computing.

Simulation tools like ns-3 [ns311], omnet [VHO8] and
mininet [LHM10] model reality to a certain degree and are
able to run huge experiments. Simulations can modify the
progress of time in the simulated environment and thus use
the full resources of the host during the whole experiment
run. Therefore simulators offer the best possible resource
usage but also a very limited realism since the simulation
environment contains only a model of the reality.

3 ToMaTo

ToMaTo is a topology-oriented networking testbed de-
signed for high resource efficiency, i.e. high parallelism
where possible but high realism where needed. Topologies
consist of devices (produce and consume networking data)
and connectors (manipulate and forward data). Devices
contain a set of networking interfaces that can be connected
to connectors. Figure 2 shows a simple topology consisting
of five devices (one central server and four clients) and
three connectors (two switches and one Internet connec-
tor). To increase both flexibility and resource efficiency,

ToMaTo offers different types of devices and connec-
tors. Users can choose between hardware virtualization,
which provides an environment nearly identical to a real
computer but has a high resource usage, and container
virtualization that uses fewer resources but does not suit
all needs. The topology in Figure 2 uses hardware virtuali-
zation for the server since it runs a software that requires
hardware virtualization. To save resources it uses contain-
er virtualization for the clients. This example shows that
the testbed offers full flexibility on the one hand while also
saving resources on the other hand.

L
clientl

(e {a

client2

Figure 2: Example topology.

The default connector type is a VPN connector with a
selectable forwarding policy (hub, switch or router). Public



DE GRUYTER

services, cloud resources or even other testbeds can be
combined with ToMaTo topologies by using external net-
work connectors. To help users with running their net-
working experiments, ToMaTo offers an easy to use, web-
based front-end with an intuitive editor. Users can control
their devices directly from their browser or using a VNC
client of their choice. Advanced tools like link emulation
and packet capturing are included in ToMaTo and can be
used to run and control experiments.

Facility Hosts
(Hostmanager)

VNC, SSH, Hostserver, etc.

Figure 3: ToMaTo structure.

The ToMaTo software consists of three tiers as shown in
Figure 3. The hosts provide virtualization technology and
a complete toolset needed for advanced features like link
emulation, packet capturing, etc. The back-end compo-
nent contains all the control logic of the ToMaTo software
and remotely controls the hosts. Different front-ends use
the XML-RPC interface provided by the backend compo-
nent. The most important front-end is the web-based user
front-end that allows users to edit and manage their topol-
ogies from their browser using modern web technologies.
Other front-end software includes a command-line client
that allows easy scripting and an adapter for the Teagle
federation framework [CMW10, WMFP11].

Home | Devices Network Topology Options

(% Connect = Prepare H
A '
b # Delete @ Q & Destroy L L
Select & Debian 6.0 Debian 6.0
# Delete
Mo Start Stop (Openvz) (KVM) Switch | Internet
Modes Topology control Common elements

i o ¢ ]
P Element openvz2 o
£ Connect

B start

& Destroy

B Console

!l Resource usage
1 =) Download image

=) Upload image

intemetl.

/> Configure

opemvzé

openvz8

Figure 4: ToMaTo editor.

One of the key features of ToMaTo is its graphical user
interface that allows even unexperienced users to create
complex network topologies by drag and drop. ToMaTo

ToMaTo a Virtual Research Environment for Large Scale Distributed Systems Research =— 3

features an easy-to-use editor (Figure 4) to create, manage,
and control networking topologies. With this editor, users
can configure their topology components and control them
in the same intuitive interface. The editor also gives users
direct access to their virtual machines using web-based
VNC technology.

4 Repy

The Repy sandbox was created to isolate code for the
Seattle testbed [CBKA09]. The major goals of the sandbox
are to provide performance isolation, security isolation
[CDR+10], and a portable programming interface across
diverse device types. At a high level, a Repy sandbox is
intended to be secure enough that one would allow a non
experienced user to execute code within it. In this way, it is
somewhat similar to existing sandboxes like Flash and
Java, except these are meant to execute code from visited
webpages and the like. The Seattle model intends that
resources will be used in more of a cloud like manner, so
that unknown parties may push code to a user’s machine
on demand. However, the attack surface is minimized, in
part by restricting the sandbox functionality.

Clearly, performance isolation is also an important
goal for Repy. A Repy sandbox is meant to be lightweight
yet have the same sort of performance isolation that exists
in commercial operating system VM offerings. To achieve
this, Repy uses operating system hooks commonly used
for debugging to vary the amount of CPU and memory
available to a sandboxed program. To restrict other re-
sources such as network and disk I/0, Repy checks calls
that access these resources and prevents or delays their
execution if they go over a configurable quota. This allows
the performance impact of a Repy program to be selected
and controlled. (For our purpose, this allows the amount
of parallelism to be very high while retaining realistic
performance isolation amongst instances.)

The Repy sandbox is based upon Python and con-
sumes few resources. Running a hello-world Repy program
takes about 1 MB of memory on most computers. The per-
formance impact seen by running code in Repy depends
on the operation, but averages about 7% over native Py-
thon on most benchmarks.

While Repy’s interface was designed explicitly to mini-
mize and secure the attack surface, it was also designed for
extensibility in two ways. First, a mechanism similar to
systemcall interposition (or object capability systems) is
built into Repy. This allows one to enforce policies upon a
Repy sandbox without needing to change the trusted com-
puting base [CDR+10]. For example, if one wants to restrict



4 —— PaulMiiller, Dennis Schwerdel and Justin Cappos

access to certain network destinations or sources, this can
be added in a secure manner without changing Repy.

Repy itself was also designed to be extendable by
adding new functionalities. Adding access to a new type of
device or changing the level of access to a device requires
a few minor modifications to the code. One simply codes
the new routines, connects them into a module that per-
forms a security validation on data passing through it, and
this is now available to Repy programs running in this
modified sandbox. This was leveraged to integrate Repy
with ToMaTo.

4.1 Integration

ToMaTo’s structure and its support for different device and
connector types make it very flexible and extensible. The
basic interaction point that all devices and connectors
must support are network bridges where virtual network
interfaces can be connected. New element types can be
easily added to ToMaTo as long as they fit into the basic
topology model (devices with interfaces, connectors and
connections) and support bridges as interaction points. All
other features are optional and can be described by cap-
ability records. Thus, the integration of programmable
devices as a new device type was easily possible with
minimal changes to ToMaTo.

The first part of the integration of Repy as programma-
ble device into ToMaTo was adapting Repy and thus creat-
ing ToMaTo-Repy. In the Seattle testbed, the interface for
Repy scripts contained methods to access the network via
UDP/IP and TCP/IP, to read and write files in a dedicated
folder and some utility methods to retrieve the time, set
timers etc. These methods needed to be exchanged with
network interfaces speaking Ethernet to match the ToMaTo
model.

ToMaTo-Repy extends Repy and adds the capability to
create and connect to virtual network interfaces (VNIs).
The names of the VNIs and their alias seen by Repy-scripts
can be set via command-line arguments. The programming
interface exposed to the repy-scripts has been extended to
include methods to list available VNIs, send data on a
specific VNI and receive data from one or all VNIs. The
method to receive data allows non-blocking calls as well
as blocking calls with a configurable maximum timeout.
To avoid polling, a special method is exposed that listens
on all VNIs at the same time and returns the received data
as well as the name of the VNI it has been received on.

The data units that scripts in ToMaTo-Repy work with
are raw Ethernet packets. The scripts are free to parse the
headers according to Internet standards or to use custom

DE GRUYTER

protocols to speak to other devices. Also the networking
behavior (i.e. protocol handling) can be completely de-
fined by the scripts, and there is no kernel that will process
the Ethernet packets. Despite the name “programmable
device”, users can also use these devices to implement
connectors and middleboxes like firewalls, routers, etc.

To simplify the usage of ToMaTo-Repy when working
with Internet protocols, the struct library has been added
to the interface for scripts to help encoding and decoding
binary data structures. Also a collection of ToMaTo-Repy
scripts containing implementations of several Internet pro-
tocols is publicly available and constantly extended to
help users program their programmable devices.

ToMaTo-Repy has been packaged for Debian-based
systems like the ToMaTo hosts and is installed during setup
of the hosts. The backend component of ToMaTo has been
extended to include ToMaTo-Repy as a third device type
called programmable device. Users can configure para-
meters that are passed to the script upon execution. This
way the same script can be used for multiple devices and
variable data like addresses can be configured separately.
The virtual machine based devices allow users to upload
and download the device image, i.e. the virtual harddisk.
For programmable devices this paradigm is used to upload
and download the ToMaTo-Repy scripts to/from the de-
vices. Also a collection of ready-to-use images, called tem-
plates, is available for programmable devices like it is for
the other device types. These templates include a pingable
node, a switch, a DNS server, and a DHCP server. The
output of the device’s script is directed to a log file and can
be viewed using the same VNC technology used to access
the consoles of virtual machine based devices.

4.2 Evaluation

The introduction of programmable devices into ToMaTo
using Repy from the Seattle testbed allows users to use
networking devices in their experiments that can be easily
programmed but do not have the resource usage and over-
head of virtual machines.

ToMaTo-Repy offers users to program protocols at
Ethernet level with the simplicity of the high-level pro-
graming language python. The library “tomatolib” con-
tains a collection of protocol implementations and code
snippets written in ToMaTo-Repy that can be used to write
complex programs. Table 1 shows the code sizes of exam-
ple programs by counting non-empty lines of code of the
script Lines of code Script Library Total defining the pro-
gram, the included parts of tomatolib and the total lines of
the combined script.



DE GRUYTER

Lines of code | Script | Library | Total

Pingable node 12 242 | 254
Switch 5 29 34
DNS server 22 377 399
DHCP server 21 386 | 407
partial IRC server 27 382 | 409

Table 1: Source code size examples.

Besides simplicity, resource usage and performance are
important aspects of the new device type. The resource
usage of the programmable devices depends on the script
that is being executed. For most scripts, the overhead of
the python interpreter and the Repy sandbox is much more
than the resources needed by the script itself. The amount
of RAM that is being used has been measured to be be-
tween 5 and 10 megabytes, but of course this value de-
pends on the software versions and the script. The Repy
sandbox has the ability to restrict the resource usage of the
scripts it executes, which could be used to limit the re-
source usage when needed.

Since Repy runs in user space, additional context
switches are needed for packet processing. Also python is
expected to perform worse than the highly optimized ker-
nel code written in C. A ping experiment has been run to
determine the additional overhead of a Repy node com-
pared to pinging interfaces of the virtual machine based
devices. Two different Repy nodes have been implemented
that both are able to respond to ARP requests and to ICMP
echo requests. The first implementation hierarchically dis-
sects the packet headers and processes them in a modular
way while the second implementation picks only those
byte ranges from specific offsets that are needed to detect
the request and recombines them to form the answer.
Figure 5 shows the CDF and the median RTT of the different
implementations and device types. Repy performs better
than the KVM hardware virtualization since the Repy script
does not have the overhead of a complete kernel. The
OpenVZ container virtualization is able to beat all other
device types because it handles the pings inside a different
namespace of the host kernel without any context
switches. Figure 5 shows, that the Repy programmable
device introduces an overhead between 0.1 and 0.15 milli-
seconds due to context switching and the python lan-
guage. Notably the optimized Repy implementation was
able to reduce the overhead significantly. Even for the
normal implementation, the overhead introduced is low
enough to allow networking experiments with precise link
emulation. Since version 2.1, the programmable device is
an integral part of ToMaTo and users can use ToMaToRepy
scripts to build complex yet resource efficient devices.
Experiments have shown that the number of programma-
ble devices that can run concurrently on one host is at least

ToMaTo a Virtual Research Environment for Large Scale Distributed Systems Research =— 5

1000 but these values depend on the activity and complex-
ity of the scripts. ToMaTo-Repy helps to extend the rea-
lism/parallelism range of ToMaTo and thus improve its
flexibility and efficiency.

RTT (Ping)
1 e P e
|l ./‘.
: ’
> 0.8 - i i -
= ' ; ]
< : ; I
S 06| i i .
a ' i i
o « 15us 95us « 151ps I 243ps
= ! | S
B 04 .' .
[=} [ 1 !
E . i ]
S ool ; 7 KVM —.=.=
Sl i / OpenVvZ - - - -- 1
: i 7 Repy (fast)
' 4 / Repy (normal) ------
0 Lo Lovvdlinilin i AT T TP Livinnn Lo [T
0 50 100 150 200 250 300 350 400
RTT in us

Figure 5: CDF of RTT experiment.

5 Experimentation

Evaluating distributed algorithms is a complex task. One
approach is to compare the design goals or requirements
with the actual capabilities of the resulting software. In
case of an experimental facility the design goal is to sup-
port experiments and help researchers carry out their
experiments. To evaluate ToMaTo based on this goal sec-
tion 5.1 first develops a classification of experiments in
the German-Lab project and section 5.2 outlines how To-
MaTo supports these types of experiments. Section 5.3
takes a quick look at the efficiency and scalability of
ToMaTo.

5.1 Types of experiments

In general four different experiment types can be identified
in networked respectively distributed systems research.

Access layer experiments. Access layer experiments consid-
er the lower networking layers and examine the usage of
hardware for networking. An example for this experiment
class is mobile handover protocols. These experiments
need access to real hardware, they often need to run cus-
tom operating systems (e.g. with real-time support) and
they need heterogeneous access technologies (3G, IEEE
802.11, Fiber, etc.). In most cases, these requirements can



6 —— Paul Miiller, Dennis Schwerdel and Justin Cappos

only be fulfilled with custom testbeds, thus supporting this
kind of experiment was not a design goal for ToMaTo.

Network layer experiments. These types of experiments
consider the TCP/IP suite and its networking layers. Exam-
ples for this class are experiments with IPv6 extensions
and TCP substitutes. This kind of experiment needs to run
modified kernels. The resources that a single experiment
needs are normally limited to a few devices but these
devices have to be connected in complex network topolo-
gies with link emulation.

Protocol/Algorithm experiments. Experiments with proto-
cols or algorithms work on top of the network layer and
usually consider new approaches for lager networks.
Nearly all peer-to-peer experiments fall in this category.
These experiments need a high number of nodes but usual-
ly no hardware or kernel access. They only need simple
network topologies with link emulation.

Legacy application experiments. Experiments using legacy
software cannot be modeled because of its unspecified or
unpublished behavior. Examples of this software are Skype
and Windows. The experiments with this software often
need special operating system environments including In-
ternet access and link emulation. In turn, these experiments
normally do not need big or complex network topologies.

Experiences of the German-Lab experimental facility show
that most experiments can be categorized fairly well
with this scheme. A few experiments have two experiment
classes, and thus have requirements of both classes. The
resource requirements of the classes are very heteroge-
neous but a general tradeoff between more resource access
and access to more resources becomes evident, i.e. in gen-
eral experiments either need a high number of (light-
weight) resources with restricted access or a small number
of resources with full access.

5.2 Experiment supportin ToMaTo

ToMaTo has been designed to support all experiment
classes identified in section 5.1 except for access layer
experiments because these experiments need a specialized
testbed depending on the access technology. The Wisebed
[BCD+10] and DES testbed [Des10] for example are specia-
lized experimental facilities for sensor networks and wire-
less networks.

Network layer experiments can be done easily in ToMa-
To using KVM devices and virtual switches. The KVM de-

DE GRUYTER

vices over all need flexibility in kernel choice and modifica-
tion required by this experiment class. Switched networks
provide connectivity on layer 2 so that any TCP/IP modifica-
tion or substitute can be examined. Using the command
line frontend even very complex topologies can be easily
designed. The possibility to capture and download network
traffic can be very handy for this kind of experiment.

Protocol/Algorithm experiments are supported in To-
MaTo using OpenVZ devices. Since OpenVZ devices are
very lightweight, a high number of devices can be used
in topologies. Using an Internet connector, external re-
sources like PlanetLab nodes can be included in the ex-
periment. Using the upload/download image feature,
users can prepare a device image once and upload it to all
of their devices. Capturing network traffic and link emula-
tion can be used to debug the protocols.

ToMaTo also supports legacy application experiments
using KVM devices and Internet connectors. KVM devices
can run nearly all x86 operating systems including Win-
dows and BSD, therefore users can build custom environ-
ments for their legacy applications. The legacy application
can communicate with external services using the Internet
connector. Traffic of the legacy application can be cap-
tured and analyzed using specialized tools without any
operating system support.

5.3 Efficiency and scalability

With ToMaTo, users can choose between OpenVZ and
KVM virtual machines. This way, users can get the level of
access that is needed for their experiments and still use as
few resources as possible. A single cluster node can handle
up to 250 OpenVZ devices and up to 50 KVM devices, both
depending on device usage. The networking components
only pose a very small overhead and can handle connec-
tions with over 100 Mb/s without influencing them.

ToMaTo hosts use an existing operating system as
basis and only need small changes that have been
bundled as a software package. This has the advantage
that operating system support and security updates are
available from the original sources and do not have to be
provided by the experimental facility administrators. As
the ToMaTo back-end only controls the hosts and only
contacts them when users change their topologies, the
back-end can handle many host nodes making the solu-
tion very scalable.

ToMaTo can be used to create experimental facilities
with distributed hosts. Limitations in network emulation
apply since the resulting link characteristics are a combi-
nation of real and emulated link properties. ToMaTo offers



DE GRUYTER

long-term link statistics so the users can plan their experi-
ments accordingly. ToMaTo allows its users to design,
manage and control networking topologies for use in net-
work research. ToMaTo fits for a wide range of experi-
ments identified as common in the context of the German-
Lab project. The design of the testbed software offers
efficiency and scalability. ToMaTo is not bound to Ger-
man-Lab and can easily be used to build similar experi-
mental facilities.

In the German-Lab testbed currently 35 of 182 hosts
are ToMaTo-enabled. The goal is to increase this number
also by integrating nodes from international projects and
thereby increase the usability of the testbed. Also the
integration of OpenFlow is already implemented.

6 Experimentsin ToMaTo
6.1 Experiment: German-Lab Deep

ToMaTo has been successfully used for an experiment in
the context of German-Lab Deep [KVS+11] project that
focuses on attack mitigation in VoIP systems. In this sce-
nario, an attacker initiates malicious calls that must be
detected by the distributed VoIP system and blocked at the
nearest gateway using cross-layer components. Figure 6
shows the topology used for this experiment. It contains
several end systems and smart middle boxes using the
KVM technology. In this scenario, it was very important to
explicitly define the links in the topology and to be able to

-4
external2

.4
externall  router:

switch5

switch6

-4
external9 —
externalg

Figure 6: The topology used by a DeepG experiment. It contains an
attacker, a victim and several components needed to mitigate this
attack. Smart routers connect all components.

ToMaTo a Virtual Research Environment for Large Scale Distributed Systems Research =— 7

route traffic over programmable middle boxes. This experi-
ment was central to the whole project and brought together
different software components. A demonstration at the
Euroview conference successfully showed the interoper-
ability of these components using ToMaTo [KVS+11].

6.2 iGreen Mobile Application Test

The research project iGreen aims to introduce location-
based semantic services in the agricultural industry in
order to make use of data available in the public or private
sectors directly in the field. Using Internet-based services
in rural areas is a challenging task because of the lack of
highquality network coverage for WiFi or even cell phones.
The use of satellite connections with high delay as well as
the low availability of network coverage for cell phones
imposes interesting requirements for testing mobile appli-
cations used in the agricultural sector.

The iGreen mobile application (shown in Figure 7) is
designed to offer access to various iGreen services support-
ing the decision making process related to agricultural
tasks like proper fertilization or application of pesticides.
This application will run on mobile devices in the field or
as embedded software on farm machines. In both cases,
the application has to access services that run in a com-
pute cloud using whatever network connection is available
at its location, i.e., connectivity by a mobile carrier or by a
direct satellite link.

A @ 1:36Pm

]
‘.‘Q&Green

Sie haben folgende Optionen
zur Verfligung:

Posteingang

Nachricht erstellen

Figure 7: The iGreen mobile application.



8 —— PaulMiiller, Dennis Schwerdel and Justin Cappos

In an experiment using ToMaTo [SGR12], the prototype
version of the mobile iGreen application has been tested
in different network connectivity scenarios to analyze the
influence of delay and packet loss on the service quality.
In this scenario, the mobile application runs in an emu-
lator, embedded in a ToMaTo topology that contains a
configurable link and a bridge to the Internet where the
iGreen service resides. The test has been carried out with
different link properties, matching the characteristics of
UMTS, GPRS and Satellite links. Hence different imple-
mentation problems resulting in a degraded service qual-
ity have been identified. For example, the software re-
trieved the messages by first requesting a list of message
IDs and then requesting each message synchronously in
a loop. This resulted in huge delays due to the accumu-
lated round-trip-times that could be reduced by request-
ing all messages asynchronously in parallel.

6.3 Malware Analysis Experiment

A live demonstration at the Euroview conference 2011
[SRM11] showed the unique features of ToMaTo that allow
users to analyze network behavior of malicious software.
In this demonstration, the network behavior of an older
Internet worm has been analyzed using ToMaTo. Figure 8
shows the topology that has been used in the demonstra-
tion. It clearly shows that the Internet in the upper left
corner is not connected to the rest of the topology, so all
the other components of the topology had no access to
the Internet and the worm could safely be analyzed with-
out the risk of escape. In most other networking testbeds,
this would not be possible, because there is an implicit
network link to the Internet or to core components of the
testbed.

internet fakertins

|

victiE

swit

nsi _carj%rs_us

Figure 8: The topology used for a malware analysis experiment. This
topology is not connected to the Internet for safety reason.

In the analysis of the malware, first a virtual machine
using KVM and running Windows XP has been configured.

DE GRUYTER

A backup of that machine has been downloaded to be able
to replay the infection later. Using the packet-capturing
feature on the outgoing link and scripted network compo-
nents it was possible to analyze the network behavior of
that software without relying on tools that run inside the
infected machine.

As a result of the analysis as shown in Figure 9, the
control server has been identified as a probably hacked
name server. The protocol used by the control server could
be identified as IRC and even the channel could be cap-
tured. With this information it would be possible to contact
the povider of the control server and shut it down or to try
a man-in-the-middle attack on the control protocol for
further analysis.

¥) malware_analysis - ns1_carders_us - Mozilla Firefox

[ || http:{fcapanord.informatik.uni-K.

ice=ns1_carders_us&h 31,

[’ip=10.08.8.3,mac=02:

mail.com” “nsl.carders.us" :RBOTIFiUSAiXP-65488

Figure 9: Theresults of the malware analysis reveal that a hacked name
server is used as a master server that controls the victims using IRC.

7 Conclusion

To conclude, this paper describes how the Repy sandbox
from the Seattle project was integrated with ToMaTo. This
allows ToMaTo to run experiments that have a high degree
of parallelism, while reducing the realism. By combining
Repy together with the other virtualization technology,
ToMaTo can obtain a much wider range of parallelism/
realism.

This result shows how well-suited ToMaTo is for dis-
tributed systems research since it can provide realistic
components that can run real-world software as well as
lightweight components that can be used to analyze algo-
rithms at large scale. This flexibility allows ToMaTo to use
much less resources than other comparable testbeds in
most scenarios.

Since the research projects based on German-Lab
ended, the GLab facility including the ToMaTo testbed is
open for external users. Interested researchers can contact
the authors or visit the webpage at http://www.tomato-
lab.org for information on accessing the testbed.

The integration of the Repy technology shows how
easy it is to integrate new technology into ToMaTo be-



DE GRUYTER

cause of its flexible architecture. ToMaTo developers are
always open for external contributions and joint research
projects aiming towards further ToMaTo development
and usage.

References

[BCM+10] Tobias Baumgartner, loannis Chatzigiannakis, Maick
Danckwardt, Christos Koninis, Alexander Kroller, Georgios
Mylonas, Dennis Pfisterer, and Barry Porter. Virtualising
testbeds to support large-scale reconfigurable experimen-
tal facilities. In Proceedings of EWSN — 7th European
Conference of Wireless Sensor Networks, pages 210-223,
2010.

[CBKAO09] Justin Cappos, Ivan Beschastnikh, Arvind Krishnamurthy,
and Tom Anderson. Seattle: a platform for educational
cloud computing. In Proceedings of the 40th SIGCSE Techni-
cal Symposium on Computer Science Education, SIGCSE
2009, pages 111-115, 2009.

[CDR+10] Justin Cappos, Armon Dadgar, Jeff Rasley, Justin Samuel,
Ivan Beschastnikh, Cosmin Barsan, Arvind Krishnamurthy,
and Thomas E. Anderson. Retaining sandbox containment
despite bugs in privileged memory-safe code. In ACM Con-
ference on Computer and Communications Security,
pages 212-223, 2010.

[CMW10] K.Campowsky, T. Magedanz, and S. Wahle. Resource man-

agement in large scale experimental facilities. In Network

Operations and Management Symposium (NOMS), 2010

IEEE, pages 930-933, april 2010.

DES-Testbed A Wireless Multi-Hop Network Testbed for fu-

ture mobile networks, Stuttgart, Germany, 06/2010 2010.

Eric Eide, Leigh Stoller, and Jay Lepreau. An experimenta-

tion workbench for replayable networking research. In

Proceedings of the 4th USENIX conference on Networked

systems design & implementation, NSDI’07, pages 16-16,

Berkeley, CA, USA, 2007. USENIX Association.

German-Lab Project. German-Lab Website <http://www.

german-lab.de>.

Shashi Guruprasad, Robert Ricci, and Jay Lepreau. Inte-

grated Network Experimentation using Simulation and

Emulation. In Proceedings of the First International

Conference on Testbeds and Research Infrastructures for

the DEvelopment of NeTworks and COMmunities,

pages 204-212, Washington, DC, USA, 2005. IEEE Compu-

ter Society.

[KVS+11] MichaelKleis, Christian Varas, Abbas Siddiqui, Paul Miiller,

Irfan Simsek, Martin Becke, Dirk Hoffstadt, Alexander Mar-

old, Erwin Rathgeb, Christian Henke, Julius Miiller, and Tho-

mas Magedanz. Cross-layer security and functional compo-
sition fora future internet. Proceedings of 11th Wiirzburg

Workshop on IP: Joint ITG and Euro-NF Workshop “Visions of

Future Generation Networks” (EuroView2011), 2011.

Bob Lantz, Brandon Heller, and Nick McKeown. A network

in a laptop: rapid prototyping for software-defined net-

works. In Proceedings of the Ninth ACM SIGCOMM Work-

shop on Hot Topics in Networks, Hotnets 10, pages 19:

1-19:6, New York, NY, USA, 2010. ACM.

[Des10]

[ESLO7]

[Ger]

[GRLO5]

[LHM10]

ToMaTo a Virtual Research Environment for Large Scale Distributed Systems Research =— 9

[ns311] NS3The ns-3 network simulator. http://www.nsnam.org/,

Accessed 2011.

[PBFMO6] Larry L. Peterson, Andy C. Bavier, Marc E. Fiuczynski, and
Steve Muir. Experiences Building PlanetLab. In OSDI, pages

351-366, 2006.

[PRO6]  Larry L. Peterson and Timothy Roscoe. The design princi-
ples of PlanetLab. Operating Systems Review, 40(1): 11-16,
2006.

[MRO8] Bernd Reuther and Paul Mueller. Future Internet Architec-

ture — A Service Oriented Approach. it — Information Tech-
nology, 50(6), 2008.

[SGH+10] Dennis Schwerdel, Daniel Giinther, Robert Henjes, Bernd
Reuther, and Paul Miiller. German-Lab Experimental Facil-
ity. In Proceedings of FIS 2010 — Third Future Internet Sym-
posium, pages 1-10, 2010.

[SGR+12] Dennis Schwerdel, Joachim Go6tze, Bernd Reuther, and
Paul Miiller. Testing mobile apps in the tomato testbed.
Proceedings of 12th Wuerzburg Workshop on IP (Euro-
View), 2012.

[SHG+11] Dennis Schwerdel, David Hock, Daniel Giinther, Bernd Reut-
her, Paul Miiller, and Phuoc Tran-Gia. ToMaTo — a network
experimentation tool. In 7th International ICST Conference
on Testbeds and Research Infrastructures for the Develop-
ment of Networks and Communities (TridentCom 2011),
Shanghai, China, April 2011.

[SRM11] Dennis Schwerdel, Bernd Reuther, and Paul Miiller. Mal-
ware analysis in the tomato testbed. Proceedings of 11th
Wuerzburg Workshop on | (EuroView), 2011.

[VHO8] Andras Varga and Rudolf Hornig. An overview of the

OMNeT++ simulation environment. In Simutools ’08:
Proceedings of the 1st international conference on Simula-
tion tools and techniques for communications, networks
and systems & workshops, pages 1-10, ICST, Brussels,
Belgium, Belgium, 2008. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering).

[WMFP11] S. Wahle, T. Magedanz, S. Fox, and E. Power. Heterogeous
resource description and management in generic resource
federation frameworks. In Integrated Network Management
(IM), 2011 IFIP/IEEE International Symposium on,
pages 1196-1199, may 2011.

Paul Miiller: University Kaiserslautern,
Computer Science Department,

Paul Ehrlich Street Bld. 34,

67663 Kaiserslautern/Germany


http://www.german-lab.de
http://www.german-lab.de
http://www.nsnam.org/

10 —— Paul Miiller, Dennis Schwerdel and Justin Cappos DE GRUYTER

Dennis Schwerdel: University Kaisers-
lautern, Computer Science Department,
Paul Ehrlich Street Bld. 34,

67663 Kaiserslautern/Germany

Justin Cappos: Polytechnic Institute of
New York University, Six MetroTech Center,
Brooklyn, NY 11201, USA




