
Needles in a Haystack: Using PORT to Catch Bad Behaviors within
Application Recordings

Preston Moore1, Thomas Wies1, Marc Waldman2, Phyllis Frankl1, and Justin Cappos1

1New York University, United States of America, 2Manhattan College, United States of America

Keywords: Domain Specific Languages, Event Processing, Environmental Bugs

Abstract: Earlier work has proven that information extracted from recordings of an application’s activity can be tremen-
dously valuable. However, given the many requests that pass between applications and external entities, it has
been difficult to isolate the handful of patterns that indicate the potential for failure. In this paper, we propose
a method that harnesses proven event processing techniques to find those problematic patterns. The key addi-
tion is PORT, a new domain specific language which, when combined with its event stream recognition and
transformation engine, enables users to extract patterns in system call recordings and other streams, and then
rewrite input activity on the fly. The former task can spot activity that indicates a bug, while the latter produces
a modified stream for use in more active testing. We evaluated PORT’s capabilities in several ways, starting
with recreating the mutators and checkers utilized by an earlier work called SEA to modify and replay the
results of system calls. Our re-implementations achieved the same efficacy using fewer lines of code. We also
illustrated PORT’s extensibility by adding support for detecting malicious USB commands within recorded
traffic.

1 Introduction

‘‘Actions speak louder than words...” - Unknown
It is a well established principle that, in the wake

of an application failure, its actions during execution
can provide clues to the root cause. Such information
cannot only help correct the cause of failure, but also
prevent its repetition through the creation of better test
methods. The challenge is how to identify and extract
this data from large and detailed sources like appli-
cation logs, system call traces, or application record-
ings. In other words, how does one accurately de-
scribe what activity is important and what you should
do when you find it?

In considering this question, we drew inspira-
tion from two sources. The first is our recent study
that confirmed the value of monitoring and modi-
fying an application’s interactions with its environ-
ment (Moore et al., 2019). Using a technique known
as SEA (Simulating Environmental Anomalies), the
study demonstrated that when an application fails, the
causal properties will be visible in the results of the
system calls it made. Further, the study affirmed these
results could be captured and simulated for testing
against other applications. The second source was
the significant amount of literature supporting the use
of event processing techniques over large streams of
data (Agrawal et al., 2008; Hirzel, 2012; Hirzel et al.,

2013; Dayarathna and Perera, 2018). We posited
that techniques currently used to identify problems in
manufacturing environments, or patterns in network
outages, could also be used to accurately recognize
target sequences in large application activity streams.

Building upon these successes, we introduce
a tool that utilizes event processing techniques to
identify behaviors that may cause applications to
fail. What makes this possible is PORT (Pattern
Observation, Recognition, and Transformation), a
new domain specific language we designed with the
goal of describing these behaviors in a briefer and
more easily understood manner than conventional
languages. The descriptions can be used to search
recordings of an application’s actions across a variety
of “activity representations.” That is, it can search ac-
tivities like system calls or remote procedure calls and
determine if an application either executed a desired
behavior or avoided an undesired one. Further, PORT
can specify a set of modifications to be made if a par-
ticular activity sequence is encountered. By combin-
ing passive monitoring and active activity modifica-
tion, PORT can aid in identifying bugs in a wide vari-
ety of programs that might be missed by other testing
strategies.

In order to illustrate PORT’s usefulness, we built
a prototype compiler for the language and carried
out a three part evaluation. The first part consisted

of creating more concise, readable and maintainable
implementations of the anomalies described in our
earlier work on the SEA technique (Moore et al.,
2019). Next, we demonstrate how PORT allowed us
to quickly add support for recorded streams of USB
traffic enabling us to detect and simulate BADUSB-
style attacks (Hak5, 2022) and device ID conflicts.
And, finally, we demonstrate how quickly PORT pro-
grams can process recordings taken from real world
network and compression applications.

The main contributions in this work can be sum-
marized as follows:

• We create a new domain specific language, PORT,
that allows for concise descriptions of patterns
that may be found and transformed in an appli-
cation’s activity stream.

• We show how PORT allows for concise descrip-
tions of anomalies.

• We demonstrate that PORT can be extended to
other activity representations.

• We provide an open source implementation
of PORT at: https://github.com/pkmoore/
crashsimlang.

2 Background and Motivation

Our decision to construct a large tool like PORT was
not one made lightly. It came about after initial ef-
forts revealed existing tools could not meet our re-
quirements. In this section we explain how creating
a distinct language, helped us expand SEA’s applica-
bility to other activity types, such as calls to library
functions and remote procedure calls

2.1 Our Motivating Example

The initial impetus for this work was a desire to
expand the use of our Simulating Environmental
Anomalies (SEA) technique (Moore et al., 2019).
This effort affirmed that problematic environmental
properties, known as anomalies, are visible in com-
munications between an application’s components.
We found that, once captured, these anomalies could
be simulated and tested against other applications.
Results of system calls made during execution were
recorded, modified, replayed and the application’s re-
sponse was noted. Using this strategy, the authors
were able to identify a number of bugs in major ap-
plications.

As a concrete example of the above consider the
“Unusual File types” anomaly discussed in the SEA
paper. This anomaly may be problematic when an

application running under Linux attempts to open and
read data from a file on disk, as Linux requires special
procedures to handle these tasks. The SEA technique,
allows a user to modify the return value of a stat call
to simulate the presence of such a file. PORT simpli-
fies the simulation by using proven event processing
techniques and adding features that make the tool ag-
nostic to the way an application’s activity has been
recorded.

2.2 Building a New Domain Specific
Language

For it to work as we wanted it to, PORT needed to
meet some specific criteria. For starters, it had to
be able to identify specific patterns as they appear in
a recording of application activity. Simple models,
such as a deterministic finite automaton (i.e. a DFA
or a FSA) enhanced to operate on complex structures
do not work because they cannot match certain pat-
terns. In addition, we needed a language that could
easily capture and manipulate the internal contents
of events, like argument data, pointer addresses, for
reuse in subsequent operations.

One possibility is to deploy more expressive au-
tomata models, such as register automata (Kamin-
ski and Francez, 1994) or session automata (Bollig
et al., 2014) that can output modified streams. Sev-
eral feature-rich event processing languages and li-
braries do have these capabilities, but the process is
by no means straightforward. In many cases, produc-
ing such an output stream would require falling back
on the fully-featured nature of a host language (e.g.
Java) – a situation we hoped to avoid.

In the initial stages of PORT’s development,
we also evaluated several complex event processing
(CEP) languages. These languages could provide
some of the pattern and predicate matching primitives
that we wished to incorporate. Sadly, these languages
either lacked other required features or were too com-
plex for the easy-to-use system we wanted to offer.
Typically, programs for these complex event process-
ing engines are written in the engine’s build or host
language, such as Java, Scala or Python that bring
with them a great deal of boilerplate code. Recent
studies have affirmed that excessive and complicated
code patterns can harm understanding and maintain-
ability (Gopstein et al., 2017). Further, it means that
the author and future maintainers of a program must
be fluent in this host language.

3 Language Overview

The PORT language allows its users to completely
describe a mutator, or a program that can recognize

https://github.com/pkmoore/crashsimlang
https://github.com/pkmoore/crashsimlang

a particular event stream and optionally produce a
modified version of that stream. We compile a given
PORT programs into an enhanced transducer that can
operate over complex data structures. The transducer
consists of states, and a series of rules that govern
when the current state should changes and also what
modifications should be made to the input stream.

The transducer rules consist of logical compar-
isons between an event’s parameter values, and the
values stored in the transducer’s registers or the liter-
als specified directly in a program’s code. Using event
processing techniques, PORT maps activity onto a
stream of events, that each consist of a unique identi-
fier (e.g. the name of the function being called) and a
list of parameter values (e.g. the argument and return
values of the called function).

Parameter values are drawn from a set of basic
data values, such as strings and numbers, as well as
user-definable record types. PORT allows users to ig-
nore parameter values that are irrelevant for the partic-
ular task at hand and to create a single abstract event
from several semantically related, but different event
identifiers. In this manner, the transducer can pro-
cess abstract events rather than individually specify-
ing each event.

A PORT transducer processes an input event
stream as follows. Each item in an input sequence
is examined and the transducer’s internal state is up-
dated accordingly. Output is then produced based on
the rules described in the transducer’s program. In
this way, the transducer itself can be thought of as
a sequence of actions that may or may not be exe-
cuted based on the values in the input stream. The
state of the transducer keeps track of the next action
to be executed, as well as a valuation of a finite num-
ber of registers that hold data values. Whether or not
an action is executed depends on a combination of the
transducer state and the values of the current event.
Therefore, executing an action consists of reading the
next event from the input stream, which may update
some of the registers, and then writing the next event
in the output stream.

Figure 1 shows the grammar of PORT’s core lan-
guage. A program is split into two parts: the preamble
consisting of type and event definitions, and the body
of the program which consists of an action expression.
Preamble An abstract event consists of a name and a
record of named fields that hold data values of inter-
est. Consider the event definition:

event rd {read fdesc: Number@0}
| {recv fdesc: Number@0};

This definition maps the concrete events named read

and recv to the abstract event rd. The parameter val-
ues of the concrete events are abstracted to a record

program ::= (typedef | eventdef)∗ action

typedef ::= type id{id: t @n (,id:t @n)∗};

eventdef ::= event id variant (| variant)∗;

variant ::= {id id: t @n (,id: t @n)∗}

action ::= pattern -> id (e) | not pattern

| action;action | action*

pattern ::= id (p) with b

p ∈ pexp ::= {id: p (,id: p)∗}

| regid | c

e ∈ vexp ::= regid | c | e+e | . . .

b ∈ bexp ::= true | false

| e == e | p and p | . . .

t ∈ texp ::= String | Number

| id | . . .

Figure 1: Grammar of PORT’s core language.

consisting of a single field fdesc that holds a value of
type Number. The notation fdesc: Number@0 in each
variant indicates that the value of fdesc is the 0th pa-
rameter of the corresponding concrete event. Note
that all variants must map their parameters to the same
record type. If an event definition describes an ab-
stract event in terms of a single variant for which the
concrete event name coincides with the name of the
abstract event, then the former can be omitted in the
variant.

The abstraction mechanism used for these param-
eter lists can also be applied to the values themselves.
For instance, the 1st parameter of an fstat system call
is a status buffer that consists of a list of values. Type
definitions can be used to abstract such compound val-
ues into records. The following PORT code defines an
abstract fstat event that tracks only the device iden-
tifier, inode number, and mode of the status buffer:

type SB {dev: String@0, ino: String@1,
mode: String@2};

event fstat {fdesc: Number@0, sbuf: SB@1};

Body The action expression in the body of a PORT
program describes how the input event stream is trans-
formed to the output event stream. An individual in-
put event is matched and transformed by an atomic
action of the form

id1(p) with b -> id2 (e)

This action matches the next (abstract) input event
against the pattern id1(p) subject to the constraint b.
The action is triggered if the name of the matched
event is id1 and its record satisfies the constraints im-
posed by p and b. The semantics of pattern matching
is similar to the way expressions are pattern matched
in functional programming languages. In particular, a
variable occurring in a pattern refers to a register of
the transducer. If the pattern matches the event, then
the register is assigned to the corresponding value.
For example, consider the pattern:

fstat({fdesc: fd2, sbuf: {dev:rdev, stino:
rino2}})

When matched against the event

fstat({fdesc: 4, sbuf: {dev:"st_dev=makedev(0,
4)", ino: 42, mode="S_IFCHR|0666"}})

the match would succeed and assign the value 4 to
register fd2, "st_dev=makedev(0, 4)" to register
rdev, and "S_IFCHR|0666" to register rino2.

The Boolean expression b is evaluated after the
initial match of id1(p) succeeds. If b evaluates to true

then the action takes effect. Otherwise, the match
fails and the registers are reset to their original values
before id1(p) was matched.

When an atomic action takes effect, the matched
input event is consumed and an output event is ap-
pended to the output stream. This output event is de-
scribed by id2 (e) in the output clause of the action. If
id2 = id1, then e can be a partial record expression,
describing only those parts of the input record that
should be modified by the action. Record fields that
are not specified by e are copied from the input event
to the output event. If the record types of the input
and output events differ, e must describe the output
record completely.

For example, consider the atomic action:

fstat({fdesc:rfd2, sbuf:{dev:rdev, ino:rino2}})
with rfd2 == rfd and rdev == "st_dev=makedev

(0, 4)" -> fstat({sbuf:{ino: rino}});

This action matches the fstat event given above,
assuming the register rfd has value 4 before the
match. Moreover, if the register rino has value
43 before the action is executed, then the action
produces the output event:

fstat({fdesc:4, sbuf:{dev:"st_dev=makedev(0,4)"
, ino: 43, mode="S_IFCHR|0666"}})

For convenience, we add a syntactic short-hand that
allows one to more compactly express common
pattern types. First, one often needs to express that
the value of a matched record field is equal to the
current value of a register. In the action above, the
field fdesc of the matched fstat event must be equal
to rfd for the match to succeed. This constraint can
be expressed more succinctly by replacing rfd2 with
?rfd in the pattern of the action. This ensures that the
matched value is equal to rfd without changing the
value of rfd. The equality rsd2 == rsd can then be
omitted from the with clause.

Next, the with clause can also be omitted alto-
gether from an atomic action, in which case b defaults
to true. Likewise, the output clause can be omitted
and the matched input event can simply be copied to
the output stream. Finally, if an action is replacing
only the value of a field, and the action is not depen-
dent on the old value, then the modified field value
can be specified directly in the pattern using the nota-
tion -> e. Here, the expression e determines the new
value to be stored in the field.

Using this syntactic short-hand, the action given

above can be expressed more compactly as:

fstat({fdesc: ?rfd, sbuf: {dev:"st_dev=makedev
(0, 4)", ino: -> rino}});

Sequencing, Implicit Repetition, and Negation
Atomic actions can be sequenced to form com-
pound action expressions that match and transform
sequences of events, action1;action2. PORT simpli-
fies the handling of unbounded event sequences by us-
ing implicit repetition semantics. If the next event in
the input stream is not matched by the current atomic
action in the action sequence, the event is simply
copied to the output stream. The transducer moves on
by attempting to match the next input event against
the current atomic action.

Sometimes, it is necessary to constrain this im-
plicit repetition by disallowing the appearance of
certain events in the input stream before an event
matched by the current atomic action is encountered.
This can be done by negated patterns, which take the
form not id(p) with b. If an event that matches the
pattern id(p) with b is encountered before the next
atomic action in the program takes effect, then the
transducer aborts.
Explicit Repetition PORT also supports explicit rep-
etition of actions, which is indicated using a Kleene
star, action*, similar to standard regular expression
syntax. The generated transducer accepts zero or
more repetitions of the specified sequence of events.
Output is only produced if a complete repetition of
sequence is encountered.

4 Evaluation

Once we had an implementation of PORT, we de-
signed a set of experiments to evaluate its effective-
ness in real world situations. Specifically, we aim to
answer the following questions:

• Can PORT express the anomalies used by SEA to
identify bugs?

• How easy is it to extend PORT to support activity
representations other than system calls?

• What problems can be addressed by employ-
ing PORT on non-system-call activity representa-
tions?

• Can PORT process input streams in a reasonable
amount of time?

4.1 Expressing SEA Anomalies

Given that this work is motivated in large part by
a desire to expand the utility of the SEA technique,
our first experiment aims to reproduce the anomalies

1 event Statbuf {mode: String@2};

2 event anystat {stat sb: Statbuf@1}

3 | {lstat sb: Statbuf@1}

4 | {fstat sb: Statbuf@1};

5 anystat({sb: {mode: -> "st_mode=S_IFBLK"}});

Figure 2: A PORT program that identifies a stat, lstat,
or fstat call and modifies the ST_MODE member of its
statbuf output parameter to contain the value "S_IFBLK".
This indicates that the file being examined is a block device
rather than a regular file.

described in (Moore et al., 2019). Specifically, we
test PORT’s ability to recreate the study’s unusual file
type mutator, and its cross-disk file move checkers,
which were used to identify the bulk of the bugs that
were found.

Creating the Unusual File type Mutator. For the
first part of this experiment, we used PORT to imple-
ment an “unusual file type” mutator. As illustrated
in Figure 2,this mutator takes an input trace that con-
tains a call to either stat(), fstat(), or lstat()
and modifies its result data structure so its ST_MODE
member will indicate an unusual file type. As can be
seen in Figure 2, this task can be expressed with only
a few lines of PORT code. Lines 1 through 4 define
what stat(), fstat(), and lstat() calls look like,
and which parameter contains the result buffer. Line
6 generates an accepting state that, when entered, out-
puts a system call with a modified value in the return
structure’s st_mode field. The output can then be used
to modify the results of a running application’s system
calls to complete the SEA technique.

The original implementation of this mutator
in (Moore et al., 2019) consisted of 55 lines of Python
code, much of it error-prone state management code.
Our shorter PORT mutators offers several major ad-
vantages. First, they omit boilerplate code associ-
ated with general purpose languages because com-
mon functions are generically implemented, eliminat-
ing the need for users to do so manually. Next, each
statement defines a specific state which ignore any
system calls not dealt with in the PORT program. Fi-
nally, instead of relying on fragile string manipula-
tion, PORT’s operators make it easier to modify the
parameters of system call.

Supporting Cross-Disk Move Checkers. In the
second part of this experiment we tested whether
PORT can implement the “checkers” used in SEA
to determine if an application can correctly move a
file from one disk to another. This task is a com-
mon source of bugs in Linux applications because the
Linux rename() system call does not support moving

1 event usbhid { src: String@0, dst: String@1,
2 data: String@13, transfertype:

String@10 };
3 num1 <- "00:00:1e:00:00:00:00:00";
4 num2 <- "00:00:1f:00:00:00:00:00";
5 src <- "2.1.1";
6 dst <- "host";
7 usbhid({src: ?src, dst: ?dst, data: ?num1})

-> usbhid({data: ->num2});

Figure 3: A demonstration PORT program that matches
USB activity indicating the ’1’ key is being pressed and
transforming it to a new frame where the ’2’ key is being
pressed

files from one disk to another. Moore et al. identified
the steps required to correctly perform such a move
by examining the source code of the “mv” command.
The team then implemented a set of checkers to iden-
tify situations where an application does not complete
this task correctly. In real world applications, these
checkers were able to identify bugs in many popular
applications and libraries that offer file movement ca-
pabilities.

We evaluated each of the four checkers listed in
Moore et al.’s work and determined that PORT could
implement three of them. For example, we were able
to replace the 45 lines of difficult to read and main-
tain Python code in the “File Replaced During Copy”
checker with a clearer 7 line PORT program. This ex-
ercise did expose one of PORT’s shortcomings, which
is it cannot currently implement the “Extended File
Attributes” checker. Because PORT does not include
a list data structure, it can not capture the values
getxattr() and ensure they have all been applied
with a corresponding call to setxattr(). Without
this, an application cannot preserve a file’s extended
attributes and re-apply them after the move. Though
we are considering such a feature for future imple-
mentation, we do not currently support it. Such an ex-
tension could hurt program clarity and make it harder
to reason about mutator behavior.

4.2 Extending PORT to Other Activity
Representations

A key feature of PORT is it easy to add support
for new activity representations. To demonstrate this
we implemented support for streams of USB activ-
ity. This format was chosen because of its reliance on
numerous parties correctly implementing a standard
protocol. Using PORT on streams of USB activity re-
quired implementing an an extension that lets PORT
process USB frames and developing some way to
capture communications between USB devices. For
the latter, we used Wireshark because of its excellent

traffic capture and dissection capabilities (Wireshark,
2022). For the former, implementing such a trans-
former was a straightforward task taking only around
three and a half. Together, these two components al-
lowed us to write PORT programs that could both
identify patterns and transform streams of USB ac-
tivity in minutes.

BADUSB As one test scenario, we settled upon
the recent type of USB-based attack known as
BADUSB (Hak5, 2022). These attacks utilize
small USB devices that resemble thumb drives, but
when plugged into a computer, register themselves
as human interface devices, and then rapidly send
keystrokes to execute malicious commands. Our goal
was to construct PORT programs to both recognize
these attacks within a recording of a machine’s USB
traffic and transform an innocent recording into one
containing the attack. The modified program could be
replayed to assess if a computer’s defensive measures
are able detect the attacks.

The first PORT program we wrote detects a USB
device attempting to bypass powershell’s security pol-
icy. This is a common starting point for BADUSB
attacks that seek to execute complex payloads. The
program we wrote detects USB frames that contain
a sequence of “scan codes” which spell out “pow-
ershell -Exec bypass.” Detecting this string is criti-
cal because it explicitly disables security controls, a
step that should only be taken under special circum-
stances. Using this program (see abbreviated version
in Figure 3) we were able to detect the target se-
quence in streams of USB traffic recorded from a real
computer using a standard USB keyboard. A more
advanced example of PORT’s capabilities with USB
streams involves simulating a BADUSB attack. This
program also identifies and transforms USB human
interface device frames to yield key presses that spell
out “powershell -Exec bypass,” achieving our goal of
transforming an innocent stream into a malicious one.

Device ID Conflicts Our second test involved us-
ing SEA to simulate a USB device receiving an inap-
propriate “vendor ID” or “product ID” from its man-
ufacturer. Incorrect identifiers can cause a device to
not work correctly (wrongid, 2014). This malfunction
has been problematic enough these devices must be
disabled (barscanner, 2009). We wrote a PORT pro-
gram that monitors a stream of USB traffic for USB
device registrations and stores the first vendorID and
productID field it encounters into registers. When
subsequent registrations are encountered, their iden-
tifiers are rewritten using these stored values. This
produces a new stream of USB activity where many
devices share incorrect device identifiers that can be
used after the fashion of SEA to test a system’s re-

Utility and Operation Exec. Time No. Syscalls
gzip compress file 0.110 17

gzip decompress file 0.107 35
rar compress file 0.112 109

rar decompress file 0.109 87
bzip decompress file 0.102 25

ncat server 0.103 43
socat server 0.108 71

http.server server 0.114 21
rsync client 0.132 274
ssh client 0.159 850
ftp client 0.160 891
scp client 0.135 490

telnet client 0.106 23
BADUSB 0.111 1116 lines

ID Conflict 0.117 18992 lines
Figure 4: Average time required to process the specified
recording based on 100 executions.

sponse to such a mis-configuration.

4.3 PORT’s Performance

Our final experiment evaluates the time required for
PORT to identify specific patterns within a realistic
set of test traces from eight widely used network ap-
plications and four popular compression utilities. Five
of the applications are clients that operate by con-
necting to an appropriate service. Three of the ap-
plications were servers, and were recorded as they
accepted a connection from an appropriate client.
The compression utilities were recorded as they com-
pressed or decompressed a file. These recordings
were made with strace and then processed using a
PORT program. For the network applications the pro-
gram identifies the sequence of system calls that im-
plement a client or server’s request handling loop.
The compression utility recordings were processed
using a separate program that finds the read/write loop
responsible for carrying out a compression or decom-
pression operation1. Table 4 shows the average time
required to complete the specified operation based on
one hundred executions, as well as the number of sys-
tem calls being processed in the recording. This per-
formance evaluation was run on a laptop using a four
core processor running at 3.4 ghz with 16 gigabytes
of memory. Our PORT compiler comes with a script
to reproduce these results with one command.

The results in Table 4 show that PORT’s process-
ing time increases in line with the total number of sys-
tem calls in the recording. We anticipate that much of
this processing cost is associated with initializing the
Python interpreter and it is likely that PORT’s perfor-
mance is closely tied to disk throughput.

1Recordings are pre-processed to remove system calls
related to executable loading and process creation.

4.4 Threats to Validity

While we conducted this evaluation as rigorously as
possible, there are a few areas where some ambigu-
ity may exist. First, in our work with USB activ-
ity, we limited ourselves to US English keyboards.
Other keyboard languages and designs may require
enhancements to our transformer or programs. Ad-
ditionally, our performance evaluation samples from
only a handful of programs that were selected by pop-
ularity rather than at random. There may be programs
that would diverge from the performance trend we re-
port above. Future work can determine how widely
this phenomena occurs and if any subsequent modifi-
cations are required.

5 Related Work

One of the ultimate goals of developing PORT was to
make it easier for developers to create tools capable
of conducting program-level testing. To design such
a language, we consulted previous work in process-
ing sequences of events, such as system calls, RPC
invocations or web-browser events. Below, we dis-
cuss some of the more significant work in these areas.

System Call Stream Processing Applications.
System call based intrusion detection systems fall
into two categories: misuse and anomaly detection.
The former search for known patterns of application-
specific system call sequences known as intrusion sig-
natures (García-Teodoro et al., 2009), while the lat-
ter assumes that any deviations from “normally ob-
served” system call sequences are malicious (Forrest
et al., 1996).

Forrest et al. (Forrest et al., 1996) proposed an
anomaly detection system that catalogs witnessed pat-
terns within a database. An application’s system call
stream is monitored and any deviation triggers a pre-
defined security policy.

Ko et al. (Ko et al., 1994) proposes converting
each system call in a stream to a standard audit-policy
record format that can be matched against program
policy. However, the audit-policy can only be applied
to one system call at a time, and does not support rules
to recognize specific chains of system calls. Another
alternative is Systrace (Provos, 2003), which uses an
associated policy language to describe any action pre-
scribed when a rule evaluates to true. Phoebe (Zhang
et al., 2020) identifies patterns of system call failures
during normal program execution to test the reliabil-
ity of an application when a failure occurs. The down-
side is that more elaborate fault-injection tests cannot

be generated from these sequences.
It is likely that the previously cited FSA-based

programs can be improved by applying recent ad-
vances in inference modeling algorithms (Mariani
et al., 2017; Walkinshaw et al., 2013; Emam and
Miller, 2018; Beschastnikh et al., 2014). Yet, these
algorithms lack the conciseness and flexibility found
in PORT. PORT does not require training sets and is
expressive enough to specify both frequent and “nee-
dle in the haystack” event sequences with just a few
lines of code.

Event Stream Processing Languages and Algo-
rithms. PORT can be categorized as a stream pro-
cessing language, which means it is domain-specific
and designed for expressing streaming applications.
In this section we look at previous work in this area

Pattern matching over event streams is a paradigm
that looks for possible matches against a previously
defined set of rules. Collectively, these matches form
a pattern. Languages written for this purpose are sig-
nificantly richer than those used for regular expres-
sion matching (Agrawal et al., 2008), and typically
provide automatic support for naming, type check-
ing, filtering, aggregating, classifying and annotation
of incoming events. They also provide many bene-
fits over traditional stream-based text processing lan-
guages, such as sed (McMahon, 1979) and awk (Aho
et al., 1979).

Though PORT is a stream processing language,
it does not require all of the features typically in-
cluded in this sort of system (Dayarathna and Perera,
2018). Rather PORT seems to fit within the special
case known as complex event processing (CEP). Data
items in input streams of these systems are referred to
as raw events, while items in output streams are called
composite (or derived) events. A CEP system uses
patterns to inspect sequences of raw events and gen-
erate a composite event for each match (Hirzel et al.,
2013)

MatchRegex (Hirzel, 2012) is a CEP engine for
IBM’s Stream Processing Language. Predicates de-
fined on the individual events appearing in the stream
can be utilized in the regular expression-based pattern
matching engine. MatchRegex supports regular ex-
pression operators, such as “Kleene star” and “Kleene
plus” over patterns consisting of predicates (boolean
expressions).

Though these CEP systems are capable of recog-
nizing the same stream patterns as PORT, they do not
incorporate the transformation primitives required by
the applications envisioned for PORT. CEP systems
are meant to be used solely to recognize additional
patterns. It is the combination and interplay of pat-

tern matching and transformation primitives that dis-
tinguishes PORT from CEP systems.

6 Conclusion

One can gain a lot of value from analyzing an appli-
cation’s activity. Unfortunately, the volume of activ-
ity an application produces makes it difficult to sep-
arate out unimportant sequences. In this work, we
demonstrate how our new domain specific language,
PORT, offers a way to write concise, yet, expressive
descriptions of application activity sequences. These
descriptions can be compiled into programs that both
recognize the described activity sequence and modify
its contents in order to facilitate more active testing.
We used this capability to recreate the successful pro-
grams from earlier work on the SEA technique and
showed that SEA can be extended to other activity
representations, such as recorded USB traffic.

REFERENCES

Agrawal, J., Diao, Y., Gyllstrom, D., and Immerman, N.
(2008). Efficient pattern matching over event streams.
In Wang, J. T., editor, Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 147–160. ACM.

Aho, A. V., Kernighan, B. W., and Weinberger, P. J.
(1979). Awk-a pattern scanning and processing lan-
guage. Softw. Pract. Exp., 9(4):267–279.

barscanner (2009). Barscanner Stopped Function-
ing. https://bugzilla.kernel.org/show_bug.
cgi?id=13411.

Beschastnikh, I., Brun, Y., Ernst, M. D., and Krishna-
murthy, A. (2014). Inferring models of concurrent
systems from logs of their behavior with csight. In
Jalote, P., Briand, L. C., and van der Hoek, A., ed-
itors, 36th ICSE, Hyderabad, India - May 31 - June
07, 2014, pages 468–479. ACM.

Bollig, B., Habermehl, P., Leucker, M., and Monmege, B.
(2014). A robust class of data languages and an appli-
cation to learning. Log. Methods Comput. Sci., 10(4).

Dayarathna, M. and Perera, S. (2018). Recent advance-
ments in event processing. ACM Comput. Surv.,
51(2):33:1–33:36.

Emam, S. S. and Miller, J. (2018). Inferring extended
probabilistic finite-state automaton models from soft-
ware executions. ACM Trans. Softw. Eng. Methodol.,
27(1):4:1–4:39.

Forrest, S., Hofmeyr, S. A., Somayaji, A., and Longstaff,
T. A. (1996). A sense of self for unix processes. In
1996 IEEE Symposium on Security and Privacy, May
6-8, 1996, Oakland, CA, USA, pages 120–128. IEEE
Computer Society.

García-Teodoro, P., Díaz-Verdejo, J., Maciá-Fernández, G.,
and Vázquez, E. (2009). Anomaly-based network

intrusion detection: Techniques, systems and chal-
lenges. Computers & Security, 28(1):18–28.

Gopstein, D., Iannacone, J., Yan, Y., DeLong, L., Zhuang,
Y., Yeh, M. K.-C., and Cappos, J. (2017). Understand-
ing misunderstandings in source code. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Soft-
ware Engineering, ESEC/FSE 2017, page 129–139,
New York, NY, USA. Association for Computing Ma-
chinery.

Hak5 (2022). Usb rubber ducky. https://docs.hak5.
org/usb-rubber-ducky-1/.

Hirzel, M. (2012). Partition and compose: parallel complex
event processing. In Bry, F., Paschke, A., Eugster,
P. T., Fetzer, C., and Behrend, A., editors, Proceed-
ings of the Sixth ACM International Conference on
Distributed Event-Based Systems, DEBS 2012, Berlin,
Germany, July 16-20, 2012, pages 191–200. ACM.

Hirzel, M., Andrade, H., Gedik, B., Jacques-Silva, G.,
Khandekar, R., Kumar, V., Mendell, M. P., Nasgaard,
H., Schneider, S., Soulé, R., and Wu, K. (2013). IBM
streams processing language: Analyzing big data in
motion. IBM J. Res. Dev., 57(3/4):7.

Kaminski, M. and Francez, N. (1994). Finite-memory au-
tomata. Theor. Comput. Sci., 134(2):329–363.

Ko, C., Fink, G., and Levitt, K. N. (1994). Automated de-
tection of vulnerabilities in privileged programs by ex-
ecution monitoring. In 10th ACSAC 1994, 5-9 Decem-
ber, 1994 Orlando, FL, USA, pages 134–144. IEEE.

Mariani, L., Pezzè, M., and Santoro, M. (2017). Gk-tail+
an efficient approach to learn software models. IEEE
Trans. Software Eng., 43(8):715–738.

McMahon, L. E. (1979). SED: a Non-interactive Text Edi-
tor. Bell Telephone Laboratories.

Moore, P., Cappos, J., Frankl, P. G., and Wies, T. (2019).
Charting a course through uncertain environments:
SEA uses past problems to avoid future failures. In
Wolter, K., Schieferdecker, I., Gallina, B., Cukier, M.,
Natella, R., Ivaki, N. R., and Laranjeiro, N., editors,
30th IEEE International Symposium on Software Re-
liability Engineering, ISSRE 2019, Berlin, Germany,
October 28-31, 2019, pages 1–12. IEEE.

Provos, N. (2003). Improving host security with system call
policies. In Proceedings of the 12th USENIX Secu-
rity Symposium, Washington, D.C., USA, August 4-8,
2003. USENIX Association.

Walkinshaw, N., Taylor, R., and Derrick, J. (2013). Infer-
ring extended finite state machine models from soft-
ware executions. In Lämmel, R., Oliveto, R., and
Robbes, R., editors, 20th Working Conference on Re-
verse Engineering, WCRE 2013, Koblenz, Germany,
October 14-17, 2013, pages 301–310. IEEE Computer
Society.

Wireshark (2022). Wireshark.org. https://www.
wireshark.org/.

wrongid (2014). wrong Vendor-Id and Product-
Id. https://bugzilla.kernel.org/show_bug.
cgi?id=87631.

Zhang, L., Morin, B., Baudry, B., and Monperrus, M.
(2020). Realistic error injection for system calls.
CoRR, abs/2006.04444.

https://bugzilla.kernel.org/show_bug.cgi?id=13411
https://bugzilla.kernel.org/show_bug.cgi?id=13411
https://docs.hak5.org/usb-rubber-ducky-1/
https://docs.hak5.org/usb-rubber-ducky-1/
https://www.wireshark.org/
https://www.wireshark.org/
https://bugzilla.kernel.org/show_bug.cgi?id=87631
https://bugzilla.kernel.org/show_bug.cgi?id=87631

	1 Introduction
	2 Background and Motivation
	2.1 Our Motivating Example
	2.2 Building a New Domain Specific Language

	3 Language Overview
	4 Evaluation
	4.1 Expressing SEA Anomalies
	4.2 Extending PORT to Other Activity Representations
	4.3 PORT's Performance
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion

