
Artemis: Defanging Software Supply Chain Attacks in
Multi-repository Update Systems

Marina Moore

New York University

marinamoore@nyu.edu

Trishank Kuppusamy

Datadog

trishank.kuppusamy@datadoghq.com

Justin Cappos

New York University

jcappos@nyu.edu

ACM Reference Format:
Marina Moore, Trishank Kuppusamy, and Justin Cappos. 2023. Artemis:

Defanging Software Supply Chain Attacks in Multi-repository Update Sys-

tems. In Proceedings of ACSAC ’23. ACM, New York, NY, USA, 14 pages.

https://doi.org/XXXXXXX.XXXXXXX

ABSTRACT
Modern software installation tools often use packages from more

than one repository, presenting a unique set of security challenges.

Such a configuration increases the risk of repository compromise

and introduces attacks like dependency confusion and repository

fallback. In this paper, we offer the first exploration of attacks that

specifically target multiple repository update systems, and propose

a unique defensive strategy we call articulated trust. Articulated

trust is a principle that allows software installation tools to specify

trusted developers and repositories for each package. To implement

articulated trust, we built Artemis, a framework that introduces

several new security techniques, such as per-package prioritization

of repositories, multi-role delegations, multiple-repository consen-

sus, and key pinning. These techniques allow for a greater diversity

of trust relationships while eliminating the security risk of single

points of failure.

To evaluate Artemis, we examine attacks on software update

systems from the Cloud Native Computing Foundation’s Catalog of

Supply Chain Compromises, and find that the most secure configu-

ration of Artemis can prevent all of them, compared to 14-59% for

the best existing system. We also cite real-world deployments of

Artemis that highlight its practicality. These include the JDF/Linux

Foundation Uptane Standard that secures over-the-air updates for

millions of automobiles, and TUF, which is used bymany companies

for secure software distribution.

1 INTRODUCTION
Software supply chain attacks are on the rise [34], with attacks

more than tripling in 2021 [7] to over 30 per day [93]. One key

link in the software supply chain is the software repository that

distributes packages containing software libraries or applications
to users. These repositories are often vulnerable to compromises,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ACSAC ’23, Dec 04–08, 2023, Austin, TX
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

which can leave users vulnerable to attack [3, 4, 8, 25, 28, 32, 37–

39, 65, 67, 68, 74, 77, 90, 91, 97–99, 102].

Contributing to this problem is the reality that most software
installation tools download packages from multiple repositories.

The top 10 Linux distributions come with an average of 4.8 default

repositories from which users can install packages [5, 6, 71, 101].

Such multiple repository configurations introduce unique security

challenges. One such challenge is vulnerability to dependency con-

fusion attacks [87] in which attackers upload malicious packages

to a public repository such as npm, PyPI, or DockerHub [30, 69, 73].

A tool that downloads packages from both a private, internal repos-

itory and a public repository may install the attacker-uploaded

package from the public repository if it shares the same name as

one from the internal repository. This attack is possible because

software installation tools lack a mechanism to specify which repos-

itories are to be trusted for a given package. To date, dozens of

companies, including Apple, Microsoft, PayPal, Netflix, and Uber

have been vulnerable to dependency confusion attacks [87]. On

a broader level, the use of multiple repositories means that a key

compromise can make any developer a single point of failure on a

much larger scale. There have been numerous cases of developer

account compromise in which benign packages were replaced with

malicious ones [2, 70, 80, 86, 92, 94, 95].

Recognizing the magnitude of this threat, we present the first

systematic exploration into the security of multiple repository up-

date systems that goes beyond the trivial k of n threshold signa-

tures [35, 85, 88]. In response to what was learned, we introduce the

novel concept of articulated trust which enables installation tools

to selectively allocate trust in repositories, projects, or developers.

Articulated trust moves responsibility for indicating requirements

for package installation from the repository to the installation tool

by giving installation tools the control to specifically indicate which

repositories and developers are trusted to provide each package.

To implement articulated trust we create Artemis, a new security

framework that extends the functionality of existing Role-Based Ac-

cess control (RBAC) models to multi-repository systems by incorpo-

rating a new suite of tools. These tools, including per-package prior-

itization of repositories, multi-role delegation, multiple-repository

consensus, and key pinning, add user control and permit config-

uration of trusted packages. Though per-package prioritization

is inspired by prioritized trust delegations [55, 61, 64] that allow

a role to transfer its signing authority, Artemis permits users to

define prioritized and terminating trust relationships between all

entities in the update process. Multi-role delegations and multiple-

repository consensus expand the existing practice of threshold, or

multi-signature, signing. Instead of just requiring multiple signa-

tures on a signed object [12, 29], it adds thresholds for other stages

of the verification process. Finally, key pinning gives users more

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ACSAC ’23, Dec 04–08, 2023, Austin, TX Marina Moore, Trishank Kuppusamy, and Justin Cappos

fine-grained control by specifying which individual developers on

a repository should be trusted. Collectively, Artemis allows users

to define a greater diversity of trust relationships between objects

and repositories, while removing single points of failure.

Artemis was created in response to, and in partnership with,

industry demand, and as a result, we were able to deploy Artemis

to resolve practical security challenges. In the automotive software

update system Uptane, Artemis requires consensus between repos-

itories that provide different security properties as a way to repel

efforts by nation state attackers. Among other adoptions, Uptane is

incorporated into Automotive Grade Linux, an open source code-

base used in millions of vehicles. Furthermore, we examined the

Cloud Native Computing Foundation (CNCF)’s Catalog of Supply

Chain Compromises (CSCC) and found that Artemis’s security

properties would protect against all historical software repository

attacks.

The contributions of this paper are:

(1) We conduct the first exploration that focuses specifically

on the security of multiple repository update systems and

identify the shortcomings of existing systems.

(2) We introduce a threat model that specifically addresses the

risks of using multiple repositories, particularly when repos-

itories allow unknown developers to upload packages.

(3) We propose a new approach for managing trust relationships

called “articulated trust” that builds on Role-Based Access

Control models including RBDM1 [11], and implement this

approach in Artemis, a secure software update framework.

(4) We back our claims by offering real-world examples of how

our framework has been deployed to solve security chal-

lenges in multiple domains. Notably, Artemis is standard-

ized as part of Uptane, and included in the CNCF graduated

project The Update Framework (TUF).

(5) We evaluate the effectiveness of Artemis using previous

attacks on software update systems and find that Artemis

could have prevented all of them.

2 BACKGROUND
To provide context for our work, we first describe the software

update ecosystem. We then describe RBAC and The Update Frame-

work, both of which serve as a baseline for our Artemis mechanisms.

2.1 Software repositories and package
managers

A software repository is a server that hosts and distributes soft-

ware. When a specific version of a software application or library

is ready to be released, it is built into a package, and uploaded to

the repository. Three groups of people may interact with the repos-

itory. Repository administrators manage the software and hardware,

developers upload packages, and software installation tools down-
load, validate, and install packages with a package manager. The

software installation tool is configured by a tool administrator, who
may be a user, IT department, or package manager.

Software repositories vary in terms of their purpose and how

they function. These include:

• Language-specific repositories such as PyPI, RubyGems, and

npm.

• Operating system repositories, including those provided by

Linux distributions. For example Arch Linux has 4 official

repositories: core, extra, community, and multi-lib, each of

which has a different set of packages and developers.

• Curated repositories that contain packages for a particular

purpose, such as for a company’s internal use. They may be a

subset of other repositories, include packages from multiple

sources, or contain internal packages that are not public.

A package manager is responsible for solving three problems: (1)

downloading packages, (2) installing packages, and (3) performing

dependency resolution [16, 21]. The latter step ensures that all

required packages are downloaded, and that there are no conflicts

between them.

Previous work [14, 19] has shown that it is remarkably easy for

attackers to tamper with files downloaded by package managers.

As such, they are vulnerable to a wide variety of threats, including

arbitrary software and replay attacks. An arbitrary software attack

occurs when an attacker is able to convince a software installation

tool to install a malicious package instead of the intended one.

Similarly, a replay attack occurs when an attacker is able to convince

a tool to install an outdated, potentially vulnerable, version of a

package. Even when a secure transport mechanism like TLS is used,

a repository or developer key compromise can allow an attacker

to manipulate update contents. Thus, package managers require

protections specific to this domain. Ladisa et al. [54] describe known

attacks and safeguards.

2.2 Role-Based Access Control
RBAC is a technique for restricting system access to only autho-

rized users by associating permissions with different roles [78].

Users are assigned to roles, inheriting the associated set of permis-

sions. RBDM0 [10] (role based delegation model) extends RBAC

by allowing roles to delegate their permissions to other roles for a

fixed period of time. Delegations may be revoked by the original

members, or may be designated as terminating, which would pre-

vent delegated users from further delegating this role. RBDM1 [11]

builds on RBDM0 by setting up a hierarchy between roles and al-

lowing the delegating role to give a subset of permissions to each

delegated role.

The following is a list of the original RBAC96 components:

• U and R and P are sets of users, roles, and permissions, re-

spectively

• 𝑈𝐴 ⊆ 𝑈 × 𝑅 is a many to many user to role assignment

relation

• 𝑃𝐴 ⊆ 𝑃 ×𝑅 is a many to many permission to role assignment

relations

• Users: 𝑅 → 2𝑈 is a function derived from UA mapping each

role r to a set of users where𝑈𝑠𝑒𝑟𝑠 (𝑟) = {𝑈 | (𝑈 , 𝑟) ∈ 𝑈𝐴}
• Permissions: 𝑅 → 2𝑃 is a function derived from PA mapping

each role to a set of permissions where Permissions (𝑟) =
{𝑃 | (𝑃, 𝑟) ∈ 𝑃𝐴}

The RBDM0 model adds the following components:

• 𝑈𝐴𝑂 ⊆ 𝑈 × 𝑅 is a many to many original member to role

assignment relation

• 𝑈𝐴𝐷 ⊆ 𝑈 × 𝑅 is a many to many delegate member to role

assignment relation

Artemis: Defanging Software Supply Chain Attacks in Multi-repository Update Systems ACSAC ’23, Dec 04–08, 2023, Austin, TX

• 𝑈𝐴 = 𝑈𝐴𝑂 ∪𝑈𝐴𝐷

• 𝑈𝐴𝑂 ∩𝑈𝐴𝐷 = 𝜙 Original members and delegate members

in the same role are disjoint

• 𝑈𝑠𝑒𝑟𝑠_𝑂 (𝑟) = {𝑈 | (𝑈 , 𝑟) ∈ 𝑈𝐴𝑂}
• 𝑈𝑠𝑒𝑟𝑠_𝐷 (𝑟) = {𝑈 | (𝑈 , 𝑟) ∈ 𝑈𝐴𝐷}
• All members𝑈𝑠𝑒𝑟𝑠_𝑂 (𝑟) ∪𝑈𝑠𝑒𝑟𝑠_𝐷 (𝑟) in a role get all the

permissions assigned to that role

• Note that 𝑈𝑠𝑒𝑟𝑠_𝑂 (𝑟) ∩ 𝑈𝑠𝑒𝑟𝑠_𝐷 (𝑟) = 𝜙 because 𝑈𝐴𝑂 ∩
𝑈𝐴𝐷 = 𝜙

• T is a set of durations

• Delegate roles:𝑈𝐴𝐷 → 𝑇 is a function mapping each dele-

gation to a single duration

The RBDM1 model adds the following elements: 𝑅𝐻 ⊆ 𝑅 × 𝑅

is a partially ordered role hierarchy (this can be written as ≥ in

infix notation). Also, the less familiar symbol ∥ is used to denote

non-comparability. We write 𝑥 ∥ 𝑦 if 𝑥¬ ≤ 𝑦 and 𝑦¬ ≤ 𝑥 .

When using RBAC in software repositories, the users are the

developers, and the permissions are the set of package namespaces

associated with a particular role. In this way, a role is responsible

for a specific set of developers and package namespaces.

However, RBAC models are built on the assumption that this

permissions model will not be tampered with. Should an attacker

compromise the repository and alter the metadata that describes the

RBAC permissions, they would be able to bypass these restrictions.

To prevent this, researchers have created compromise-resilient

software update systems [50, 79].

2.3 The Update Framework (TUF)
A compromise-resilient software update system continues to pro-

vide the correct packages even when attackers control the reposi-

tory and one or more signing keys [50, 79]. The need to design such

update systems was first discussed in the literature by Bellissimo

et al. [14] and Cappos et al. [19]. Knockel et al. [47] observed that

attackers need not even compromise a repository: a simple man-in-

the-middle attack on third-party software updaters is sufficient to

replace packages with malware.

The Update Framework (TUF) was designed for compromise-

resilience [50, 79]. It uses different roles [81, 82] to sign different

types of metadata, with each role requiring a threshold of𝑚 out of 𝑛

signatures for acceptance. Thus, a single key compromise does not

impact the security of the whole system. However, thresholds as a

security measure only work for multiple users assigned to the same

role. Roles 𝑟 ∈ 𝑅 are controlled by users 𝑢 ∈ 𝑈 , such as repository

administrators, developers, or organizations that release software.

A security feature of TUF is that it requires some roles to use of-

fline keys. In doing so, TUF ensures that an attacker with repository

access cannot compromise the entire system. Offline keys are on

physical devices and inaccessible from the repository, safeguarding

them in the event of a repository compromise. We use a subscript

to indicate the key for each role. So𝐴𝒌𝒐𝒇𝒇
denotes role A with an of-

fline key that is not kept on, or accessible from the repository, 𝐵𝒌𝒐𝒏

denotes role B with an online key accessible from the repository,

and 𝐶𝒌 indicates a key that may be either online or offline.

There are four top-level roles, each of which produces and signs

metadata that fulfills a specific purpose. Root provides a root of

trust that delegates to all other roles. Targets provides information

about images, or namespaced delegations to other targets roles.

Namespaced delegations give a delegatee authority for a subset

of the namespace, or set of package permissions 𝑝 ∈ 𝑃 , for which

the delegating role is responsible. Finally, snapshot, introduced in

a TUF variant called Mercury [50], provides bandwidth efficient

consistency for the whole repository, and timestamp provides a

heartbeat to ensure that all metadata is up-to-date and not revoked.

Delegations ensure that multiple parties do not have to share

keys. To create a delegation𝑅𝒌 ≥ 𝐴𝒍 , metadata signed by𝑘 indicates

the public key 𝑙 and role name of the delegatee 𝐴, as well as what

portion of R’s namespace 𝑛 ∈ 𝑃 the delegatee is trusted to sign. 𝑙

can then sign metadata for targets in 𝑛. Diplomat [53], another TUF

variant that, along with Mercury, has been integrated into the TUF

specification, added prioritized and terminating delegations that

ensure deterministic resolution by evaluating delegations in the

order they are listed.

TUF is used in production by popular repositories, such as Docker

Hub [30], Datadog [49], IBM [48], and the Python Packaging In-

dex [51]. There are also multiple independent implementations of

TUF, including those developed by Amazon [15] and Google [33].

A variant of TUF, Uptane [75], was created for use in an auto-

motive context and has been standardized as a Joint Development

Foundation project of the Linux Foundation. It uses the same RBAC

principles as TUF, but the mechanisms differ in practice to account

for the particular requirements of the automotive industry. How-

ever, the RBAC systems are equivalent and so for the purposes of

this paper, the systems can be thought of as equivalent.

TUF addresses security concerns for users downloading software

from a single repository, but does not account for the additional

complexity of trust relationships between repositories. In this work,

we apply the principle of compromise resilience to systems that

use multiple software repositories, each with multiple developers.

3 MOTIVATION
Artemis was developed as a response to real-world concerns from

software repository maintainers. We use scenarios to show the

limitations of using existing software installation tools to install

packages from multiple software repositories. The design require-

ments for Artemis were tailored to these identified problems.

Two repositories disagree on a package. Researchers discov-
ered a vulnerability to dependency confusion attacks at PayPal

due to the list of dependencies in an internal PayPal package’s

‘package.json’ file. This list included both packages on npm and

internal to PayPal. Researchers uploaded packages with the same

name as the internal PayPal packages to npm, and these arbitrary

packages were automatically installed [87]. When a tool installs a

package foo, which is available on both an internal repository A and
a public repository B, with different contents, it needs to determine

which repository to download the package from. Many existing sys-

tems, like Pacman’s repository configuration and Ubuntu’s Personal

Package Archive (PPA) [5, 71], address this problem by prioritizing

repositories. For example by first searching in A, then B. As the
roles on each repository are independent, every repository has a

top-level role 𝑟 ∈ 𝑅, which has permission for all namespaces 𝑝 ∈ 𝑃 .

Yet, the tool might not always want packages from the internal

repository. The company might have an unmaintained internal

ACSAC ’23, Dec 04–08, 2023, Austin, TX Marina Moore, Trishank Kuppusamy, and Justin Cappos

copy of a package bar, so that this package is listed on both A and

B. When a vulnerability is discovered in bar and patched in the

upstream version on B, the version in A does not receive this patch.

In such cases, the update tool needs a mechanism to articulate that

foo, which is maintained by the company, should be downloaded

from A, but bar should be downloaded from B. The tool needs to
prioritize the repository for each package or namespace 𝑝 ∈ 𝑃 .

Requirement 1: Per-package prioritization of repositories.
The system must allow tools to assign each namespace 𝑛 ⊂ 𝑃 to a

prioritized list of repositories in order to have a specific resolution

for package downloads.

Installation tools only want some packages from a repos-
itory. In 2021, an attacker hijacked the developer accounts for npm

packages coa and rc, leveraging these accounts to upload malicious

versions of the packages. With over 20 million weekly downloads

combined [2], these packages present a significant attack surface.

To counter this attack, a tool must be able to use certain packages

from a public repository B while avoiding exposure to packages

from untrusted or compromised developers [70, 86, 94]. Instead,

tools must articulate a trusted set of packages and developers from

repository B, ensuring that only these authorized packages are

downloaded. When defining a set of trusted packages, tool adminis-

trators must balance the need to define trusted developers with the

risk of ignoring revocation information from the repository. This

tradeoff is further discussed in Section 7.2.3.

Requirement 2: Defining a trusted subset. Installation tools

should be able to maintain a trusted set of roles 𝑅 and developers𝑈

on a repository to ensure the installation of only trusted packages

from trusted developers.

Fallback problem. If repository A is unavailable due to a net-

working issue or a denial of service attack, even with repository

priority the tool would fallback to B to download foo. Thus, the
tool needs a way to prevent falling back to other repositories. In

other cases, a company might maintain repository C as a backup
copy of repository A. In this case, the tool should look for foo on
repository A and C, but not B. This requires the tool to specify both

repository priority and when a search for a package should stop.

Requirement 3: Terminate search for a package. The installa-
tion tool can define when the per-package prioritization of reposi-

tories should stop the search for a particular namespace 𝑛 ⊂ 𝑃

Repository compromise. In 2018 PEAR, the PHP Extension

and Application Repository, was compromised and an installation

script was replaced with a malicious version, infecting all users for

6 months before the attack was discovered [72]. Such repository

compromises are common, even for prominent organizations such

as Microsoft, Debian, and Apache[3, 4, 27, 28, 67]. If a repository is

compromised, the attacker can replace any package or delegation

signed by online keys. To mitigate this a tool may want to require

that all packages from repository A match those packages on repos-

itory C. If so, the tool needs a way to specify the repositories that

must reach consensus before a package is installed.

Requirement 4: Mitigate repository compromise. The instal-
lation tool should be able to require a threshold of repositories to

agree on the contents of a package.

Maintainer compromise. In 2022, the author of the popular

npm package node-ipc intentionally published malicious versions

as a form of protest [92]. In other cases, trusted maintainers have

inadvertently uploaded malicious software due to a compromise of

their accounts or signing keys [2, 70, 86, 94, 95]. TUF delegations

allow delegators to revoke keys for these maintainers, but only

after the attack is discovered. To prevent such attacks, tools need a

way to not only ensure that a package is from a trusted maintainer,

but also get third-party verification of the package contents from

another role, such as a security scanner. This necessitates requiring

a threshold of trusted roles agree on the contents of a package.

In current systems, if a role T creates delegations 𝑇𝒌𝒐𝒇𝒇
≥ 𝐴𝒍𝒐𝒏

and 𝑇𝒌𝒐𝒇𝒇
≥ 𝐵𝒎𝒐𝒏 , and role A’s online key 𝑙 is compromised, an

attacker can maliciously replace a package with A’s assigned names-

pace. Since the tool trusts T to sign this package, it will check if any

delegation from T contains the package. As𝑇 ≥ 𝐴 and A is assigned
the package’s namespace, the tool will install it. Instead, we want

the tool to only install the package if it is signed by both A AND B.

Requirement 5: Mitigate role compromise. The installation

tool should be able to require a threshold of roles to agree on the

contents of a package.

Real-world use. Since Artemis is designed for real-world use,

we also added practical requirements for smooth industry adoption.

Practical requirement 1: Shareable configuration. The end

user may not be a security expert, and so should not make decisions

about prioritization and threshold requirements. To address this, we

ensure one expert within an organization can make configurations,

then securely distribute them to all installation tools.

Practical requirement 2: Preserve backwards compatibility
with existing systems.We were surprised by the extent to which

industry users valued backwards compatibility. Users of existing

systems do not want to install new systems, but rather want to

incorporate new security mechanisms into their legacy update sys-

tems. Therefore, any proposed solution must maintain backwards

compatibility with existing systems designed for a single-repository

setting. Otherwise, billions of downloads from these major reposi-

tories will face serious disruptions in service. [30].

Practical requirement 3: Mechanisms addedmust not signif-
icantly effect performance. Any new features should minimally

impact performance so that tools can easily integrate new secu-

rity mechanisms. Specifically, the mechanisms should not require

significant storage, download size, or computation time.

4 THREAT MODEL
As security was paramount in our design, we establish a realistic

threat model for software update systems in a multi-repository

setting. We assume the following actors in our system:

Artemis: Defanging Software Supply Chain Attacks in Multi-repository Update Systems ACSAC ’23, Dec 04–08, 2023, Austin, TX

• Repositories contain software packages and online keys

used to sign metadata about these packages for timeliness

and consistency.

• Developers upload software to repositories.

• RepositoryAdministrators control offline repository keys

and repository configuration.

• Software installation tools download software from repos-

itories.

• Tool administrators create configurations for software in-
stallation tools.

• Users request packages through software installation tools.

We assume attackers can perform all of the following actions:

(1) Respond to user requests, either by acting as a man-in-the-

middle on the network, or by compromising a repository.

(2) Compromise one or more keys used to sign metadata, and

hence packages, for a repository. These keys may be online,
𝑚𝒌𝒐𝒏

or offline,𝑚𝒌𝒐𝒇𝒇
.

(3) Use a set of keys that has been compromised to perform

arbitrary software attacks by replacing packages whose keys

have been compromised with malicious versions.

(4) Upload an arbitrary package to an unused name on a public

repository.

An attack will be deemed successful if it convinces the installa-

tion tool to install a less-preferred or arbitrary package. Our goal

is to achieve compromise-resilience in this setting, meaning an

attacker may compromise some 𝑢 ⊂ 𝑈 , but not all, repositories or
signing keys. Each compromise is bounded by the amount of time

required for administrators to recover and restore the repository.

Although we focus on arbitrary software attacks, our system

leverages existing software update security systems that can also

address other attacks that occur on a single repository [17, 19–21].

The following problems are out of the scope of this paper, but

have been discussed in other work:

• Denial-of-service attacks. TUF detects, but does not prevent

denial-of-service attacks [79]. Other work has focused on

denial-of-service prevention [104].

• Dependency resolution, or the problem of finding a complete

set of packages that can be installed together without con-

flicts. Many mechanisms exist to address this issue [16, 21].

• Attacks on the software update supply chain before a pack-

age is uploaded to a repository, including source code se-

curity, continuous integration and delivery, and packaging.

in-toto, which has been used with this work, can provide

supply chain security [43, 49, 100].

• Remote exploits, or a compromise of users’ systems through

amechanism other than software updates. Such attacks could

subvert software installation tools.

• Attack detection. Artemis provides mechanisms to reduce

the impact of an attack, and securely recover. However attack

detection is out of scope, and can be performed by existing

static and dynamic analysis and monitoring tools.

5 ARTEMIS: DESIGN
In order to address the threat model and requirements from Sec-

tion 3, we extend the delegation model found in RBDM1 and TUF

to implement articulated trust by adding multi-role delegations and

user pinning of trusted roles. We apply this model to both roles on

a repository and to the relationship between multiple repositories.

An overview of the design is illustrated in fig. 1.

5.1 Multi-role delegations
First, we mitigate role compromise by introducingmulti-role delega-
tions. Unlike RBDM1’s threshold signing that requires a threshold

of keys, multi-role delegations require a threshold of roles, granting

a subset of their permissions to multiple roles, but only if those

roles agree. Multi-role delegations extend RBDM1 as follows:

• 𝑈𝐴𝑀 ⊆ 𝑈 × 𝑅 is a many to many multi-role group to role

assignment relationship.

• 𝑈𝐴𝑀 = 𝑈𝐴𝑀1∧𝑈𝐴𝑀2∧ ...∧𝑈𝐴𝑀𝑛 for 𝑛 ≥ 1 UAM consists

of one or more sub-roles that must be in agreement on any

action.

• 𝑈𝐴𝑀 ⊆ 𝑈𝐴𝐷 Multi-role delegations are part of UAD and

contain the same properties described in RBDM0 and RBDM1.

In real-world applications, the RBAC model must be stored on

the repository and communicated to users who perform verification.

If an attacker compromises the repository or any online keys, they

would be able to tamper with the RBAC model definitions. To

address this, Artemis builds its role-based model on top of TUF’s

delegation model, which can prevent an attacker from undermining

access control through the use of offline keys and revocation.

Figure 2 conceptualizes a multi-role delegation 𝑡𝑎𝑟𝑔𝑒𝑡𝑠𝒌𝒐𝒇𝒇
≥

𝐵𝑜𝑏𝒍𝒐𝒏 ∧ 𝑡𝑒𝑠𝑡𝑖𝑛𝑔𝒎𝒐𝒏 . If Bob’s key l is compromised, the user will

see that the secure hash listed by Bob for the malicious package

does not match the non-malicious hash listed in testing and will

abort the installation. Further, as targets is associated with offline

keys 𝑘 , either delegated role may be securely revoked. In order to

replace Ubuntuwith malware, attackers would have to compromise

at least 4 keys across 2 roles.

Addresses Requirement 5: Mitigate role compromise. Multi-

role delegations allow the tool to require agreement between mul-

tiple roles, preventing any role from being a single point of failure.

5.2 Key pinning
Next, we introduce a mechanism through which software installa-

tion tools can articulate a trusted subset of packages on a repository.

We do so by pinning trusted roles, a process that can be defined as

follows for a repository with a set of roles 𝑅:

• Installation tools define 𝑅𝑈 ⊆ 𝑅, the set of roles they would

like to use from the repository.

• Any 𝐴 such that (𝐵 ∈ 𝑅𝑈) ≥ 𝐴 inherits membership in 𝑅𝑈 .

Defining 𝑅𝑈 allows tools to locally define the roles on a repos-

itory they would like to trust, which overrides any delegations

listed on the repository. This protects against malicious repository

maintainers, but puts the onus on the tool to keep 𝑅𝑈 up-to-date.

𝑅𝑈 is defined in the targets map file in Artemis. This file pins

the roles 𝑅𝑈 in a local directory alongside the installation tool. The

software installation tool will use its existing verification process,

but will select and use only metadata from roles 𝑅𝑈 , thus overriding

roles and keys listed by the repository. Targets metadata files for

roles in 𝑅𝑈 must be present on the repository as they must be listed

ACSAC ’23, Dec 04–08, 2023, Austin, TX Marina Moore, Trishank Kuppusamy, and Justin Cappos

Figure 1: The overall design of Artemis. In this example, the targets map file indicates that only Alice should be trusted from
repository A. The repository map file indicates that foo should be downloaded from repository B, while bar requires multiple-
repository consensus from both repository A and B. On repository B, the bar image is signed by both Bob and the testing
role. The roles highlighted in orange are the trusted roles indicated in the targets map file, while the images in purple are the
images assigned to each repository by the repository map file. The files with a blue background represent all of the files that
will be downloaded to verify bar.

Figure 2: A multi-role delegation requires that keys and/or
thresholds of keys must agree on package contents. In this
example, a multi-role delegationmeans that Bob and at least
3 keys of the testing role must agree on the hashes and
length of Ubuntu packages.

in its snapshot metadata. Figure 3 presents a targets map file that

pins the delegated Django targets role.

One downside to pinning keys is that the tool cannot take ad-

vantage of automated key revocation from the repository. The tool

defines 𝑅𝑈 , and as a consequence these roles cannot be revoked by

delegating roles on the repository. For this reason, targets map file

users should ensure that they have up-to-date information about

their pinned keys from tool administrators so compromised keys

can be removed quickly. Tool administrators should ensure prompt

updates of targets map file configurations, such as by using TUF to

distribute the configuration. Tool administrators may also take ad-

vantage of delegations to update pinned keys by pinning a trusted

role 𝐼𝒌𝒐𝒇𝒇
that can further delegate to the roles used to sign pack-

ages. 𝐼𝒌𝒐𝒇𝒇
is signed with offline keys, and so is more protected

from a key compromise. Thus, 𝐼𝒌𝒐𝒇𝒇
can later be used to revoke or

replace the online package signing keys.

Figure 3: The targetsmapfile pins keys for specific delegated
targets roles, using the pinned roles as the top-level targets
and preventing tampering by a malicious repository. In this
example, a targets map file pins keys for the Django targets
role, so that the top-level targets and root on the reposi-
tory are not used to determine keys used to verify this role.
During software installation, only the highlighted roles will
be used, limiting the repository to packages signed by the
Django role. The repository’s root is only used to determine
keys for the snapshot and timestamp roles.

For example when a user knows the keys associated with a role

𝑔𝑨𝑩𝑪 , they may wish to reject any package that is signed with a

different key EF1, even if the repository re-defines this role as 𝑔𝑬𝑭1.
Using Artemis, the user may create 𝑅𝑈 to pin 𝑔𝑨𝑩𝑪 ∈ 𝑅𝑈 so that a

malicious repository cannot replace its key.

Artemis: Defanging Software Supply Chain Attacks in Multi-repository Update Systems ACSAC ’23, Dec 04–08, 2023, Austin, TX

Figure 4: A repository map file provides a ordered, priori-
tized mapping of repositories that restricts each repository
to a namespace. Mappings are prioritized in order of appear-
ance from top to bottom. In this example, all packages start-
ing with mysql-custom package are downloaded from A and
all other MySQL packages are downloaded from B. This is com-
bined with amulti-role delegation to repositories C and D for
ubuntu packages. A compromise of a repository will be lim-
ited to the namespace assigned to that repository.

Addresses requirement 2: Defining a trusted subset. By allow-
ing end users to define 𝑅𝑈 , key pinning gives the installation tool

control over the trusted roles and developers. This ensures that

the repository cannot alter delegations and gives the tool granular

control over key revocation. In addition, key pinning prevents a

tool from automatically trusting a new, malicious developer.

5.3 Repository RBAC
Finally, articulated trust addresses per-package prioritization and

mitigates the impact of repository compromise through a secure

configuration of multiple repositories. We extend the application of

the multi-role delegation model to apply not only to roles within a

repository, but also to the relationship between repositories. We de-

fine Repository RBAC as an RBAC system in which the repositories

are the users 𝑈𝑅 , the namespaces are the permissions 𝑃𝑅 and the

roles 𝑅𝑅 are assigned a set of permissions and users. We apply the

multi-role delegation model to Repository RBAC to allow for the

same agreement between repositories as is achieved between roles.

The repository map file configures Repository RBAC in Artemis.

It allows tool administrators to unambiguously allocate packages to

repositories, preventing dependency confusion attacks and reduc-

ing the impact of a repository compromise. Each repository map

file specifies𝑈𝑅 , 𝑃𝑅 , and 𝑅𝑅 .

First, the map file contains a list of the available repositories 𝑈𝑅 .

Each repository is associated with: (1) a unique directory name

where its metadata files are cached, and (2) a list of one or more

URLs, each of which points to a root directory where metadata and

packages are available.

Next, the map file specifies a list of repository mappings that
define the roles 𝑅𝑅 by associating namespaces 𝑃𝑅 with each 𝑢 ∈ 𝑈𝑅 .

Similar to prioritized delegations [53], all repository mappings are

listed in a descending order of priority. Each mapping specifies:

(1) a list of one or more filename patterns, (2) a list of one or more
repositories, and (3) a flag indicating whether or not the mapping

is terminating. Akin to terminating delegations [53], a terminating

mapping signals to a software update security system that it should

halt its backtracking search for a package (described in Section 6.1),

so the user should ignore any delegation 𝐴 ≥ 𝐵 from a terminating

role 𝐴. Since repository mappings are strictly ordered, there will

always be one trusted conclusion for a package’s metadata, or none

at all if no set of trusted repositories has signed the package.

Finally, the repository map file contains a multi-role delegation

threshold that specifies the number of mappings that must agree on

the contents of a package. The tool will search the prioritized repos-

itory mappings until the designated threshold of mappings agrees

on the package contents. This threshold gives the user protection

from malicious maintainers or a repository compromise.

For repositories𝐴 ∈ 𝑈𝑅 and 𝐵 ∈ 𝑈𝑅 assigned to roles 𝑅𝐴 and 𝑅𝐵 ,

respectively, Artemis can specify that namespaces 𝑎 ∈ 𝑃𝑅 should

be assigned to 𝑅𝐴 , 𝑏 ∈ 𝑃𝑅 should be assigned to 𝑅𝐵 , and 𝑐 ∈ 𝑃𝑅
should be assigned to 𝑅𝐴 , then 𝑅𝐵 . Thus, a package in namespace

𝑎 will only be downloaded from repository 𝐴, while a package in

namespace 𝑐 will be looked for first in𝐴, then in 𝐵. Figure 4 provides

an example of a repository map file.

In this way the tool is able to provide per-package prioritization

of multiple repositories, preventing dependency confusion attacks.

Packages on trusted internal repositories cannot be replaced with

arbitrary packages from a public repository, as these repositories

are assigned different permissions. A tool is able to maintain a

collection of verified or proprietary packages, while safely taking

advantage of existing public repositories for other packages.

Addresses requirement 1: Per-package prioritization of
repositories. Artemis explicitly allocates trust for each package by

using prioritized repository mappings that specify which repository

should be used for each namespace 𝑝 ∈ 𝑃𝑅 .

Addresses requirement 3: Terminate search for a package.
The repository map file allows any assignment to a repository to be

terminating, so that the tool will stop the search for a namespace 𝑛.

Further, the repository map file can create multiple repository

consensus. A tool may use a multi-role delegation in Repository

RBAC from the root role 𝑟 ∈ 𝑅𝑅 for repositories𝐴 ∈ 𝑈𝑅 and 𝐵 ∈ 𝑈𝑅 .

So 𝑟 ≥ 𝑅𝐴 ∧ 𝑅𝐵 . A tool will automatically reject a package if the

hash of the package downloaded from repository A does not match

that of the package downloaded from repository B.

Addresses requirement 4: Mitigate repository compromise.
The thresholds in the repository map file allow the tool to ensure

that multiple repositories agree on package contents, and thus

prevent any repository from being a single point of failure.

6 IMPLEMENTATION
We integrated Artemis into TUF and Uptane, and our implementa-

tion has been upstreamed into production use. There are different

implementations for each integration, using some or all of Artemis’s

features. These implementations include an integration in Scala for

Automotive Grade Linux, as well as libraries in go and Python.

In the python-tuf integration, adding all features of Artemis

only adds about 150 lines of code to the existing 3500 line code-

base. Processing the repository map file added about 100 additional

lines and the targets map file about 50 lines. This does not include

additions due to unit tests, integration tests, and documentation.

ACSAC ’23, Dec 04–08, 2023, Austin, TX Marina Moore, Trishank Kuppusamy, and Justin Cappos

Our implementation adds the repository and targets map files,

which require no changes to the repository, and thus preserve

backwards compatibility as specified in Section 4. As these new file

types are not signed, they can be distributed by a tool administrator

to a user using TUF or another secure distribution mechanism. Map

file examples are shown in Appendix A.

Multi-role delegations are implemented on the repository by

adding a min_roles_in_agreement field to delegations and allowing

each delegation to list multiple roles. The user must ensure that at

leastmin_roles_in_agreement roles have signed the same file hashes

for a package.

6.1 Software update workflow
Artemis requires the following workflow for downloading and

verifying software. First, the software update security system loads

the repository map file and iterates over the list of mappings. Then

each is processed using the following steps:

(1) If the filename of the desired package matches one of the

paths in the list of filename patterns, then go to step 2. Oth-

erwise, go to step 5.

(2) Download and verify the metadata for the package. The

metadata will contain the hashes and length of the package.

(3) If the package hashes and length match across a threshold

of repositories, then download the package, verify that it

matches this metadata, stop the search, and return it.

(4) If there is no metadata about the package from any of these

repositories, or if this is a terminating mapping and the pack-

age hashes and length do not match across these repositories

then stop the search, and report that the package is missing.

(5) Continue to the next mapping.

In step 2, the software update security system will use its es-

tablished workflow to download and verify metadata from each

repository, unless the targets map file is used. In the latter case,

the system will only use 𝑅𝑈 and therefore the keys assigned to

𝑅𝑈 . These roles may then delegate to other roles on the repository.

The system will verify only packages signed by roles in 𝑅𝑈 , or a

delegatee of 𝑅𝑈 . All other security checks are done using metadata

provided by the repository.

Once it has established which repositories and keys should be

used, Artemis uses a pre-order, depth-first search [53] to resolve

prioritized and / or terminating delegations, and find metadata

for the package. When multi-role delegations are used, Artemis

modifies this search only by ensuring that the package hashes and

length match across multiple, prioritized roles.

7 EVALUATION
We tested Artemis in twoways. First, we analyzed past attacks to see

how Artemis can prevent or minimize assaults on software update

systems. We also evaluated how the mechanisms of articulated trust

contribute to achieving our security and usability goals.

7.1 Analysis of past attacks
To evaluate Artemis, we examined attacks from the CNCF’s CSCC

[84]. This catalog offers a cross-section of the many types of attacks

on supply chains, with a particular focus on cloud applications. Of

the 59 attacks cataloged before October 2022, we analyzed only

those that targeted software update or distribution systems and

sorted them by type of compromise. These attack types are:

• Repository compromise: The attacker gained control of

the software repository.

• Compromised developer key: The attacker compromised

a developer’s signing key or account.

• Compromised key and repository: The attacker compro-

mised both a signing key and the repository.

• Compromised key of another trusted developer: The
attacker gained control of a trusted key for a developer other

than the one who usually signs the affected package.

• Redirect to attacker repository: The attacker convinced
users to download updates from a malicious repository

• Malicious new developer: A new developer joined the

team or took over the project, then performed the attack.

• Malicious existing developer: An existing developer per-

formed the attack.

Table 1 shows the relative effectiveness of TLS/GPG, Sigstore [89],

TUF, and Artemis in preventing these attacks. Even with the us-

ability gained from online keys, Artemis with a threshold of at

least 2 roles and repositories would have prevented all 29 attacks.

A configuration of Artemis without all features would still allow

users to recover from all classes of attacks analyzed by revoking

compromised keys.

Conversely, software update systems that rely solely on online

TLS/GPG signatures would not have prevented the analyzed attacks.

While TLS/GPG do provide some protection, they are so common

in real-world applications [44] that recent attacks have bypassed

this protection. The Sigstore project, which stores signatures on a

transparent log, provides recovery from 22 analyzed attacks, but

only prevents 2. Systems that use TUF with an online targets role

are able to prevent 4 attacks, with high thresholds preventing a

further 9. TUF is able to recover after any of the remaining 16

attacks, but could not avoid being compromised. Offline keys in

TUF prevent an additional 13 attacks.

Since Artemis is designed for modular implementation, we break-

down which security properties of Artemis defend against each

attack type. Key pinning, which prevented 18, allows users, rather

than repositories, to specify trusted keys. Thus, key pinning pre-

vents attacks that rely on changing trusted keys. In these attacks,

an attacker manipulates the trusted keys for a package by changing

a delegation. With key pinning, the user will ignore delegation

changes that come from the repository or untrusted keys. This

includes attacks performed by malicious new developers as key

pinning allows the tool administrator to vet new developers. Multi-

role delegations, which prevented 13 with online keys and 29 with

offline keys, requires a threshold of at least two roles or repositories

to agree on package contents, preventing a single role or repository

compromise from leading to a successful attack. If a single role is

compromised and provides metadata for a malicious package, the

uncompromised role will not agree with anthey malicious pack-

age contents, and so the user will not install it. Finally, repository

RBAC, which prevented 20, allows the user to specify which pack-

age should come from each trusted repository and developer, thus

limiting the impact of a compromised developer or repository to

the packages they control.

Artemis: Defanging Software Supply Chain Attacks in Multi-repository Update Systems ACSAC ’23, Dec 04–08, 2023, Austin, TX

TUF Artemis w/online targets Artemis w/offline targets

Attack Type Count GPG/

TLS

Sigstore Online

targets

Offline

targets

Key

pinning

Multi-role

delegations

Repository

RBAC

Key

pinning

Multi-role

delegations

Repository

RBAC

Repository compromise 13 × # # #
Compromised key and repository 3 × # # G# G# # G#
Compromised key 6 × # G# G# G# G# G# G#
Compromised key for other trusted developer 2 × ×
Redirect to attacker repository 2 ×
Malicious new developer 1 × × G# G# G# G#
Malicious existing developer 2 × × G# G# × × × ×

Table 1: Evaluating attack protection of different software update security systems, including a breakdown of protections
provided by each of Artemis’s features. ×means that the attack is not prevented and there is no way to securely recover after
an attack. #means that the system can recover from, but not prevent an attack. G#means that the attack will be prevented if
a threshold 𝑡 > 1 is configured. means that the attack is prevented.

Not all systems that use Artemis choose the most restrictive con-

figuration, so in practice its level of protection will depend on the

chosen security properties and thresholds. For example, thresholds

will only provide security gains if they are larger than one. Based

on Table 1, a combination of multi-role delegations and repository

RBAC could have prevented all the considered attack categories.

However, this assumes that all roles and repositories have thresh-

olds greater than one, which is not practical in all deployments.

It should be noted that the property of per-package prioritization

provides protection against attacks that specifically target multiple

repository systems, including dependency confusion attacks, which

are categorized here under redirect to attacker repository.

Further, some of the properties in Artemis are designed to work

in combination. For example, multi-role delegationswork best when

attackers cannot replace the delegating role 𝐴. To mitigate this, a

user may either pin developer keys by specifying 𝑅𝑈 ⊆ 𝑅 such that

𝐴 ∈ 𝑅𝑈 , or utilize offline keys for 𝐴 for additional assurance.

7.2 Real-world deployment
Artemis has been adopted in the Uptane Standard [75], which is

used by automotive companies in Europe, the United States, and

Japan. There are also public deployments by HERE Technologies,

Airbiquity, Foundries.io, and Automotive Grade Linux [46]. Further,

TUF uses Artemis in container registries, such as those used in

production by DataDog, AWS, Google, Docker, and others [18]. The

properties archived in these deployments are summarized in Table 2.

7.2.1 Automobiles. Artemis’s multiple-repository consensus re-

solved Uptane’s requirement to protect against nation state attack-

ers while preserving customizability. With online keys, repositories

can instantly sign different updates for different vehicles. But, on-

line keys are much more vulnerable to compromise. Alternatively,

signing software updates using offline keys provides better protec-

tion in the event of a repository compromise, but makes it harder

to implement customized updates. Thus, use of offline keys can

interfere with effective and time sensitive updates.

To solve this issue, Uptane uses multi-repository consensus to

separate responsibility. The Image repository uses offline keys to

sign metadata about all images. The Director repository uses on-

line keys to provide instructions about which images should be

installed on each vehicle. Putting these together, Artemis delegates

Adoption requirement Deployment Artemis features Configured by
Define updates for each

vehicle

Automotive OEM

Protection from repository

compromise

Automotive OEM

Gather updates from

multiple suppliers

Automotive OEM

Using a third party

container registry

Cloud Package manager

Store sensitive data on a

private repository

Cloud Company

Use software from a public

repository

Cloud Package manager

Ensure updates are tested Cloud Package manager

Table 2: Different Artemis deployments use different fea-
tures, often in combination to achieve specific require-
ments.

from the root role 𝑟 ≥ 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝒅𝒐𝒏
∧ 𝐼𝑚𝑎𝑔𝑒𝒊𝒐𝒇𝒇 . As the two reposi-

tories are independent of each other, attackers are unable to install

malicious images unless they compromise both. This ensures that

attacks on online keys are insufficient to install arbitrary packages,

while allowing for on-demand customization.

Additionally, multi-role delegations allow automakers to collect

updates from a number of suppliers without sharing private keys.

Key Takeaway: By using both multi-repository delegations and

multi-role delegations it is now possible to ensure a software update

system can remain resilient even against an actor, like a nation-state,

that can compromise all repositories and online keys.

7.2.2 TUF. Artemis allows TUF to facilitate updating images from

multiple container registries. A container is a form of OS-level

virtualization that provides relatively isolated environments for

running software. Containers are often packaged as images, or

immutable snapshots of the container filesystem, hosted on repos-

itories known as container registries, such as Docker Hub [30]

and CoreOS Quay [26]. Using Artemis, users can define prioritized

and terminating mappings to each registry, and specify trusted

developers and packages when using an untrusted registry.

Enterprises such as eBay use Quay to distribute images to avoid

the cost of hosting and maintaining its own repository. However,

eBay may trust Quay for its own images, but not those of other

ACSAC ’23, Dec 04–08, 2023, Austin, TX Marina Moore, Trishank Kuppusamy, and Justin Cappos

developers. Also, eBay does not want Quay to be able to create

delegations that could replace their trusted keys. Defining a trusted

subset with Artemis addresses this concern.

Per-package prioritization supports enterprise users. Enterprises

cannot risk uploading images to public repositories that may expose

sensitive or proprietary information. Even if access controls are

placed on the images themselves, it is likely sensitive information,

such as file names and public keys, will be revealed through meta-

data. Artemis’s repository mappings allow enterprise users to store

sensitive data on a private repository while taking advantage of

public repositories for less sensitive images.

Key Takeaway: Key pinning and per-package prioritization

allow users to trust some, but not all, packages on a registry and

download these packages without trusting registry maintainers.

7.2.3 Lessons from Deployment. The initial deployment of Artemis

required an investment of time from repository administrators. Sys-

tems that already store TUF metadata alongside packages require

fewer changes, and so Artemis could be deployed in these systems

more easily. The modular nature of Artemis allows administrators

to implement features incrementally, and decide which features

would provide the most security for their implementation. Uptane

implemented both multi-role delegations and repository RBAC

in order to support consensus between multiple roles and reposi-

tories. Conversely, users of community package repositories can

implement just repository RBAC and key pinning in order to sup-

port per-package prioritization and reduce trust in the community

repository.

Once Artemis is implemented, trust needs to be established in

roles and repositories. Artemis uses TUF to establish trust, with

the root role distributing keys for other trusted entities. This also

provides mechanisms to revoke and replace trusted parties [19, 50].

TUF can further be used to distribute map files required by Artemis.

A separate TUF repository with a trusted root could distribute the

map files to a software installation tool. If any trusted party is

later found to be malicious, TUF provides mechanisms to revoke

trust. Further, role and repository thresholds in Artemis reduce the

impact of any single compromised role.

Artemis requires a trusted administrator to set up and manage

the security and usability tradeoffs of thresholds and pinned targets.

Once these configurations are made, they can be shared among

users. In Uptane, these decisions were made primarily by automo-

tive OEMs, who determined the threshold of repositories in the

repository map file, and then pushed this configuration to vehi-

cles. In container implementations, the configuration was done by

the package manager, company, or individual user that could set

thresholds or pin targets based on their particular threat model.

The default configuration for a package manager is shipped along

with the software.

There are tradeoffs to consider when setting thresholds to bal-

ance the increased security of having more developers or reposi-

tories agree on a package’s contents, and the potential for a failed

update if a threshold is not met. In the case of an insufficient thresh-

old, the tool must decide whether it is more important to meet the

threshold or to install the package. For example, a tool could choose

to not install the package if a signature from the original developer

or a security team is missing. However, a missing signature from

the QA team may be configured to not block installation. This deci-

sion must be made by looking at the purpose of each required role

and the threat model of a particular application. If a threat model

contains nation-state attackers that can compromise a repository

or signing key, a high threshold that includes offline keys should be

used. For Uptane, a threshold of two repositories allowed automak-

ers to balance the need for real-time configuration with the need

for offline keys. For applications used for hobby projects, a thresh-

old of one may be sufficient. Community package repositories aim

to make packages easy to distribute, and so would only require a

single role to sign a package, removing barriers to adoption.

7.3 Usability and performance
Artemis also achieves the practical requirements from section 3.

Shareable configuration. The map files that Artemis intro-

duces can be easily configured by experts and distributed to end-

users. Map files should be distributed with TUF or a similar mecha-

nism to ensure that the tool’s copy is current and accurate. These

files are designed to remain accurate as new packages are uploaded

to a repository. They only need to be updated to change the trusted

set of developers or policies for a package.

Backwards compatibility. As Artemis does not change the un-

derlying techniques of TUF, it continues to prevent known attacks

on single repository update systems [50, 52, 79] including replay

attacks on metadata and packages. This also ensures backwards

compatibility with existing TUF users. Software installation tools

may add targets and repositorymap files as client-side configuration

with no changes to repositories. However, multi-role delegations

do require a change to existing metadata formats. To ensure that

software installation tools do not encounter unfamiliar metadata,

this change should be supported first by software installation tools,

and then by developers uploading to repositories. This may be done

through API versioning on the repository.

Performance. Based on performance tests of the Python im-

plementation, Artemis adds minimal processing time to software

update systems. We compare runtime and metadata sizes with and

without repository and targets map files. For this test, the repository

map file requires that two repositories agree on package contents.

Our results are summarized in Table 3 and show only an increase

of 10 milliseconds for verification. If more repositories or roles are

verified, there would be more processing, but this increase is still

small for users considering that downloading and installing soft-

ware packages, which are often many megabytes in size, dominates

the overall processing time. For example PyPI packages, based on

publicly available data, average over 3MB [103].

The Python implementation of Artemis is built on top of a TUF

implementation, and so has similar performance as the size of repos-

itories grows. An analysis of the runtime and metadata overhead

of TUF was performed in Mercury [50].

Artemis can enhance security protections with a manageable

change to existing systems. Our implementation added only about

4% more code to the software update system. The simplicity of the

additional code required for verification makes it easy to implement.

Artemis: Defanging Software Supply Chain Attacks in Multi-repository Update Systems ACSAC ’23, Dec 04–08, 2023, Austin, TX

Metric TUF Artemis Package

download

Artemis

overhead

Processing time 200 ms 210 ms 240 ms 38%

Storage 9.511 KB 10.262 KB 3 MB 0.34%

Table 3: Artemis runtime and storage. The storage for TUF is
equivalent to the bandwidth. However, the additional meta-
data in Artemis is configured locally and not downloaded
from a repository. Package download time is based on the
average PyPI package at an 100 Mbps download speed.

8 RELATEDWORK
We compare Artemis to the broader field of software supply chain

security, as well as other work built on in this paper.

Software supply chain security Artemis improves security

of software distribution and updating, a sub-problem of software

supply chain security. Other technologies in this field solve related

problems. in-toto [100] is an end-to-end framework that allows

users to define and validate steps in a supply chain. Software bills

of materials (SBOMs) [96] provide auditable information about

software dependencies including Software Identification (SWID)

tagging [23], Software Package Data Exchange (SPDX) [105], and

CycloneDX [31]. Coppens et. al. present binary code diversification

to prevent attackers from using binary diffs to reconstruct patched

attacks [24]. These technologies can work in tandem with Artemis,

with Artemis securely distributing both packages and metadata,

like SBOMs, from other supply chain security technologies. Han

et. al. introduce Sigl, a tool for detecting malicious software in-

staller programs [41]. Artemis focuses instead on ensuring that the

installer gets the intended artifact from a collection of software

repositories.

Multi-role delegations. Artemis applies ideas from previous

work in logic-based distributed authorization. D2LP is an autho-

rization language in delegation logic [40, 60, 62, 63] that extends

early works on trust management and authorization in distributed

systems [1, 56]. D2LP also uses both the AND and OR relations in

delegations, and could express the mechanisms in Artemis. How-

ever, Artemis is the first system for software updates that uses these

types of delegations.

Threshold and multi-signature signing Artemis expands on

the idea of signature thresholds by adding thresholds of roles or

repositories. Multi-signature signing [13, 45, 66, 76, 106] efficiently

allows multiple signatures on an artifact. Threshold signatures [35,

85, 88] allow multiple parties to sign an artifact by splitting the

private key among all entities. Artemis does not require that the

same metadata bytes are signed, but that the hashes and length of

a package match across multiple roles or repositories.

Multiple repositories. Like Artemis, other systems use the idea

of multiple repositories or servers, but there are some important

differences. Linux software updaters dnf and apt allow users to

install packages from multiple repositories as does Revere [59],

which uses a self-organizing, peer-to-peer (P2P) overlay network to

deliver updates. Essentially, every Revere node acts as a mirror, and

may push or pull updates to or from other nodes. However, these

systems do not solve the priority or fallback problems, or allow for

multiple-repository consensus.

Byzantine fault-tolerant systems (BFT) use many replicas instead

of a single server to execute operations [9, 22, 58, 83]. Yet, BFT

systems are aiming to solve a different problem, that of guaranteeing

linearizability [42] in a system made of distributed processors. In

contrast, Artemis uses multiple repositories as independent sources

of information that must agree with each other.

Reducing trust in a repository. Some software update systems

allow users to reduce trust in a repository. For example, apt and
dnf require user permission before revoking and replacing keys

used to verify metadata. However, Artemis is the first system that

removes the repository from the equation. Instead, Artemis allows

users to specify their own keys for packages and metadata. This

technique is powerful enough that it can solve other problems, such

as reducing trust in mirrors.

Secure Untrusted Data Repository (SUNDR) [57] uses a set of

trusted users that honestly report histories. SUNDR uses this infor-

mation to detect equivocation to protect against arbitrary software

attacks and forking attacks on a single repository. Artemis does not

rely on a trusted set of honest users reporting history data and also

supports articulated trust in multiple repositories.

Another approach to reducing trust is the use of binary trans-

parency through publicly auditable, immutable transparent logs.

Sigstore [89] provides a set of tools for signing packages and up-

loading these signatures to a transparent log for auditability and

protection against forking attacks. But, this approach relies on third-

party auditors of the log. Artemis is compatible with transparent

logs, and and there are integrations of Artemis and Sigstore[89]

that provide Artemis’s articulated trust and revocation mechanisms

in addition to the protections offered by transparent logs.

Ghosn et. al. [36] propose reducing the impact of malicious pack-

ages by using Enclosures to restrict the resources that library depen-

dencies can access. Unlike Artemis, Enclosures require changes to

programming languages. Artemis can work with existing developer

workflows, and would be compatible with Enclosures.

9 CONCLUSION
In this paper we conducted the first comprehensive examination of

the security of multiple repository update systems. We introduce

articulated trust to enable a software update system to use multiple

repositories while limiting the trust placed in them. Artemis, our

implementation of articulated trust, has been successfully deployed

in several large scale production environments. Artemis uses simple

yet effective mechanisms to provide secure configuration of trust in

challenging environments, such as automobiles and container reg-

istries. Through collaboration with industry practitioners, we show

that Artemis addresses real world problems. For example, Artemis

allows companies using popular cloud container sites to prevent de-

pendency confusion attacks. It also helps automakers enhance their

resilience against nation-state actors through multiple-repository

consensus.

The security properties of Artemis are very effective in prevent-

ing previous attacks on software update systems, andwould prevent

all attacks that we analyzed, compared with 59% for TUF and 7% for

Sigstore. By employing key pinning, eliminating single points of

failure, and per-package prioritization, Artemis establishes a robust

defense against attacks on multiple repository update systems.

ACSAC ’23, Dec 04–08, 2023, Austin, TX Marina Moore, Trishank Kuppusamy, and Justin Cappos

REFERENCES
[1] Abadi, M., Burrows, M., Lampson, B., and Plotkin, G. A calculus for access

control in distributed systems. ACM Trans. Program. Lang. Syst. 15, 4 (Sept.

1993), 706–734.

[2] Aguirre, J. Npm hijackers at it again: Popular ‘coa’ and ‘rc’ open source libraries

taken over to spread malware. sonatype blog (2021).

[3] Apache Infrastructure Team. apache.org incident report for 8/28/2009.

https://blogs.apache.org/infra/entry/apache_org_downtime_report, 2009.

[4] Apache Infrastructure Team. apache.org incident report for 04/09/2010.

https://blogs.apache.org/infra/entry/apache_org_04_09_2010, 2010.

[5] add-apt-repository, 2021.
[6] ArchWiki. Official repositories. https://wiki.archlinux.org/title/

Official_repositories, 2022.

[7] Argon. 2021 Software Supply Chain Security Report. Tech. rep., Argon: An

Aqua Company.

[8] Arkin, B. Adobe to Revoke Code Signing Certificate. https://blogs.adobe.com/

conversations/2012/09/adobe-to-revoke-code-signing-certificate.html, 2012.

[9] Aublin, P.-L., Mokhtar, S. B., and Quéma, V. Rbft: Redundant byzantine

fault tolerance. In Proceedings of the 2013 IEEE 33rd International Conference on
Distributed Computing Systems (USA, 2013), ICDCS ’13, IEEE Computer Society,

p. 297–306.

[10] Barka, E., and S, R. A role-based delegation model and some extensions.

Proceedings of the 23rd National Conference on Information Systems Security (12

2000).

[11] Barka, E., and Sandhu, R. Role-based delegation model/hierarchical roles

(rbdm1). pp. 396– 404.

[12] Bellare, M., and Neven, G. Multi-signatures in the plain public-key model

and a general forking lemma. In Proceedings of the 13th ACM Conference on
Computer and Communications Security (New York, NY, USA, 2006), CCS ’06,

Association for Computing Machinery, p. 390–399.

[13] Bellare, M., and Neven, G. Multi-signatures in the plain public-key model

and a general forking lemma. In Proceedings of the 13th ACM Conference on
Computer and Communications Security (New York, NY, USA, 2006), CCS ’06,

Association for Computing Machinery, p. 390–399.

[14] Bellissimo, A., Burgess, J., and Fu, K. Secure software updates: disappoint-

ments and new challenges. Proceedings of USENIX Hot Topics in Security (HotSec)
(2006).

[15] Bottlerocket update infrastructure. https://github.com/bottlerocket-os/

bottlerocket/tree/develop/sources/updater, 2019.

[16] Burrows, D. Modelling and resolving software dependencies. https://

people.debian.org/~dburrows/model.pdf, 2005.

[17] Cappos, J., Baker, S., Plichta, J., Nyugen, D., Hardies, J., Borgard, M., John-

ston, J., and Hartman, J. H. Stork: package management for distributed VM

environments. In The 21st Large Installation System Administration Conference,
LISA’07 (2007).

[18] Cappos, J., Kuppusamy, T. K., Lock, J., Moore, M., and Pühringer, L. The

update framework specification. Specification, 2022.

[19] Cappos, J., Samuel, J., Baker, S., and Hartman, J. H. A look in the mirror:

Attacks on package managers. In Proceedings of the 15th ACM conference on
Computer and communications security (2008), ACM, pp. 565–574.

[20] Cappos, J., Samuel, J., Baker, S., and Hartman, J. H. Package management

security. University of Arizona Technical Report (2008), 08–02.
[21] Capppos, J. Stork: Secure Package Management for VM Environments. Disserta-

tion, University of Arizona, 2008.

[22] Castro, M., and Liskov, B. Practical byzantine fault tolerance. In Proceedings of
the Third Symposium on Operating Systems Design and Implementation (Berkeley,
CA, USA, 1999), OSDI ’99, USENIX Association, pp. 173–186.

[23] Center, I. T. L. C. S. R. Software Identification (SWID)Tagging. Tech. rep.,

National Institute of Standards and Technology, 2021.

[24] Coppens, Bart and De Sutter, Bjorn and De Bosschere, Koen. Protecting

your software updates. IEEE SECURITY PRIVACY 11, 2 (2013), 47–54.
[25] Corbet, J. The cracking of kernel.org. http://www.linuxfoundation.org/news-

media/blogs/browse/2011/08/cracking-kernelorg, 2011.

[26] CoreOS, Inc. Quay Container Registry. https://quay.io/.

[27] Debian. Debian Investigation Report after Server Compromises. https:

//www.debian.org/News/2003/20031202, 2003.

[28] Debian. Security breach on the Debianwiki 2012-07-25. https://wiki.debian.org/

DebianWiki/SecurityIncident2012, 2012.

[29] Desmedt, Y. Society and group oriented cryptography: A new concept. In

A Conference on the Theory and Applications of Cryptographic Techniques on
Advances in Cryptology (Berlin, Heidelberg, 1987), CRYPTO ’87, Springer-Verlag,

p. 120–127.

[30] Docker Inc. Docker Hub. https://hub.docker.com/.

[31] Foundation, O. CycloneDx. https://cyclonedx.org/, 2021.

[32] Frields, P. W. Infrastructure report, 2008-08-22 UTC 1200.

https://www.redhat.com/archives/fedora-announce-list/2008-August/

msg00012.html, 2008.

[33] Fuschia. Software update system. Tech. rep., 2021.

[34] Geer, D., Tozer, B., and Meyers, J. S. For good measure: Counting broken

links: A quant’s view of software supply chain security. login Usenix Mag. 45
(2020).

[35] Gennaro, R., and Goldfeder, S. Fast multiparty threshold ecdsa with fast

trustless setup. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (New York, NY, USA, 2018), CCS ’18, Association

for Computing Machinery, p. 1179–1194.

[36] Ghosn, A., Kogias, M., Payer, M., Larus, J. R., and Bugnion, E. Enclosure:

Language-based restriction of untrusted libraries. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (New York, NY, USA, 2021), ASPLOS ’21, Association for

Computing Machinery, p. 255–267.

[37] GitHub, Inc. Public Key Security Vulnerability and Mitigation. https://

github.com/blog/1068-public-key-security-vulnerability-and-mitigation, 2012.

[38] GNU Savannah. Compromise2010. https://savannah.gnu.org/maintenance/

Compromise2010/, 2010.

[39] Goodin, D. Attackers sign malware using crypto certificate stolen from Opera

Software. http://arstechnica.com/security/2013/06/attackers-sign-malware-

using-crypto-certificate-stolen-from-opera-software/, 2013.

[40] Grosof, B. N. Prioritized conflict handling for logic programs. In ILPS (1997),
vol. 97, pp. 197–211.

[41] Han, X., Yu, X., Pasqier, T., Li, D., Rhee, J., Mickens, J., Seltzer, M., and

Chen, H. SIGL: Securing software installations through deep graph learning.

In 30th USENIX Security Symposium (USENIX Security 21) (Aug. 2021), USENIX
Association, pp. 2345–2362.

[42] Herlihy, M. P., and Wing, J. M. Axioms for concurrent objects. In Proceedings
of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (New York, NY, USA, 1987), POPL ’87, ACM, pp. 13–26.

[43] in-toto - a framework to secure the integrity of software supply chains. https:

//in-toto.io/, 2022.

[44] (ISRG)., I. S. R. G. Let’s encrypt stats. https://letsencrypt.org/stats/, 2021.

[45] ITAKURA, K; NAKAMURA, K. A public-key cryptosystem suitable for digital

multisignatures. NEC research development (1983).
[46] Joint Development Foundation Projects, LLC, Uptane Series. Adoptions.

https://uptane.github.io/adoptions.html, 2020.

[47] Knockel, J., and Crandall, J. R. Protecting Free and Open Communications

on the Internet Against Man-in-the-Middle Attacks on Third-Party Software:

We’re FOCI’d. In Presented as part of the 2nd USENIX Workshop on Free and
Open Communications on the Internet (Berkeley, CA, 2012), USENIX.

[48] Kubernetes. Case study: Ibm building an image trust service on kubernetes

with notary and tuf. https://v1-18.docs.kubernetes.io/case-studies/ibm/, 2018.

[49] Kuppusamy, T. K. Secure Publication of Datadog Agent Integrations with TUF

and in-toto. https://www.datadoghq.com/blog/engineering/secure-publication-

of-datadog-agent-integrations-with-tuf-and-in-toto/, 2019.

[50] Kuppusamy, T. K., Diaz, V., and Cappos, J. Mercury: Bandwidth-effective

prevention of rollback attacks against community repositories. In USENIX ATC
’17 (USA, 2017), USENIX Association, p. 673–688.

[51] Kuppusamy, T. K., Diaz, V., Stufft, D., and Cappos, J. PEP 458 – Securing the

Link from PyPI to the End User. https://www.python.org/dev/peps/pep-0458/,

2013.

[52] Kuppusamy, T. K., Torres-Arias, S., Diaz, V., and Cappos, J. Diplomat: Using

Delegations to Protect Community Repositories. Tech. Rep. TR-CSE-2016-01,

Computer Science and Engineering, Tandon School of Engineering, New York

University.

[53] Kuppusamy, T. K., Torres-Arias, S., Diaz, V., and Cappos, J. Diplomat: Using

delegations to protect community repositories. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16) (Santa Clara, CA, Mar.

2016), USENIX Association, pp. 567–581.

[54] Ladisa, P., Plate, H., Martinez, M., and Barais, O. Sok: Taxonomy of attacks

on open-source software supply chains. In 2023 IEEE Symposium on Security
and Privacy (SP) (Los Alamitos, CA, USA, may 2023), IEEE Computer Society,

pp. 1509–1526.

[55] Lampson, B., Abadi, M., Burrows, M., and Wobber, E. Authentication in

distributed systems: Theory and practice. ACM Trans. Comput. Syst. 10, 4 (Nov.
1992), 265–310.

[56] Lampson, B., Abadi, M., Burrows, M., and Wobber, E. Authentication in

distributed systems: Theory and practice. ACM Trans. Comput. Syst. 10, 4 (Nov.
1992), 265–310.

[57] Li, J., Krohn,M., Mazières, D., and Shasha, D. Secure untrusted data repository

(SUNDR). In Proceedings of the 6th conference on Symposium onOperating Systems
Design & Implementation - Volume 6 (Berkeley, CA, USA, 2004), OSDI’04, USENIX
Association, pp. 9–9.

[58] Li, J., and Maziéres, D. Beyond One-third Faulty Replicas in Byzantine Fault

Tolerant Systems. In Proceedings of the 4th USENIX Conference on Networked
Systems Design and Implementation (Berkeley, CA, USA, 2007), NSDI’07, USENIX
Association, pp. 10–10.

https://blogs.apache.org/infra/entry/apache_org_downtime_report
https://blogs.apache.org/infra/entry/apache_org_04_09_2010
https://wiki.archlinux.org/title/Official_repositories
https://wiki.archlinux.org/title/Official_repositories
https://blogs.adobe.com/conversations/2012/09/adobe-to-revoke-code-signing-certificate.html
https://blogs.adobe.com/conversations/2012/09/adobe-to-revoke-code-signing-certificate.html
https://github.com/bottlerocket-os/bottlerocket/tree/develop/sources/updater
https://github.com/bottlerocket-os/bottlerocket/tree/develop/sources/updater
https://people.debian.org/~dburrows/model.pdf
https://people.debian.org/~dburrows/model.pdf
http://www.linuxfoundation.org/news-media/blogs/browse/2011/08/cracking-kernelorg
http://www.linuxfoundation.org/news-media/blogs/browse/2011/08/cracking-kernelorg
https://quay.io/
https://www.debian.org/News/2003/20031202
https://www.debian.org/News/2003/20031202
https://wiki.debian.org/DebianWiki/SecurityIncident2012
https://wiki.debian.org/DebianWiki/SecurityIncident2012
https://hub.docker.com/
https://cyclonedx.org/
https://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
https://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
https://github.com/blog/1068-public-key-security-vulnerability-and-mitigation
https://github.com/blog/1068-public-key-security-vulnerability-and-mitigation
https://savannah.gnu.org/maintenance/Compromise2010/
https://savannah.gnu.org/maintenance/Compromise2010/
http://arstechnica.com/security/2013/06/attackers-sign-malware-using-crypto-certificate-stolen-from-opera-software/
http://arstechnica.com/security/2013/06/attackers-sign-malware-using-crypto-certificate-stolen-from-opera-software/
https://in-toto.io/
https://in-toto.io/
https://letsencrypt.org/stats/
https://uptane.github.io/adoptions.html
https://v1-18.docs.kubernetes.io/case-studies/ibm/
https://www.datadoghq.com/blog/engineering/secure-publication-of-datadog-agent-integrations-with-tuf-and-in-toto/
https://www.datadoghq.com/blog/engineering/secure-publication-of-datadog-agent-integrations-with-tuf-and-in-toto/
https://www.python.org/dev/peps/pep-0458/

Artemis: Defanging Software Supply Chain Attacks in Multi-repository Update Systems ACSAC ’23, Dec 04–08, 2023, Austin, TX

[59] Li, J., Reiher, P., and Popek, G. J. Resilient self-organizing overlay networks

for security update delivery. Selected Areas in Communications, IEEE Journal on
22, 1 (2004), 189–202.

[60] Li, N. Delegation Logic: A Logic-based Approach to Distributed Authorization.
PhD thesis, New York University, 2000.

[61] Li, N., Feigenbaum, J., and Grosof, B. A logic-based knowledge representation

for authorization with delegation. pp. 162 – 174.

[62] Li, N., Feigenbaum, J., and Grosof, B. N. A logic-based knowledge repre-

sentation for authorization with delegation. In Computer Security Foundations
Workshop, 1999. Proceedings of the 12th IEEE (1999), IEEE, pp. 162–174.

[63] Li, N., Grosof, B. N., and Feigenbaum, J. A Nonmonotonic Delegation Logic

with Prioritized Conflict Handling. https://www.cs.purdue.edu/homes/ninghui/

papers/old/d2lp.pdf, 2000.

[64] Li, N., Grosof, B. N., and Feigenbaum, J. A nonmonotonic delegation logic

with prioritized conflict handling. https://www.cs.purdue.edu/homes/ninghui/

papers/old/d2lp.pdf, 2000.

[65] Magnusson, H. The PHP project and Code Review. http://bjori.blogspot.com/

2010/12/php-project-and-code-review.html, 2010.

[66] Micali, S., Ohta, K., and Reyzin, L. Accountable-subgroup multisignatures:

Extended abstract. CCS ’01, Association for Computing Machinery, p. 245–254.

[67] Microsoft, Inc. Flame malware collision attack explained. http:

//blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-

the-digital-certificates-used-to-sign-the-flame-malware.aspx, 2012.

[68] Mullenweg, M. Passwords Reset. https://wordpress.org/news/2011/06/

passwords-reset/, 2011.

[69] npm, Inc. npm. https://www.npmjs.com/.

[70] Overson, J. How two malicious npm packages targeted sabotaged

others. https://jsoverson.medium.com/how-two-malicious-npm-packages-

targeted-sabotaged-one-other-fed7199099c8, 2019.

[71] pacman.conf, 2021.
[72] When php went pear shaped- the php pear compromise. https:

//blog.cpanel.com/when-php-went-pear-shaped-the-php-pear-compromise/,

2022.

[73] Python Software Foundation. PyPI - the Python Package Index: Python

Package Index. https://pypi.python.org/pypi.

[74] Red Hat, Inc. Infrastructure report, 2008-08-22 UTC 1200. https://

rhn.redhat.com/errata/RHSA-2008-0855.html, 2008.

[75] Redacted. Redacted for anonymous submission.

[76] Ristenpart, T., and Yilek, S. The power of proofs-of-possession: Securing

multiparty signatures against rogue-key attacks. EUROCRYPT ’07, Springer-

Verlag, p. 228–245.

[77] RubyGems.org. Data Verification. http://blog.rubygems.org/2013/01/31/data-

verification.html, 2013.

[78] S, R., Sandhu, E. J., Coyne, H. L. F., and Youman, C. E. Role based access

control models. In Computer (February 1996), p. 38–47.

[79] Samuel, J., Mathewson, N., Cappos, J., and Dingledine, R. Survivable key

compromise in software update systems. In Proceedings of the 17th ACM confer-
ence on Computer and communications security (2010), ACM, pp. 61–72.

[80] Sanders, J. Malicious libraries in package repositories reveal a fundamental

security flaw. https://www.techrepublic.com/article/malicious-libraries-in-

package-repositories-reveal-a-fundamental-security-flaw/, 2019.

[81] Sandhu, R. S. Role-based access control. Advances in computers 46 (1998),

237–286.

[82] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. Role-based

access control models. Computer 29, 2 (1996), 38–47.
[83] Schneider, F. B. Implementing fault-tolerant services using the state machine

approach: A tutorial. ACM Comput. Surv. 22, 4 (Dec. 1990), 299–319.
[84] Security, C. T. Catalog of supply chain compromises. https://github.com/cncf/

tag-security/tree/main/supply-chain-security/compromises, 2021.

[85] Shamir, A. How to share a secret. Commun. ACM 22, 11 (nov 1979), 612–613.
[86] Sharma, A. Newly found npm malware mines cryptocurrency on windows,

linux, macos devices. sonatype blog (2021).

[87] Sharma, A. Researcher hacks over 35 tech firms in novel supply chain at-

tack. https://www.bleepingcomputer.com/news/security/researcher-hacks-

over-35-tech-firms-in-novel-supply-chain-attack/, 2021.

[88] Shoup, V. Practical threshold signatures. In Advances in Cryptology — EURO-
CRYPT 2000 (Berlin, Heidelberg, 2000), B. Preneel, Ed., Springer Berlin Heidel-

berg, pp. 207–220.

[89] Sigstore. A new standard for signing, verifying and protecting software.

https://www.sigstore.dev/, 2021.

[90] Slashdot Media. phpMyAdmin corrupted copy on Korean mirror server.

https://sourceforge.net/blog/phpmyadmin-back-door/, 2012.

[91] Smith, J. K. Security incident on Fedora infrastructure on 23 Jan 2011. https:

//lists.fedoraproject.org/pipermail/announce/2011-January/002911.html, 2011.

[92] Snyk. CVE-2022-23812. https://nvd.nist.gov/vuln/detail/CVE-2022-23812, 2022.

[93] Socket - secure your javascript supply chain. https://socket.dev/, 2022.

[94] SuperOleg39. Security issue: compromised npm packages of ua-parser-js

(0.7.29, 0.8.0, 1.0.0) - questions about deprecated npm package ua-parser-js.

https://github.com/faisalman/ua-parser-js/issues/536, 2021.

[95] Tal, L., and Josef, A. B. Open source maintainer pulls the plug on npm packages

colors and faker, now what? snyk blog (2022).

[96] Telecommunications, N., and Administration, I. Software Bill of Materials.

https://www.ntia.gov/SBOM, 2021.

[97] The FreeBSD Project. FreeBSD.org intrusion announced November 17th 2012.

http://www.freebsd.org/news/2012-compromise.html, 2012.

[98] The PHP Group. php.net security notice. http://www.php.net/archive/

2011.php#id2011-03-19-1, 2011.

[99] The PHP Group. A further update on php.net. http://php.net/archive/

2013.php#id2013-10-24-2, 2013.

[100] Torres-Arias, S., Nanize, H., Kuppusamy, T., Curtmola, R., and Cappos, J.

in-toto: providing farm-to-table security properties for bits and bytes. In 28th
USENIX Security Symposium (2019), USENIX Sec’19.

[101] Ubuntu Sources List Generator, 2018. https://repogen.simplylinux.ch/index.php.

[102] Voss, L. Newly Paranoid Maintainers. http://blog.npmjs.org/post/80277229932/

newly-paranoid-maintainers, 2014.

[103] Warehouse. Bigquery datasets. https://warehouse.pypa.io/api-reference/

bigquery-datasets.html, 2022.

[104] Wood, P., Gutierrez, C., and Bagchi, S. Denial of service elusion (dose):

Keeping clients connected for less. In 2015 IEEE 34th Symposium on Reliable
Distributed Systems (SRDS) (2015), pp. 94–103.

[105] Workgroup, S. The Software Package Data Exchange. Tech. rep., The Linux

Foundation, 2021.

[106] Ðc Phong, L., Bonnecaze, A., and Gabillon, A. Multisignatures as secure

as the diffie-hellman problem in the plain public-key model. Lecture Notes in
Computer Science 5671 (08 2009), 35–51.

https://www.cs.purdue.edu/homes/ninghui/papers/old/d2lp.pdf
https://www.cs.purdue.edu/homes/ninghui/papers/old/d2lp.pdf
https://www.cs.purdue.edu/homes/ninghui/papers/old/d2lp.pdf
https://www.cs.purdue.edu/homes/ninghui/papers/old/d2lp.pdf
http://bjori.blogspot.com/2010/12/php-project-and-code-review.html
http://bjori.blogspot.com/2010/12/php-project-and-code-review.html
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-the-flame-malware.aspx
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-the-flame-malware.aspx
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-the-flame-malware.aspx
https://wordpress.org/news/2011/06/passwords-reset/
https://wordpress.org/news/2011/06/passwords-reset/
https://www.npmjs.com/
https://jsoverson.medium.com/how-two-malicious-npm-packages-targeted-sabotaged-one-other-fed7199099c8
https://jsoverson.medium.com/how-two-malicious-npm-packages-targeted-sabotaged-one-other-fed7199099c8
https://blog.cpanel.com/when-php-went-pear-shaped-the-php-pear-compromise/
https://blog.cpanel.com/when-php-went-pear-shaped-the-php-pear-compromise/
https://pypi.python.org/pypi
https://rhn.redhat.com/errata/RHSA-2008-0855.html
https://rhn.redhat.com/errata/RHSA-2008-0855.html
http://blog.rubygems.org/2013/01/31/data-verification.html
http://blog.rubygems.org/2013/01/31/data-verification.html
https://www.techrepublic.com/article/malicious-libraries-in-package-repositories-reveal-a-fundamental-security-flaw/
https://www.techrepublic.com/article/malicious-libraries-in-package-repositories-reveal-a-fundamental-security-flaw/
https://github.com/cncf/tag-security/tree/main/supply-chain-security/compromises
https://github.com/cncf/tag-security/tree/main/supply-chain-security/compromises
https://www.bleepingcomputer.com/news/security/researcher-hacks-over-35-tech-firms-in-novel-supply-chain-attack/
https://www.bleepingcomputer.com/news/security/researcher-hacks-over-35-tech-firms-in-novel-supply-chain-attack/
https://www.sigstore.dev/
https://sourceforge.net/blog/phpmyadmin-back-door/
https://lists.fedoraproject.org/pipermail/announce/2011-January/002911.html
https://lists.fedoraproject.org/pipermail/announce/2011-January/002911.html
https://nvd.nist.gov/vuln/detail/CVE-2022-23812
https://socket.dev/
https://github.com/faisalman/ua-parser-js/issues/536
https://www.ntia.gov/SBOM
http://www.freebsd.org/news/2012-compromise.html
http://www.php.net/archive/2011.php#id2011-03-19-1
http://www.php.net/archive/2011.php#id2011-03-19-1
http://php.net/archive/2013.php#id2013-10-24-2
http://php.net/archive/2013.php#id2013-10-24-2
https://repogen.simplylinux.ch/index.php
http://blog.npmjs.org/post/80277229932/newly-paranoid-maintainers
http://blog.npmjs.org/post/80277229932/newly-paranoid-maintainers
https://warehouse.pypa.io/api-reference/bigquery-datasets.html
https://warehouse.pypa.io/api-reference/bigquery-datasets.html

ACSAC ’23, Dec 04–08, 2023, Austin, TX Marina Moore, Trishank Kuppusamy, and Justin Cappos

Figure 5: An example of a targets map file.

Figure 6: An example of a repository map file.

A MAP FILE EXAMPLES
We include examples of targets and repository map files in Fig-

ure 5 and Figure 6. These files are written and updated by tool

administrators to set policy that will be applied to many update

cycles.

	1 Introduction
	2 Background
	2.1 Software repositories and package managers
	2.2 Role-Based Access Control
	2.3 The Update Framework (TUF)

	3 Motivation
	4 Threat model
	5 Artemis: Design
	5.1 Multi-role delegations
	5.2 Key pinning
	5.3 Repository RBAC

	6 Implementation
	6.1 Software update workflow

	7 Evaluation
	7.1 Analysis of past attacks
	7.2 Real-world deployment
	7.3 Usability and performance

	8 Related work
	9 Conclusion
	References
	A Map file examples

