Lind: Challenges turning virtual composition into reality
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ABSTRACT

Security is a constant sore spot in application development.
Applications now need structural support for better isola-
tion and security on a domain specific basis to stave off
the multitude of modern security vulnerabilities. Currently,
application developers have been relying upon cumbersome
workarounds to address these issues. We propose the design
and initial implementation details for Lind, a highly flex-
ible composition infrastructure that can be well-integrated
with modern application development processes and extends
traditional mechanisms like virtualization and software fault
isolation in a way that can be tailored according to an appli-
cation’s need. Lind does this by providing the structures and
services needed to build a virtual component model. Since
compositions of virtual components are different than cur-
rent software systems, building and using virtual component
models provides a new set of software engineering challenges
in composition and system construction. As a possible solu-
tion to many modern security problems, it is important to
understand how virtual component models can be evaluated,
to further both the users understanding of them, and future
research in this area. This paper proposes a design and im-
plementation strategy for components that run in isolation.
An evaluation of the efficacy of this approach in terms of
performance, isolation, security and composition provides
insight into the possible advantages and disadvantages of a
virtual component model.

1. INTRODUCTION

At a conceptual level security problems are just a type of
software bug. One technique that has proven effective at
limiting the scope of both bugs and malware in the operat-
ing systems area is system virtualization. Virtualization re-
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stricts inter-VM communication to specific APIs (like the file
system), allocates resources to VMs, and provides security
and temporal isolation between running programs. Virtu-
alization has provided leverage within the security domain;
however, current heavy-weight virtualization is not suitable
for use within an application. Some of these advantages
can be realized using very fine-grained processes and replac-
ing intra-process procedure calls with inter-process service
interactions. However, because of the performance and pro-
grammer burdens of doing so, we expect that programmers
will continue to write relatively large, unfactored applica-
tions. For this reason, an analog to the virtual machine that
is suitable for use within a process is desirable.

A virtual component or virtual container is the intra-process
analog to the inter-process virtual machine. Conceptually,
this adds guarantees of protection and isolation to the popu-
lar software component architecture concept, which has such
concrete realizations as Java Beans[5] and OSGi[10]. One
might reasonably ask why component virtualization is nec-
essary. We note the following:

1. Executing programs are typically assemblages of com-
ponents (DLLs, SOs, etc) that are written by different
programmers, at different times, for different circum-
stances. Despite this, when they are combined into a
program, they all have the same authority.

2. Consumption of resources by a program component is
unrestricted, and access to shared state is only par-
tially controlled.

3. A component can and will block the remainder of the
program from executing while it is executing; there is
no provision for the independent monitoring and con-
trol of a component.

4. A collection of components need not be locked to one
physical machine, they could be moved dynamically,
or be distributed across several machines.

In sum, the intuitive model of a single program is a collec-
tion of tightly-coupled routines that execute until the job



is complete, then terminate. However, in today’s world of
persistent services, a program is more likely to run indefi-
nitely. Further, (1) above suggests that such programs are
assemblages of mutually opaque, and essentially untrusting,
components. This means that a program now looks less like
a batch job more like a collection of processes in a time-
sharing system; however, there is currently no equivalent of
an operating system to control this collection of components.

What is needed to construct this is isolation that is simul-
taneously lightweight and strong. One potential solution to
this problem is to isolate separate pieces of code in their own
system virtual machines. While this provides strong isola-
tion, it is far too heavyweight for practical use. Similarly,
one could extend isolation techniques like software fault iso-
lation (SFI) or object capability systems to have lightweight
isolation within a process. However, this would not pro-
vide resource isolation or correctly separate out privileges.
Our design allows isolation that is simultaneously strong and
lightweight.

A critical feature in the design of secure, robust, resilient sys-
tems is robust, reliable, parallel computation. Clock speeds
on processors flattened in the early 2000’s, and Moore’s Law
now describes the doubling of processor cores on a die at
a constant rate. In such an environment, reliable parallel
processing is a requirement. Unfortunately, reliable parallel
processing within a single address space has proven to be
a challenging problem. The most common abstraction in
use today is threads: multiple independent control threads
and call stacks in a single process. While these are quite
lightweight, they have proven to be a debugging and secu-
rity challenge [11, 7].

The essence of the problem is that the behavior of a multi-
threaded program is no longer deterministic and solely de-
pendent on the program text. Rather, it is dependent on the
behavior of the program text and the implicit thread sched-
uler, whose behavior is generally completely unspecified.

These semantics are a veritable bug ranch, and a fertile
nursery of security holes, including race conditions such as
TOCTTOU bugs. Analysis of such errors indicates that
the fundamental problem underlying multiple independent
threads of control is false synchrony: an implicit guarantee
that the state of a remote thread is determined, when in fact
it is indeterminate. For example, in a TOCTTOU bug, the
fundamental assumption is that the checked variable has
not changed value between the time it is checked and the
time it is used. In Lind, all nondeterminism is explicit; in
particular, there is no implicit synchronization between in-
dependent threads of control.

Of course, it’s always possible for a sufficiently careful pro-
grammer to check the state of threads, lock only shared vari-
able that are required, adopt a locking scheme that avoids
deadlocks (a system of hierarchical locks, for example, avoids
deadlock). In practice, this is not often enough done. An
analogy to typed languages is appropriate here. A suffi-
ciently careful programmer can avoid type errors in an un-
typed language, by adopting a discipline that essentially
amounts to a program-specific type system. In practice, pro-
grammers don’t. Virtual Components provide a structured

inter-thread communication mechanism with the following
properties:

1. Virtual Components are guarded with specific permis-
sions. Access is enforced by the system to explicit
typed interfaces.

2. Virtual Components communicate events asynchronously.

Asynchronity is a natural model for virtual compo-
nents, as VMs are run on separate cores in multi-core
machines. In the event synchronous communication is
needed, it can be built on asynchronous primitives.

3. The interpreter enforces memory isolation between vir-
tual components. There is no way for the virtual com-
ponent itself to break this isolation.

4. Virtual Components share no variables; shared vari-
ables creates a form of synchronous communication
between virtual components.

It will be noted that there are many similarities between Vir-
tual Components in the Lind system and Virtual Machines
in any standard virtualization environment such as Xen[1].
In particular, communication between virtual components
is explicit; virtual components are independently scheduled
and logically asynchronous; there is no possibility of state
interdependence between virtual components. An analysis
of the problems of multi-threaded programming indicates
that the fundamental problem is one of false synchrony: one
component presumes knowledge of another’s internal state,
in general by updating some shared variable. In Lind, the
state of a component is not exposed to external components,
except by explicit calls, with firm limits on expressed war-
ranties. In particular, shared state is only updated by ac-
cessor messages, and these give explicit feedback as to their
success, failure, and stateful warranty. This leads to the
essence of our model: virtual machines at the granularity of a
thread in a programming language. These components must
therefore be lightweight. In particular, creation of a virtual
component is similar in concept and implementation to ob-
ject instantiation in a Java-like language. Inter-component
communication involves only a few extra function calls and
so should be within a small incremental factor of function
call performance.

1.1 Inter-Component Programming Model
Though components themselves are not a new abstraction
in software development, we need to carefully consider how
to construct this programming model in the context of core
system infrastructure which previously has been more mono-
lithic and hardwired. The key feature of a component sys-
tem is the ability to customize and replace prepackaged com-
ponents without requiring changes to the rest of the system.
Psychologically however, this can leave system developers
feeling a lack of control. Ultimately, adoption will hinge on
our ability to mitigate this reaction through a programming
model and tool support that fits workflow practices of mod-
ern system developers. Specifically, we need to consider life
cycle management, naming, versioning, and lookup services,
and include mechanisms for customizing, packaging and de-
ploying components. Here we focus on some of the key issues
we must consider in terms of the root of communication costs
and complexity of composition strategies.



1.1.1 Communication

Inter-component communication will play an important role
in how scalable the system is. If communication overhead is
too high, it does not encourage the developers to decompose
their systems; but conversely, components are a granularity
of parallelism in the system, so a well decomposed system
naturally becomes parallelisable. The trade-off the devel-
opers face will be to balance latency between components,
versus the possible gains multiple components give. In terms
of communication latencies, we plan to carefully assess costs
we will incur with respect to the management of the Trans-
lation Lookaside Buffer (TLB) and cache coherency proto-
cols. Both TLB and CC protocols if not treated correctly
can slow a system by orders of magnitude. Early simulation
studies revealed the ability to mitigate costs of Translation
Lookaside Buffer (TLB) misses through better configuration
strategies [4]. More recent work on performance isolation
for VMs running on multicore architectures includes mech-
anisms for tagging the Translation Lookaside Buffer (TLB)
entries, partitioning this shared resource to improve perfor-
mance. Specifically, in [13] a combination of process and
VM specific tagging proved promising in terms of perfor-
mance isolation and Quality of Service (QoS) guarantees
for VMs. Another consideration in the context of multicore
architectures is the cost of cache misses (hundreds of cy-
cles) when a core uses data that other cores have written
[2]. Though the details can vary depending on the cache
coherency protocol, this does not just involve reads, but
writes as well. For example, when writing a value to a
core’s local cache, the write cannot be completed until all
the other copies are invalidated. Since well informed de-
velopers will know best how to build their systems, we will
provide them with analysis tools to help them understand
how the structure of their system affects its performance in
terms of concrete numbers like number of TLB misses, and
how cache coherency traffic is impacted. We will offer both
synchronous and asynchronous inter—component communi-
cation primitives, though we will pick the most reasonable
default, which will likely be asynchronous communication.
We will provide programming language level mechanisms to
help use both modalities effectively.

1.1.2  Composition

Many current models for installers are faced with attempting
to leverage intricate hardwired dependency infrastructures
in terms of scripts for configuration. Generally, this prob-
lem is known as strong coupling—a property that modern
software development practices attempt to minimize. One
common way to mitigate some of these problems is by way
of dynamic component models. The life cycle events of
the OSGi Framework [9] is aimed at producing loose cou-
pling [6]. Specifically, the Life Cycle Layer in the OSGi
Framework allows components to listen for installations, up-
dates and uninstallations of other components, either syn-
chronously or asynchronously. In the synchronous case, the
updater can evaluate the merit of the update from a security
point of view.

OSGi provides a solid reference model for our work in terms
of the ways in which it helps components establish commu-
nication, regulates what parts of a components interface are
exposed, which versions of components are running in the
system, and manages dependencies of the system. The basic

container of an OSGi component is a jar file. The jar file
contains a manifest which the OSGi class loader reads to find
out more about the module including: its name, its version,
the modules and version on which it depends, the interfaces
which it contributes to the system, and the packages and
classes which it uses within the system. A component can
also define a service, which is an interface that can be dy-
namically attached to. One of the keys to OSGi’s success is
the tool support provided by modern IDEs like Eclipse[9].
Eclipse provides wizards and property sheets to help de-
velopers understand the interface between components, and
how the eventual system will be constructed. Without this
support developers would be left to construct the elaborate
XML files for each bundle by hand. A task that is possible
but undesirable. Recent work has shown that OSGi’s life
cycle model works well over a network as well[12]. Mapping
the failure of the links or components, to an uninstallation in
other components. We will uses this, and OSGi versioning
system to form the basis a secure update model.

Using OSGi as guidance for a new component model, we
wrap sandboxes with component metadata to form wvirtual
components. Virtual components are sandboxes with com-
ponent model metadata which describes them fully in terms
of how they interact with the system and other components,
which other components and versions they depend on, what
state they are in, etc. This metadata is key to structuring
and controlling the system.

2. DESIGN OF LIND

Lind is an attempt to provide a new secure lightweight cloud
computing environment in the form of a new library oper-
ating system which is a concrete implementation of the vir-
tual component idea. The goal of the project is to create a
lightweight cloud runtime environment for anything which
runs as x86 instructions, using Native Client[14] (NaCl) and
RePy[3]. The project implements a useful subset of the
POSIX API within NaCl to run through RePy. RePy has
more advanced policy mechanism with regards to resource
consumption than NaCl, RePy also has rate limiting for file
and network I/O, white and black lists for network connec-
tions ports etc, memory use monitoring, and CPU consump-
tion monitoring. The motivation of this NaCl RePy hybrid
is to expand NaCl’s access to the system to commonly used
functionality like sockets and simple file I/O and other NaCl
sandboxes, while still providing the necessary spatial and
performance isolation[3] as well as portability to make run-
ning untrusted applications anywhere possible. We think
when coupled NaCl’s safe execution, this makes a safe and
powerful environment for some class applications which have
complex compute requirements, but simple system access
needs.

Lind is designed to minimize its footprint within the TCB
(trusted code base). To do that, most of the Lind code
runs within NaCl RePy. We have added support to allow
RePy programs to launch NaCl instances via a new RePy
system call. The safe_execute system call allows the ap-
plication to specify a file from within its working directory
to execute. safe_execute uses a process similar to NaCl’s
built-in sel_launcher to fork a new loader process with the
program and arguments. When NaCl starts it establishes
a shared memory connection to communicate, these chan-



nels are opened and then handed over to the RePy program.
From the RePy program you are able to query if the NaCl
instance is still running, get its channels and kill it. All other
operations are blocked from the RePy program.

Using the safe_execute mechanism, we built a library OS.
The RePy program runs an RPC server which allows for it
to service calls from the NaCl instance. With in the NaCl
instance, we run a modified glibc where each system call of
interest is redirected to the RePy server. The initial version
of Lind will focus on networking and file I/O. For example
when a file is opened, the fopen system call, is marshaled
and sent via RPC to the RePy server. The RePy server
opens the file on behalf of the NaCl program (with all the
restrictions RePy programs have on their file operations).

One nice property of the Lind design is that we can pick
which system calls we will support with Lind. System calls
broadly fall into a few categories. First, system calls which
we leave alone. Those are calls like brk. Second, some calls
are emulated, for example open. Third, some calls will be
faked, for example stat. Faked calls are those which there
will be no direct analog for in RePy. For instance file sys-
tem permission related calls will be faked because RePy pro-
grams do not have access to the global file system, only their
own local file system.

One part of Lind is the library OS built with RePy. Though
in the early stages of development, we intend to make a
component based system, where components satisfy differ-
ent subsystems requests. The intent is to allow custom steps
including transparent in memory file systems, or over net-
work file systems. Finally, we intend to support process
migration, so that will be designed into the OS base.

A modified version of NaCl’s glibc forwards the target sys-
tem calls from NaCl to RePy for processing. To do this, code
which previously performed a system call now result in the
call arguments being marshaled and passed into RePy via
RPC. Our current implementation uses an RPC mechanism
built on NaCl’s IMC communication channels. For example,
an open() system call is changed into an RPC which passes
the path and other information to RePy. The RePy POSIX
code will emulate or provide functionality for directories,
permissions, and persistent storage. Since RePy does not
provide access to directories, directories will be emulated by
metadata that is stored in separate files on disk (and cached
in memory) and accessed from there. We have started to
choose the set of calls to initially support by running com-
mon programs and gathering their system call traces. Note
that some system calls will not be provided because they are
unsafe or cannot be efficiently executed in a portable manner
across the diverse OSes that are supported by RePy.

Though simple, building the RPC facility still presents some
challenges because programming at the lowest levels of glibc
is a complex and arduous task. We have already tackled
several challenges related to setting up a fast build environ-
ment, effective testing, marshaling atypically sized calls, and
a host of similar issues.

3. IMPLEMENTATION STATUS

While we currently have a very early stage prototype that
does an RPC between glibc and RePy for three calls, much
more work remains. Some preliminary exploration of real
programs using strace has shown that we can safely ignore
a large number of system calls. We will further understand
which portions of calls can be effectively faked and what
needs to be emulated. Our eventual goal is to have a POSIX
emulation API which works with nearly all code right after
compilation. If it will not work, our implementation will
provide the researcher a clear error message explaining why
the software has failed to operate. Of course, we intend to
deploy our software so we will follow standard software QA
practices when developing our code.

4. EVALUATING A VIRTUAL COMPONENT
MODEL

How do we know we have won? Building a virtual compo-
nent system involves picking from a large set of trade-offs
between performance, isolation and security and compos-
tion. The problem with evaluating new systems like this
is that all the dimensions are interdependent. There is an
inherent fixed cost per communication; however, the more
modules the system has, the “better” the other properties
appear.

4.1 Characterising and Evaluating Performance

To truly understand the performance of a system like this
we have to be able to accurately characterize the costs of
the virtual component model. This falls into two categories,
first, the cost to components for running in the system (over
native execution), second, the inter-component communica-
tion cost, a cost which changes based on the structure of the
system.

To evaluate the system cost, we rely on the numbers of the
underlying system. In the case of Lind, that is the num-
bers for the overhead of running in NaCl. The overheads
associated with running SFI modified native code are well
documented in [14].

To evaluate the crossing overhead, we can use custom mico
and macro benchmarks like those described in [8] which eval-
uated the same overheads in popular virtualization . Besides
raw timing numbers, running benchmarks like the aforemen-
tioned give us a controllable environment from which TLB
and cache coheriency traffic can be measured. This should
allow us to inductively reason about the characteristics of
Lind at scale.

4.2 Characterising and Evaluating Isolation
Sandboxing techniques form the basis for the desirable prop-
erties which come from a virtual component model. The
techniques themselves have limitations; but furthermore, there
is a need to violate the sandbox to create a meaningful sys-
tem, as components must communicate with each other.

To evaluate isolation, we need to verify that the previous iso-
lation systems properties are not lost when we start adding
communication to the system. Further, we need to show
that by adding communication that we opened no new side
channels.



4.3 Characterising and Evaluating Security
We claim that systems utilizing Lind are immune to a broad
class of attacks, including privilege isolation attacks and se-
rialization attacks, including but not limited to many types
of resource exhaustion attacks, Cross-Site Request Forgery,
Cross-Site Scripting, SQL injection, and Cross-Zone Script-
ing. Moreover, most demonstrations of immunity from privi-
lege escalation and abuse of serialization (essentially, passing
misleading types in text data structures) can be tested and
demonstrated in non-pathological situations. Malware is,
by definition, exploitation of a bug for malicious purposes;
if a system is free of a class of bugs exploited by a specific
class of malware, it is necessarily immune from those classes
of malware. Our initial security work will focus on demon-
strating freedom from privilege escalation and serialization
errors.

Security comes from a few properties of the system. Small
components with good interfaces and no side channels make
it hard for one component to intentionally or unintentionally
stop another component from fulfilling its task. The com-
ponent system also provides an opportunity for the system
to help enforce the policy of the system.

One way to evaluate the security of the proposed system is
to reason about possible attack vectors on it. Another way
is to see how it impacts current common security problems,
such as those listed by SANS! or the OWASP2.

4.4 Evaluating Composition

The programming environment impacts directly on the ease
with which virtual components can be constructed. The goal
of the Lind environment is to extend standard tools which
programmers are already familiar with, making composition
a first class citizen relative to current means of compos-
ing heavier weight virtual appliances. By better integrating
composition with current agile development practices and
tool support, we can provide explicit customizability in ways
that currently require intricate configuration management.

For example tools similar to those in Eclipse’s PDE[9], could
dynamically check dependencies, or even construct commu-
nication models to describe and later enforce component
communication behaviour. Since components share no state,
it would be possible for these tools to prepackage entire com-
ponent graphs, or even setup dynamic update plans. All in
a format very similar to how developers build OSGi based
application in Eclipse right now.

Current compositions of virtualized subsystems are typically
manually configured through less explicit means, making
composition more of a side effect than an explicit element of
the system. In the most common case composition is hard
coded as the system is built with no intent to ever have it
changed again, and configuration take the form of manually
editing text configuration files.

5. CONCLUSION

"http://cwe.mitre.org/top25/

’https://www.owasp.org/index . php/Category:
OWASP_Top_Ten_Project

In this paper we presented a new composition technique
called virtual components, and our initial implementation of
the idea in the form of a prototype system called Lind. Lind
is a component model which runs x86 code on a POSIX api
within each component, and provides a lightweight commu-
nication mechanism. Challenges associated with the evalua-
tion of the efficacy of this approach show direct tradeoffs in
terms of performance, isolation, security and composition.
Our hope is that by leveraging existing workflow practices
and integrating with known tools, the programming experi-
ence with compositions of virtual components will be more
flexible relative to manual approaches currently in use by
heavier weight systems. We see this as a means of poten-
tially supporting more customization according to applica-
tion specific needs for component isolation and security.
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