
Selectively Taming Background Android Apps to Improve Battery Lifetime

Marcelo Martins
Brown University

Justin Cappos
New York University

Rodrigo Fonseca
Brown University

Abstract
Background activities on mobile devices can cause signi�-
cant battery drain with little visibility or recourse to the
user. �ey can range from useful but sometimes overly ag-
gressive tasks, such as polling formessages or updates from
sensors and online services, to outright bugs that cause
resources to be held unnecessarily. In this paper we instru-
ment theAndroidOS to characterize background activities
that prevent the device from sleeping. We present Tamer,
an OS mechanism that interposes on events and signals
that cause task wakeups, and allows for their detailed mon-
itoring, �ltering, and rate-limiting. We demonstrate how
Tamer can help reduce battery drain in scenarios involv-
ing popular Android apps with background tasks. We also
show how Tamer can mitigate the e�ects of well-known
energy bugs while maintaining most of the apps’ function-
ality. Finally, we elaborate on how developers and users can
devise their own application-control policies for Tamer
to maximize battery lifetime.

1 Introduction
�e accelerated growth of sensing, computational, stor-
age, and communication capabilities of mobile devices
has enabled a rich application environment that rivals the
performance of desktop computers. Even so, battery tech-
nology has not followed the same advancement pace and
there is little evidence that this situation will dramatically
improve. As a result, battery lifetime has become a major
usability concern, with users willing to enjoy the latest
apps on their smartphones and tablets, but, at the same
time, worrying that their battery will not last long enough.
Since the inception of mobile computing, both indus-

try and academia have developed a slew of techniques to
reduce power at the architecture [8, 24], OS [49, 43] and
application levels [16, 21], and today’s systems draw little
power while idling. Due to its user-centric and interac-
tive nature, the �ow of a mobile application is driven by
events such as user actions, sensor I/O, and message ex-
changes. Such event-driven paradigm lets the system idle
until a new event arrives. Mobile OSes, such as Android,
iOS, and Windows Phone, take advantage of such idling
opportunities to engage in opportunistic suspend. Upon
brief periods of idling, the handheld switches to the default
suspend state. Hardware blocks, including the CPU, GPU,
GPS, and network modem, shi� to low-power mode and
so�ware state is kept in self-refreshing RAM. �e same

blocks return from suspension upon interrupts emitted by
hardware or so�ware indicating that they have pending re-
quests.With the rise ofmultitasking and themultiplication
of background services and complex mobile applications,
we expect this amount of interrupts to increase, forcing
the system to spend more time active to attend requests.
Such active periods take a toll on battery lifetime. A recent
study by Google clearly shows this impact: each second of
active use of a typical phone reduces the standby time by
two minutes [18].

�is paper studies the problem of battery drain mostly
due to app-originated background operations that wake up
the mobile system. We present Tamer, an OS mechanism
we built for Android that interposes on events and signals
responsible for task wakeups – alarms, wakelocks, broad-
cast receivers, and service invocations. Like a number of
pro�ling tools, Tamer allows us to characterize the back-
ground behavior of di�erent apps installed on a device. In
§2, using Tamer’s instrumentation, we show how a set of
installed applications can dramatically a�ect the battery
lifetime of four di�erent devices. Unlike existing pro�ling
tools, however, Tamer can also selectively block or rate-
limit the handling of such events and signals following
�exible policies. In this way, Tamer can, for example, limit
the frequency at which an application schedules alarms or
receives noti�cations of speci�ed events, providing �ne-
grained control over the energy usage of apps that may be
useful, but are irresponsible or ine�cient with respect to
their background activities. In §5.2 we show via a few case
studies how Tamer can reduce the energy consumed by
energy bugs [35] in legitimate apps. We summarize our
contributions as follows:

• We characterize how applications and core compo-
nents of the Android OS use speci�c features to en-
able background computing, and how this computing
signi�cantly a�ects energy use. In special, we note
that Google Mobile Services play a major role on
battery drain while the device is dormant (§2).

• We introduce Tamer, an OS mechanism to control
the frequency at which background tasks are handled,
thereby limiting their impact on energy consumption
(§4). Tamer leverages code-injection technology and
is applicable to any Java-based Android application.

• We demonstrate how Tamer can successfully throt-
tle the background behavior of popular applications,
thus reducing their energy footprint (§5). We show

howdi�erent policies reduce power draw in exchange
for little to no impact on functionality.

Despite being a powerful mechanism, Tamer is only a
step towards e�ective control of background energy usage.
In particular, there are still challenges in helping users
de�ne policies that are e�ective, yet not disruptive to the
user experience. We discuss such challenges in §7.

2 Motivation
Smartphone and tablet users are used to being always con-
nected, expecting immediate noti�cations of a new e-mail
or application update. Other common background oper-
ations include polling navigational sensors for location
clues and turning on the network radio for incoming mes-
sages. Especially inAndroid, where there is little restriction
on what apps can do in the background and developer’s
discipline is the main factor preventing ine�cient applica-
tions, apps can hog resources and waste energy.

Traditionally there has been little visibility, both to app
developers and to users, on the contribution of individual
apps to energy use, especially while in the background. It is
even harder to know whether an app is actually running or
idling. Recent monitoring and pro�ling tools have helped
bridge this visibility gap [9, 39, 19, 36, 30, 33, 45], as one
cannot optimize what cannot be measured.
Today’s average handheld contains a large amount of

third-party so�ware. A 2013 survey shows a global average
of 26 apps installed on a mobile device [20]. Even with the
best currently available tools, the end user can do little to
cope with ine�cient apps. Most of the tools above target
developers and provide little help for the user. Even the
friendlier ones, such as eStar [30] and Carat [33], when
highlighting energy-ine�cient programs, can only o�er to
kill or uninstall the culprit app, perhaps suggesting replace-
ments. Unfortunately, this is too coarse-grained a solution
and some apps with irreplaceable functionality become an
inconvenience one has to live with.

Tamer o�ers the possibility of much �ner-grained con-
trol once an energy hog or bug is found. It provides infor-
mation on which tasks are expending the most energy and
can rate-limit their execution. Tamer detects most causes
of device wakeup that are visible at the framework level of
Android, and can �lter their continuation in real time.

To demonstrate the signi�cant di�erence that a set of
running tasks can make in a device’s battery life, we mea-
sured the battery drop of four Android devices (two smart-
phones and two tablets, cf. Table 1) running two di�erent
application sets, while idling and with the screen o�. Con-
servatively, we consider three scenarios: the �rst testing
environment (Pure AOSP) consists of a stripped version of
the Android Open Source Project (AOSP) OS containing
a minimum number of services and apps; the second one
adds Google Mobile Services (GMS) on top of Pure AOSP.
GMS consists of proprietary applications and services de-

veloped by Google, such as Calendar, Google+ (social me-
dia), Google Now (personal assistant), Hangouts (instant
messaging), Maps, Photos, Play Service (integrating API),
Play Store, and Search. Due to their popularity and added
value, GMS apps are included in most Android devices
sold today. For the third scenario, which we only ran on
the Galaxy Nexus phone, we also installed the ten most
popular free apps of Google’s Play Store as of January 20151.
We based all environments on the KitKat (4.4) version of
Android. For the experiments, we le� each device unat-
tended running with its con�guration at default settings.
Other relevant settings include connection to a WiFi ac-
cess point, enabled location-reporting, and background
network synchronization. We expect most of the battery
drainage to stem from static-voltage leakage and eventual
background processing.
Figure 1 shows the time taken by each environment-

device combination to deplete the battery. For all devices,
PureAOSP took the longest to completely drain the battery.
In the case of tablets, this di�erence spanned dozens of
hours. To investigate why this happened, we instrumented
the Android so�ware stack to timestamp the occurrence
of background events. Additionally, we connected one of
our devices (Galaxy Nexus) to a Monsoon power moni-
tor [31] and collected power traces from the battery. Finally,
we aligned and synchronized both the event and power
timelines to understand their correlation. Figure 2 depicts
a six-minute slice of this combination. We observe that
GMS triggers more events in the background and that they
are correlated with the surge of power peaks. We used this
tracing knowledge to build a mechanism that counters the
energy e�ect due to excessive wakeups. Because this mech-
anism relies on OS internals, we �rst need to understand
how an Android app functions while in the background.

3 Background
�is section provides a concise description of Android’s
power-management system followed by an overview of
the components constituting a mobile app and how appli-
cations behave while running in the background. Finally,
we highlight the in�uence of background execution on bat-
tery drain using four types of events: wakelocks, services,
broadcast receivers, and alarms. §4 describes Tamer, our
control system that adjusts the frequency at which such
events occur.

3.1 Mobile Power Management
Android employs an aggressive form of power manage-
ment to extend battery life. By default, the entire system
suspends itself, sometimes even when there are processes
running. Opportunistic suspend is e�ective in prevent-
ing programs from keeping the system awake and quickly

1Crossy Road, Candy Crush Soda Saga, Pandora Radio, Trivia Crack,
Snapchat, Facebook Messenger, Facebook, 360 Security Antivirus, Insta-
gram and Super-Bright LED Flashlight.

2

Device Name Device Type Processor Features
Google Galaxy Nexus Smartphone Dual-core 1.2GHz ARM Cortex-A9 WiFi, GPS+A-GPS, 3G
Samsung Galaxy S4 Smartphone Quad-core 1.9GHz Qualcomm Krait 300 WiFi, GPS+A-GPS, 3G/LTE
Amazon Kindle Fire 2 Tablet Dual-core 1.2GHz ARM Cortex-A9 WiFi

ASUS MeMO Pad 7 (ME176C) Tablet Quad-core 1.83GHz Intel Atom Z3560 WiFi, GPS+A-GPS

Table 1: List of devices used for battery-drop monitoring.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

B
a

tt
e

ry
 L

e
v
e

l
(%

)

Hours

Pure AOSP
w/ Google M. Services

w/ GMS + Top10

(a) Galaxy Nexus

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

B
a

tt
e

ry
 L

e
v
e

l
(%

)

Hours

Pure AOSP
w/ Google M. Services

(b) Galaxy S4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

B
a

tt
e

ry
 L

e
v
e

l
(%

)

Hours

Pure AOSP
w/ Google M. Services

(c) Fire 2

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

B
a

tt
e

ry
 L

e
v
e

l
(%

)

Hours

Pure AOSP
w/ Google M. Services

(d) MeMO Pad 7

Figure 1: Battery drop of four Android devices idling with the screen o�. With Google Mobile Services installed, battery life decreased
to 29.5% (Fire 2) and 77.5% (MeMO Pad 7) of its initial decay (without GMS).

 0

 1

 2

 0 50 100 150 200 250 300 350

AlarmManager

P
o
w

e
r

(W
)

Timeline (s)

(a) Pure AOSP

 0

 1

 2

 3

 0 50 100 150 200 250 300 350

NlpLocationReceiverService
PendingIntentCallbackService
UlrDispatchingService
NlpWakeLock
NlpCollectorWakeLock
GeofencerStateMachine
GCoreFlp
NetworkLocationService
AlarmManager

P
o

w
e

r
(W

)

Timeline (s)

(b) Pure AOSP + GMS

Figure 2: Six minutes sampled frommeasurements on the Galaxy
Nexus for two scenarios. For each graph, the top stack shows
di�erent event occurrences over time. �e bottom curve depicts
the corresponding system’s power draw during the same period.

draining the battery. To curb system suspension, Android
uses Wakelocks to keep the system awake. Wakelocks are
reference-counted objects, similar to concurrency locks,
that can be acquired/released by kernel and privileged
userspace code. A wakelock acquire expresses a process’s
need for the system to remain awake until run completion.
A wakelock acquire either holds a resource awake until a
release call occurs or sets up a timer to relinquish the lock
at a later time.

Kernel drivers use wakelocks to block the suspension of
di�erent system components (e.g., CPU, network, screen),
whereas the Android application framework leverages
wakelocks for di�erent levels of suspension, represented
by groups of components (e.g., keep the network radio

awake vs. keep the radio, screen, and CPU awake). As
an example of suspend-blocking by the OS, Android au-
tomatically acquires a wakelock as soon as it is noti�ed
of an input event and only releases the wakelock once
some application handles the event or there is a timeout.
Application developers can also directly instantiate and
manipulate wakelocks using the Wakelock API. A proper
e-book reader app must acquire a wakelock to keep the
screen awake so that the user can read her favorite novel
without interruption. Wakelocks play an important role
in guaranteeing proper background task execution in face
of default suspension, as we will see next.

3.2 Android Applications: Dealing with
Lifecycle Changes

Barring a few interface-less system processes, an Android
application consists of a set of Activities that places
the UI widgets on the screen. An application starts with
a single thread of execution attached to the foreground
UI, which is mostly responsible for dispatching interface
events. To avoid appunresponsiveness and user frustration,
a wise programmer would move other computations to
concurrent worker threads while the UI responds to input
events. Support for concurrency comes in the form of a
number of standard Java primitives, such as Threads and
Futures, as well as Android’s own �avors: AsyncTasks
and message Handlers. However, such primitives only
work when the application is in the active state.

As the user navigates through, out of, and back to an
application, its lifecycle transitions between di�erent states
according to activity visibility. An application is active if
one of its activities receives user focus in the foreground. If
the user switches to another app or decides to turn o� the
screen, the application is paused and moved to the back-
ground. Because mobile apps are multitasked, developers
must have a way to run code even when their app is not
occupying the screen.

3

3.2.1 Dispatching Background Tasks

�e small screen size of a smartphone or tablet prevents
multiple applications from running simultaneously. To
conserve energy, apps are frozen and stop working once
sent to the background, either due to the opening of an-
other application or a screen timeout. Context switching
opens room for opportunistic suspend – by making apps
invisible, the Android OS frees its own set of wakelocks,
opening space for hardware throttling.

Android o�ers application developers a small and well-
de�ned interface for background-task o�oading that takes
care of scheduling latent tasks [2].�is interface comprises
a handful of components including services, broadcast
receivers, and alarms.�e internal implementation of such
components also leverages wakelocks to keep the device
awake while executing tasks.
Services are application components that run asyn-

chronously on background threads or processes and do
not directly interact with the user. Instead, Activities
dispatch services to perform long-duration operations or
to access resources on behalf of users, such as download-
ing remote �les or synchronizing data with a cloud-based
storage. An advantage of running services separately is that
their running persists even a�er closing the owner’s inter-
face. Apps and widgets rely on services being operational
without need of manual restart.
BroadcastReceiver is a reactive mechanism that per-

mits programs to asynchronously respond to speci�ed
events. An application registers a BroadcastReceiver
along with an event-subscription list – the IntentFilter
– that is used to determine if the application is eligible to
respond to a given event. Events can be prede�ned by
the system (“battery fully charged”) or developer-de�ned
(“backup �nished”). Receiver threads remain dormant un-
til a matched event arrives and respond by running a call-
back function. A �le-hosting app could, for instance, regis-
ter a receiver to display a noti�cation box once it discovers
that a scheduled data synchronization has �nished.

Another common programming pattern is the ability to
perform time-based operations outside the lifetime of an
application. For instance, checking for incoming e-mails
every so o�en is a recurrent user operation that could
be automatized. �e Android SDK o�ers developers the
AlarmManagermechanism to ful�ll the scheduling of pe-
riodic tasks at set points. At each alarm trigger, the system
wakes up and executes the scheduled callback function,
whose contents can take various forms: a UI update, a ser-
vice call, an I/O operation, scheduling a new alarm, etc.
Alarms are a good �t for opportunistic suspend: apps are
only activated when there is work to do.
In summary, Android uses at least three types of asyn-

chronous mechanisms to perform background tasking:
services, broadcast receivers, and alarms. Aligned with
wakelocks, we have a powerful collection of events that can

keep the system awake. In the next section, we introduce
Tamer, a system that acts on this small and well-de�ned
interface to throttle the rate at which background events
are handled in exchange for energy savings.

4 Tamer
4.1 Design
Having seen that background events can noteworthily af-
fect the sleeping pattern of mobile devices, we consider
the possibility of regulating their frequency to improve
battery life. We introduce a con�guration mechanism for
declaring thresholds to the frequency of these events. We
model this regulation process using three sequential steps:
(1) observation; (2) comparison; and (3) action.

Event-frequency regulation works based on the speci�-
cation of occurrence limits. We establish a policy mecha-
nism that lets users de�ne how o�en the running system
should permit a given background event to proceed. A pol-
icy is a contract that declares the conditions for an event ex-
ecution. �is contract speci�es the event type as well as its
identi�er; an optional list of a�ected apps, in case we want
to restrict such enforcement to a subset of event dispatch-
ers or receivers; whether the policy enforcement also takes
place when the event owner (app) is in the foreground; and
the rate at which they are allowed to execute. From this
de�nition, an energy-savvy user could program her smart-
phone to permit calls to WeatherUpdateService from a
weather-forecast app atmost once every six hours, whereas
calls to LocationUpdateService from the same app
would remain unlimited.

To enforce user-de�ned policies, we outline a controller
comprising three agents: observer, arbiter and actuator.
�e observer intercepts every event occurrence and book-
keeps its frequency. �e arbiter veri�es whether the mea-
sured event rate is above the policy-de�ned threshold, if it
exists, and noti�es the actuator, which hijacks the event
continuation to arti�cially reduce its occurrence rate. Fig-
ure 3 illustrates our control sequence.

Observer Arbiter ActuatorEvent rate

Policy

DecisionEvent Action

Figure 3: Sketch of our event-control system as a three-stage
pipeline.

�ere are two ways to ful�ll event throttling: canceling
or delaying. An event cancel denies the continuation of its
call, with an early return that prevents the payload or the
event callback from running. An event delay, on the other
hand, postpones the continuation of the event call for a
limited time. In this work, we opt for canceling the event
handling. We discuss the pros and cons of each choice
in §7. It is important to understand that an event cancel

4

does not result in a crash. Alarms, services and broadcast
receivers all run asynchronously. Wakelock requests, on
the other hand, are synchronous and their denial will result
in a sleeping systemwhen a waiting task is expected to run.
Still, the task is never aborted, but runs in chunks when
the system wakes up. Our method prevents the triggering
of unwanted events. When it is not possible, we abort the
event continuation at the earliest opportunity to reduce the
energy cost of the event payload.

To drive the implementation of our system, we establish
a few requisites and considerations:
Comprehensive support for events.�e control system
should be inclusive. While app-speci�c solutions are e�ec-
tive, they do not scale to other programs.�e stage pipeline
should monitor and, if necessary, actuate on every event
instance. Particulars about a speci�ed event should be con-
�ned to its policy and not a�ect the controller. It is the
responsibility of the policy designer to de�ne a sane event
frequency, considering, perhaps, the context and the im-
pact of an event hijack. To implement an all-encompassing
monitor system, we target an OS-level solution.
Support for power-oblivious applications.Users should
not abstain from using their favorite apps even if they are
power hogs. Uninstalling or suggesting alternative apps
for the same purpose should not be acceptable.�e system
should cope with the existence of ill-behaved apps and act
upon their misbehavior if directed by the policy designer.
Compatibility. Many solutions that rely on deep sys-
tem introspection require extensive rewrites of system
components [11, 14, 6] or even writing systems from
scratch [43]. Although tempting, straying from the main-
line can severely limit the userbase, especially in the case of
consumer-oriented OSes. With that in mind, our solution
should exhibit high compatibility and keep a minimum
amount of changes to the underlying OS.
E�ciency.Mobile apps must cope with limited computa-
tional and energy resources. �e control system should
avoid high computational overhead to prevent high battery
drain and system slowdown.

4.2 Implementation
To avoid reimplementingOS components to regulate event
handling, Tamer uses the Xposed framework [42] to en-
able system modi�cations at runtime.

While requiring the device to be rooted, Xposed enables
deep system modi�cations with no need to decompile ap-
plications nor �ash the device2. Xposed intercepts Java
methods and temporarily diverts the execution �ow to
function-hook callbacks for inspection and modi�cation.
Developers de�ne these callbacks and compile them as sep-
arate modules. Function-call hooking happens by match-
ing the method’s name and signature of the declared call-

2For brevity reasons, we refer readers to [41] for an explanation on how
such thing is possible.

back with the running code. Callbacks run on the context
of the intercepted application. Xposed allows for changing
the parameters of amethod call, modifying its return value
or terminating it early. We leverage the hooking mecha-
nism to intercept function calls originating from or di-
rected at our events of interest. Finally, function hooks can
be distributed as separate programs in self-contained APK
�les.�ey are not bound to a speci�c Android version and
work without changes on the majority of customized An-
droid releases, including those from Samsung, HTC, Sony,
LG, and the CyanogenMod open-source community [10].
Figure 4 shows how Tamer relates to the Android OS.

Tamer sits, along with Xposed, between user applications
and the Java-based application framework, which serves
as the foundation for the Android SDK. Events have direc-
tions, which helps us de�ne how to write the interception
payload. While service and wakelock calls originate from
apps and are forwarded to the framework, alarms and
broadcast receivers work in the opposite direction.

Tamer consists of a series of function hooks that inter-
pose on the background-processing interface and act as
a controller mechanism to enforce user-de�ned policies.
To implement Tamer’s event-canceling mechanism, we
leveraged Xposed’s introspection API to explore, monitor,
intercept and modify public and private classes, methods
and members of the framework (Table 2). We used our
knowledge on the Android SDK aligned with the source
code of Android’s framework stack to decide where to
place instrumentation points that would constitute our
controller. We analyzed the source code stemming from
each event call on the SDK’s public interface. Modeling
the relationships between subroutines as a call graph, we
considered each interface function as a leaf node. In some
occasions, we had to backtrack the call graph to �nd a
proper instrumentation point.�is was necessary for three
reasons: (1) the public interface did not o�er enough con-
text to feed our monitoring system (e.g., missing receiver
name, unclear caller-callee relationship, etc.); (2) in the
case of receiving events, it was better to interpose on a call
as early as possible to avoid unnecessary operations before
a cancellation; (3) an event call may have more than one
function signature, therefore we looked for a converging
function node. We found one exception to the last rule
when handling broadcast receivers. Applications can de-
clare receivers in two ways: statically via a Manifest �le
or dynamically using the Android SDK API. Since the An-
droid framework keeps separate data structures for each
case, we had to instrument them separately.
Tamer’s interception can suppress wakeups due to ser-

vice invocations, wakelock acquires, and intent broadcasts.
Because of the way Android handles alarms, our imple-
mentation can only curtail the alarm’s callback payload.
�e system will still periodically wake up according to the
alarm’s schedule, but will immediately return to sleep. Our

5

controller implementation covers all versions of Android
ranging from Ice Cream Sandwich to KitKat3. In a hand-
ful of occasions, we resorted to di�erent instrumentation
points for a given event, mostly due to small di�erences
in the function signatures between OS versions. Because
the framework interface is fairly stable, covering future
versions of Android should not require major changes.

Libraries

Application Framework

Android Runtime

Kernel

Tamer

W
akelock

Service

In
te

nt

Al
ar

m

Figure 4: Tamer sits between apps and the framework stack and
interposes on events between these two. Lower system layers are
oblivious to our system.

5 Evaluation
We evaluate Tamer in four ways. First, we revisit our moti-
vating scenario (§2) and use Tamer to extend the battery
life of the GMS-based installation. We then investigate
how Tamer can e�ectively mitigate energy bugs, a sys-
tem behavior that causes unexpected heavy use of energy
not intrinsic to the desired functionality of an applica-
tion. Next, we show how to use code injection to create
specialized versions of controllers for situations that our
four-event toolset cannot handle. Last, we measure the
overhead caused by Tamer on performance and energy.

5.1 DealingWith Google Mobile Services
In §2, we saw how the inclusion of GMS into the baseline
AOSP signi�cantly reduced the battery life of all tested
devices. Nonetheless, GMS adds a series of service and
applications that truly enhance the user’s mobile experi-
ence. In fact, most users do not even have the option of
uninstalling them, as GMS comes pre-installed as a sys-
tem package in the majority of handhelds. We show how
Tamer can reach a tradeo� between GMS’s functionality
and battery savings. We aim to keep the added value of
GMS without the cost of a silent battery depletion.
With the control mechanism established, our next

step is to design a policy that reduces the battery im-
pact of events originating from or destined to GMS. Ta-
ble 3 ranks the top triggered events reported by Tamer’s

3This limitation is due to Xposed’s limited OS support. Support for
Android’s latest release (Lollipop) is not stable enough to cover our needs.

Event Name Type Count Duration (s)
NlpWakelock W 5963 1662.71
NlpCollectorWakelock W 2121 3926.63
LocationManagerService W 2030 67.12
NlpLocationReceiverService S 1159 -
NetworkLocationService S 579 -

Table 3: Top event occurrences for the Galaxy Nexus’s battery
drain due to GMS. A handful of events are responsible for thema-
jor impact on the battery. W signi�es a wakelock event, whereas
S stands for service invocation.

monitoring module. For wakelocks, we also report the
time they were held. We use event frequency as an
heuristic to guide policy con�guration. We note that
NlpCollectorWakelock was primarily responsible for
keeping the system awake in the background. Online re-
ports [40, 5] indicate that NlpCollectorWakelock is re-
lated to Location Reporting, an Android feature used
by Google to collect information on WiFi APs and cell-
tower signals in order to estimate and report the current
location. Apps that use this feature include Google Now
and Google Maps, among others. �e other frequently re-
ported events are also related to the same feature. Disabling
location reporting on the device’s Settings menu would be
a logic solution to increase sleep time, if dependent apps
did not stop working.

�e problem with NlpCollectorWakelock and asso-
ciated events is the frequency they wake up the system and
keep it awake, which sums to a substantial period of non-
sleepiness. During a discharge period of 80 hours for the
Galaxy Nexus smartphone, NlpWakelockwas called once
a minute on average, whereas NlpCollectorWakelock
contributed to keeping the system awake for more than
one hour. Such a high battery impact coming from a single
package does not justify the bene�t of having GMS run-
ning as it is in the background. For this reason, we devised
two policies forGMS, targetingNlpCollectorWakelock
and its associated events, to alleviate this wakeup burden.
For each wakelock and service, the �rst policy (Tamer-15)
allows a single call every 15 minutes. �e second policy
(Tamer-45) allows one call every 45 minutes. Deciding on
an appropriate rate is a subjective matter. Our setup tries
to reach a balance between informing subordinate apps
of location updates and adding extra hours of battery life.
Figure 5 shows that our policies substantially reduced the
battery-drain rate of all tested devices.

5.2 Chasing Energy Bugs
An energy bug, or ebug, is a system error either in an
application, OS, �rmware or hardware that causes an un-
expected amount of high energy consumption [35]. Such
errors occur due to a variety of reasons such as program-
ming mistakes, faulty hardware, malicious intent, etc. Be-
cause such errors may not result in a crash, users will only
notice their e�ect when it is too late: an early dead battery.

6

Event Class Method Instrumentation Payload

Wakelock com.android.server.PowerManagerService
acquireWakeLockInternal

Search for policy. If found, early return
in case call happens before grace
period. Else, let acquire proceed;
bookkeep wakelock and start
grace-period timer.

releaseWakeLockInternal
Only called if there was no block;
report how long wakelock was held.

Service com.android.server.am.ActivityManagerService startServiceLocked
Search for active policy. Proceed as in
wakelock case.

BroadcastReceiver
android.app.ContextImpl

registerReceiverInternal
Add reference to API-registered
receiver.

unregisterReceiverInternal
Remove reference to API-registered
receiver.

com.android.server.pm.PackageManagerService
addActivity

Add reference to receiver registered
statically.

removeActivity
Remove reference to receiver
unregistered statically.

com.android.server.am.ActivityManagerService broadcastIntentLocked

Search for active policy. Temporarily
remove receiver from framework index
to prevent event broadcasts. Update
stats.

Alarm com.android.server.AlarmManagerService triggerAlarmsLocked
Search for active policy. Proceed as in
wakelock case.

GPS (See §5.3) android.location.LocationRequest
requestLocationUpdates Enable GPS throttling for calling app.
removeUpdate Disable GPS throttling for calling app.

com.android.server.LocationManagerService reportLocation

Search for active policy. Let callback
report incoming location, but
temporarily switch off GPS sensor for
blocking period.

Table 2: A brief description of Tamer’s instrumentation points.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

B
a

tt
e

ry
 L

e
v
e

l
(%

)

Hours

Pure AOSP
w/ Google M. Services

w/ GMS + Tamer-15
w/ GMS + Tamer-45

(a) Galaxy Nexus

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

B
a

tt
e

ry
 L

e
v
e

l
(%

)

Hours

Pure AOSP
w/ Google M. Services

w/ GMS + Tamer-15
w/ GMS + Tamer-45

(b) Galaxy S4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

B
a

tt
e

ry
 L

e
v
e

l
(%

)

Hours

Pure AOSP
w/ Google M. Services

w/ GMS + Tamer-15
w/ GMS + Tamer-45

(c) Fire 2

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

B
a

tt
e

ry
 L

e
v
e

l
(%

)

Hours

Pure AOSP
w/ Google M. Services

w/ GMS + Tamer-15
w/ GMS + Tamer-45

(d) MeMO Pad 7

Figure 5: Battery drop for the four devices while idling with the screen o�. A�er applying our policies to GMS, battery life improved
in dozens of hours for all devices.

We focus on so�ware ebugs. While previous research
targeted their identi�cation and characterization [46, 37],
we address their mitigation at runtime. Finding ebugs is
not trivial and the lack of a centralized repository of up-
dated samples prevents us from testing our controllermore
extensively.We successfully reproduced and circumvented
three application ebugs described in [23]. For the other de-
scribed cases, we could not con�rm the existence of bugs.
We assume these defects have been �xed by developer up-
dates. Next, we present two detailed case studies of new
ebugs that we found. We used eStar [30], an Android tool
that ranks the contribution of apps to battery depletion.
We �rst selected apps that display poor energy e�ciency
and �ltered them based on high popularity at Google Play
Store (our selections featured on the top-20 ranking of
their respective categories: Games and Health & Fitness).
Although eStar ranks energy-ine�cient apps, we still had
to manually verify whether such ine�ciency was due to
active usage or backgrounding. For each application, we
simulated a user interaction consisting of a short-length
active session followed by a long period in the background.

Bejeweled Blitz [13] is an award-winning puzzle game
with over 10 million installs from Google Play Store. A�er
a 15-minute play session on the Galaxy S4 smartphone,
Tamer reported that our game generated a single back-
ground event – the acquire of the AudioIn wakelock. Be-
cause games are resource-hungry apps, this event call ini-
tially did not instigate any suspicion. We discovered a red
�ag, though, a�er switching Bejeweled to the background:
AudioIn was not released a�er the game suspension. To
mitigate this bug, we wrote a simple policy targeting Bejew-
eled Blitz that blocks the renewal of the culprit wakelock
during background time. Figure 6 depicts the battery drop
of a 12-hour session with Bejeweled loaded in the back-
ground before and a�er applying our policy. We see a 4×
improvement on battery drain. Figure 7 con�rms the e�ect
of releasing the ill-behaved wakelock: before being tamed,
the smartphone spent approximately 95% of the time with
an awake CPU. With Tamer’s interposition, most of the
residency ratio was converted to deep sleep.
Nike+ Running [32] is a �tness app for tracking runs.
Nike+ relies on the GPS sensor, the accelerometer, and

7

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

B
a

tt
e

ry
 L

e
v
e

l(
%

)

Hours

Normal
Tamed

Figure 6: Battery drain over 12 hours for Bejeweled Blitz without
Tamer (Normal) andwith a Tamer policy blocking the AudioIn
wakelock. In both cases, the game was started and the phone
switched to idle mode with the screen o�.

 0

 20

 40

 60

 80

 100

D
ee

p
Sle

ep

38
4

M
H
z

48
6

M
H
z

59
4

M
H
z

70
2

M
H
z

81
0

M
H
z

91
8

M
H
z

1.
03

 G
H
z

1.
13

 G
H
z

1.
24

 G
H
z

1.
35

 G
H
z

1.
46

 G
H
z

1.
57

 G
H
z

1.
67

 G
H
z

1.
78

 G
H
z

1.
89

 G
H
z

%
 o

f
T

im
e

 S
p

e
n

t

CPU Frequency

Normal
Tamed

Figure 7: CPU residency time for the original and tamed versions
of Bejeweled Blitz on the Galaxy S4. �e tamed version spent
94% of the time in Deep Sleep.

barometer to estimate distance and speed. According to
Tamer, Nike+ acquired �ve wakelocks while running:
AudioMix, FullPower Acc Sensor, FullPower

Pressure Sensor, FullPower Recording and
NlpWakeLock. Judging from the wakelock names, we
can assume a few hardware components remained awake
to prevent device-sleeping. We found an ebug when
pausing our running session and switching Nike+ to the
background. In this case, we expected the application to
release all wakelocks. Like Bejeweled Blitz, Nike+ forgot
to relinquish the locks upon leaving the foreground. Our
policy was also equivalent: block the culprit wakelocks
during background time. Figure 8 shows the battery drop
a�er an eight-hour session before and a�er applying our
policy. We see a 5× improvement on battery drainage.
Figure 9 displays the CPU residency on both scenarios:
CPU deep-sleep residency jumped from a 0% to 89.8%.
We also acknowledge a major contribution of the GPS and
sensors on battery decay. �eir duty cycle is equivalent to
the time the homonymous wakelocks were held.

5.3 Looking at the Other Side of Events
Tamer can block events at their imminent arrival or dis-
patch, thus saving energy that would be consumed by their
continuation. One can say that Tamer focuses on the ef-
fect of an event. Still, there are situations in which the

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

B
a

tt
e

ry
 L

e
v
e

l(
%

)

Hours

Normal
Tamed

Figure 8: Battery drain over 8 hours for Nike+ Running without
Tamer (Normal) and with a Tamer policy that blocked all �ve
heldwakelocks. In both curves, the appwas started and the phone
switched to idle mode with the screen o�.

 0

 20

 40

 60

 80

 100

D
ee

p
Sle

ep

35
0

M
H
z

70
0

M
H
z

92
0

M
H
z

1.
2

G
H
z

%
 o

f
T

im
e

 S
p

e
n

t

CPU Frequency

Normal
Tamed

Figure 9: CPU residency time for the original and tamed versions
of Nike+ Running on the Galaxy Nexus.�e tamed version spent
89.4% of the time in Deep Sleep.

energy cost of its cause is signi�cant. A user could write a
policy targeting an instant messenger’s broadcast receiver
to throttle the e�ect of a message arrival – a noti�cation
in the form of sound or vibration. However, she cannot
block the message arrival itself, the major contributor to
energy consumption in this case, as the remote sender is
not covered by Tamer.

Acting on the cause of an event is complicated because
its originator, when known, can take various shapes, like
a disk or network I/O operation. Consequently, �nding
a converging instrument point in the source code that
encompasses all such shapes is complex. In parallel, we
should avoid point solutions that only �t one app. Between
these two extremes, we can reach a balance by instrument-
ing code that abstracts common functionality and gener-
ates events used by a subset of applications. We consider
the case of navigation apps to illustrate such scenario.
�rottling Localization. Android applications that rely
on the GPS sensor follow a basic model: (1) they register a
position listener and (2) they periodically receive location
updates from a provider proxy, the only interface to the
localization system [3]. A provider proxy serves as an
interface to various location sources, including the GPS
sensor, WiFi APs, and cell towers.
Given that the GPS is an energy-hungry resource, we

consider a throttling mechanism for its duty cycle. Paek et

8

al. [34] successfully demonstrated the potential energy sav-
ings of duty cycling by creating a rate-adaptive positioning
system that switches the GPS sensor on and o� and uses
alternative location sources based on position accuracy.
As a demonstration, we consider a simpler GPS-throttling
implementation sans secondary sources. An advantage of
our approach is the dispensing of OS recompilation, keep-
ing it compatible with the majority of Android devices.
�e GPS sensor provides periodic position �xes (every
second) to the OS. Some of these �xes are not relayed by
the Android framework to the navigation app as they are
not signi�cantly di�erent. We can reach a more energy-
e�cient navigation by directing the GPS duty cycle. We
inject code into internal classes related to the framework’s
GPS provider and open a direct communication channel
between the GPS device and our throttling mechanism.
�is direct channel permits our controller to switch the
GPS on and o�. Table 2 summarizes our instrumentation.
Evaluation.We consider two location-based apps, Google
Maps and Nike+ Running. We ran these two applications
separately on the Galaxy Nexus phone and applied three
di�erent throttling policies to the GPS duty cycle: location
updates every one, �ve and ��een seconds.�e rate choice
depends on the user’s purpose. For pedestrian navigation,
a slower update rate does not a�ect the estimated position
as much as in the case of a highway car trip. Paek et al.’s
work includes a thorough tradeo� analysis between posi-
tion accuracy and energy savings. We, on the other hand,
only report the potential savings. For each scenario, we
programmed a pedestrian route lasting ten minutes. We
turned the screen o� while running the application in the
background. Because of the small timespan, we compare
the energy dispensed instead of battery-level drop. We
used the Monsoon monitor to measure the energy con-
sumption. Figure 10 portrays the savings per application.
We observe an upper bound of 27.7% on savings for the
Nike+ Running application when reducing the location-
update rate to 1:15s. Although a lower update rate increases
the energy savings, position accuracy is penalized.

5.4 Performance Impact
Just like a network �rewall, Tamer intercepts every event-
happening, inspects it, evaluates the corresponding policy
criterion, and �nally actuates to ful�ll the policy’s condi-
tions. Because Tamer diverts the normal �ow of applica-
tions, it should incur as little performance overhead and
energy burden as possible. We instrumented Tamer to
measure the time taken to hijack an event and perform its
blockage. For the longest diverted execution �ow, Tamer
took, on average, 320µs to execute on the Galaxy Nexus
device. With regards to energy consumption, Tamer is
activated only when other applications generate events.
Tamer does not acquire any wakelocks, but freeloads the
system’s active state due to other wakeup sources.

 0

 100

 200

 300

 400

 500

 600

 700

 800

M
aps

N
ike+

T
o
ta

l
E

n
e
rg

y
 (

J
)

1s-rate Policy
5s-rate Policy

15s-rate Policy

Figure 10: Total energy consumed by Google Maps and Nike+
Running a�er applying three di�erent duty-cycle policies to the
GPS provider. For both apps, the update rate is inversely propor-
tional to energy savings.

6 RelatedWork
We are not the �rst to propose control of functionality in
exchange for battery savings. Tamer builds upon a number
of contributions to mobile power management.
Collateral RelatedWork. E�cient power management in
mobile platforms is a challenging research problem due
to the multitude of hardware con�gurations and power
states. To improve energy consumption, we need to under-
stand how hardware components draw power on behalf
of applications. �ere is a myriad of tools that help quan-
tify a device’s energy expenditure. PowerScope [17] is one
of the �rst works in the mobile domain to map energy
to a program’s structure. PowerScope employs linear re-
gression and statistical sampling to apportion energy to
hardware and applications. A series of recent pro�lers for
smartphones complements PowerScope, including Power-
Tutor [50], ARO [38], AppScope [22], WattsOn [29] and
eprof [36]. Sesame [12] and V-edge [47] go a step further
and propose self-calibrating models that dispense the use
of external power monitors, relying instead on internal
battery data to model energy expenditure. Our analysis
mainly adopts battery-drop rate as a proxy for energy con-
sumption, but we expect such advanced contributions to
be integrated by OEMs in future devices.
Saving Energy FromBackgroundTasking.Android task
killers once were the solution for background power
savings, but their e�ectiveness is now a point of con-
tention [27]. Task killers force background applications
to quit, assuming that their removal from memory will
reduce the energy footprint of released resources. Such
assumption is incorrect as there is little correlation be-
tween memory and CPU usage in Android [4]. Excessive
task killing may lead to the opposite e�ect: by discarding
cached data, Android must reload apps from storage. A
killed app may restart itself immediately a�er being killed,
using up CPU time and draining even more battery.

9

Rather than killing background tasks, popular apps like
JuiceDefender [26] and Easy Battery Saver [1] can con�g-
ure the access to power-greedy components, such as the
radio and GPS, on a schedule basis. Although e�ective in
many cases, some apps do not behave properly when they
cannot, for instance, connect to the Internet. Some apps
may even produce more energy overhead as they insist
on accessing a resource made unavailable. Tamer circum-
vents such problems by mainly throttling asynchronous
actions: the expecting app does not block while waiting
for an event arrival or dispatch. Greenify [15] is an An-
droid tool for hibernating apps, preventing the arrival or
dispatch of events once an app switches to background.
�e original functionality is only restored when the app
returns to the foreground. Greenify is e�ective in block-
ing misbehaving and start-at-boot apps, but its treatment
of background computing is coarse and not applicable
to noti�cation-based apps that mostly run in the back-
ground (e.g., mail readers, instant messengers, calendars,
etc.) Tamer is applicable in such cases as it throttles, but
does not completely eliminate, background functionality.

Android also includes its own controls for background-
task management. �e AutoSync feature controls the au-
tomatic data synchronization between client apps and on-
line accounts. With a mere tap, users can choose between
disabling the synchronization of a speci�c feature of a
selected account (e.g., photo uploads for Google+) or to-
tally prevent any background synchronization for all reg-
istered accounts. AutoSync is mostly applicable to apps
adopting Google Cloud Messaging (GCM), an API piece
fromGoogleMobile Services. GCMprovides a lightweight
mechanism that third-party servers can use to notify mo-
bile applications of available content to be fetched. As long
as the application is subscribed to receive GCMmessages,
the Android device does not need to run continuously.
Instant messengers, for instance, use GCM to receive noti-
�cations of new incoming messages. Tamer complements
this service by o�ering a similar control to applications
that do not adopt the GCM approach. Moreover, Tamer
allows for the management of a variety of background
events, whereas AutoSync focuses mainly on networking.
Partial inspiration for deep event monitoring stems

from applications such as BetterBatteryStats [25] and
Wakelock Detector [45]. Both apps report wakelock-usage
statistics that developers can use to understand the root
cause of battery drainage. Tamer complements such apps
by empowering users to take action a�er they pinpoint the
origin of abnormal energy consumption.
Carat [33] and eStar [30] use data collected from thou-

sands of smartphone and tablet users to model the battery
drainage of applications. By combining rich context infor-
mation of multiple devices with energy awareness, it is
possible to determine whether the energy used by an appli-
cation deviates from its expected consumption.�ese tools

are conservative in controlling energy expenditure, with
both systems suggesting users to kill or uninstall culprit
apps. eStar further recommends energy-e�cient alterna-
tives to power-hog apps, if they exist. Tamer let users keep
their apps while modifying the culprit’s behavior to reduce
energy consumption.

7 Discussion
As any prototype, Tamer has limitations. Tamer’s main
utility comes from policy de�nition, which, at its current
state, will not appeal to the end user. In the following, we
elaborate on how to circumvent this usability issue. We
also suggest improvements that are le� as future work.

7.1 Policy Guidelines
In §5, we demonstrated how a wise policy selection can
partially inhibit the surge of energy-hungry events. Our
experience de�ning policies arose from intuition, reading
source code (when available) and, in some cases, multiple
attempts. At its current state, Tamer would better serve
as a backend tool interfacing speci�c instances of power
management than act as an end-user app. With such limi-
tations in mind, a user willing to run Tamer as it is, would
bene�t from the following guidelines to explore the event
space and de�ne e�ective policies.
Choosing events to control. Handhelds may carry tens
or even hundreds of applications that generate thousands
of events. We should not imply that policy de�nition must
consider all of them equally. First, users prefer some apps
over others. Second, event triggering does not follow a uni-
form distribution. As a rule of thumb, users should start
with policies targeting the most frequent events. Tamer’s
monitoring module periodically outputs an event sum-
mary that can assist on such cases.
Cutting the red wire. Even a�er selecting the most promi-
nent events for policy testing, there are no guarantees that
the policy will work without side e�ects. Side e�ects may
include an increase in the frequency of correlated events,
the rise of unexpected events, and abnormal application be-
havior. Blocking alarm events recklessly could, for instance,
totally defeat the purpose of a calendar app. Because most
apps are only available in binary form, understanding the
purpose of an event is not always clear and neither is un-
covering its dependencies. Techniques used in black-box
testing, such as cause-e�ect graphs can help. Events may
also show a temporal correlation with others. To uncover
temporal dependencies, we generated event timelines from
Tamer’s monitoring output.
Use common sense. �e Android OS de�nes two cate-
gories of applications: system and user.�e former include
programs that are deemed critical, are deeply integrated
into the OS, and cannot be uninstalled. Examples include
the dialer, browser, and network manager, to name a few.
Users apps are replaceable programs that can be freely re-

10

moved and installed from the app store. As part of Tamer’s
design, we adopted the support of generic events. Conse-
quently, system- and user-app events are treated equally.
Policies that alter the frequency of system events may re-
sult in unwanted or abnormal behavior. Users should be
mindful when de�ning policies involving critical events
to avoid such situations. Removing support for system
events would prevent such unfortunate occasions, but the
de�nition of a system app is blurry. GMS, for example,
comes pre-installed as a system package on many devices.
Carriers also sell devices with bloatware installed as sys-
tem apps. As demonstrated, systems apps present great
opportunities for energy savings.

7.2 Potential Improvements
Event batching over cancellation. Our current imple-
mentation dismisses event continuation if there is a need
for throttling. Alternatively, we could reschedule the asyn-
chronous delivery of such events to coalescemultiple wake-
ups into one, saving even more energy. Although promis-
ing, event coalescing may lead to unexpected results that
require deeper investigation. Some apps assume a �xed fre-
quency of events. A pedometermay use the time di�erence
between position �xes to estimate speed. Batching multi-
ple �xes into one delivery may create havoc if the tracker
does not discard outdated values. Nevertheless, coalescing
has found its way in other domains. �e Linux tickless
kernel [44] reduced the precision of so�ware timers to al-
low the synchronization of process wakeups, minimizing
the number of CPU power-state transitions. From its Lol-
lipop release, Android started to batch alarms that occur
at reasonably similar times, turning them inexact. Xu et
al.’s recent work on coalescing events to save energy in the
context of email synchronization [48] is another success-
ful example of careful event-handling for mobile devices.
As long as developers do not assume guarantees on event
delivery and commutativity, we believe coalescing should
supersede cancellation as an energy-saving feature.
Native code support. Tamer controls applications by
wrapping function calls from the Android Java API. Ap-
plications that make heavy use of native code, like games,
multimedia apps and ELF libraries, could acquire wake-
locks, spawn threads and perform background tasks using
C/C++ code, thus bypassing our control system. Extend-
ing support to native code would require a similar e�ort
on analyzing and instrumenting libc function calls.
Support for other mobile OSes. Background processing
is not exclusive to Android, although handled di�erently
by other mobile OSes. Apple’s iOS 7+ regards background
processing as a privilege [7]. Other than network trans-
fers, common background tasks have limited time to com-
pletion and must respect the device’s will to sleep, do-
ing their processing in chunks a�er the device wakes up
to handle phone calls, noti�cations and other interrup-

tions. Windows Phone enforces background tasks to be
lightweight by applying quotas to resources likeCPU,mem-
ory, and network usage while apps are running behind the
scenes [28]. Event-frequency control may not produce
the same gains on Apple’s and Microso�’s mobile devices
given their stricter stance on deploying background tasks
(mainly in the name of battery savings).
Feedback control. Tamer works as an open-loop con-
troller, not using feedback to gauge whether the system
needs more adjustments. During the design stage of this
project, we discarded the closed-loop approach as it would
require knowledge of application semantics as well as user
perception of performance degradation. Modeling these
two elements are hard problems beyond our scope.

8 Conclusion
�is paper presented Tamer, an OS mechanism that in-
terposes on task wakeups in Android and allows event
handling to be monitored, �ltered, and rate-limited. We
demonstrated that Tamer substantially reduces the back-
ground energy use in popular Android applications. With
Tamer, a device spends more time in low-power mode,
which increases the battery lifetime signi�cantly.

While this work shows Tamer’s e�ectiveness as a mech-
anism, future work is needed to understand how to best
construct policies that improve battery life while preserv-
ing application functionality. In future work, we will in-
vestigate techniques for determining if functionality is
negatively impacted when exploring user visible elements
(e.g., UI di�erences) between runs of an application with
di�erent policies. We will also explore which policies are
most likely to have substantial battery savings in practice.
With the combination of such techniques, we will strive
to devise policies that improve battery life while retaining
normal application functionality.

Acknowledgements
We thank Tim Nelson, Hammurabi Mendes, the anony-
mous reviewers, and our shepherd, Lin Zhong, for their
feedback. Marcelo was funded in part by a generous gi�
from Intel Corporation.

References
[1] 2Easy Team. Easy Battery Saver. http://www.2easydroid.com.

[2] Android Developers. Best practices for background jobs. https:
//developer.android.com/training/best-background.html.

[3] Android Developers. Location strategies. https://developer.
android.com/guide/topics/location/strategies.html.

[4] Android Developers. Managing your app’s memory. https:
//developer.android.com/training/articles/memory.html.

[5] AndroidCentral.com. Google Services battery drain.
http://forums.androidcentral.com/google-nexus-
4/302559-google-services-battery-drain.html.

[6] Andrus, J., Dall, C., Hof, A. V. H., Laadan, O., andNieh, J. Cells:
A virtual mobile smartphone architecture. In ACM SOSP’11.

11

http://www.2easydroid.com
https://developer.android.com/training/best-background.html
https://developer.android.com/training/best-background.html
https://developer.android.com/guide/topics/location/strategies.html
https://developer.android.com/guide/topics/location/strategies.html
https://developer.android.com/training/articles/memory.html
https://developer.android.com/training/articles/memory.html
http://forums.androidcentral.com/google-nexus-4/302559-google-services-battery-drain.html
http://forums.androidcentral.com/google-nexus-4/302559-google-services-battery-drain.html

[7] Apple Inc. App programming guide for iOS. https:
//developer.apple.com/library/ios/documentation/
iPhone/Conceptual/iPhoneOSProgrammingGuide/
BackgroundExecution/BackgroundExecution.html.

[8] ARM Limited. big.LITTLE technology: �e fu-
ture of mobile. http://www.arm.com/files/pdf/
big LITTLE Technology the Futue of Mobile.pdf .

[9] AT&T. Application resource optimizer (ARO). http://developer.
att.com/application-resource-optimizer.

[10] CyanogenMod Community. http://www.cyanogenmod.org.
[11] Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., and Wallach,

D. S. QUIRE: Lightweight provenance for smart phone operating
systems. In USENIX Security’11.

[12] Dong, M., and Zhong, L. Self-constructive high-rate system
energy modeling for battery-powered mobile systems. In ACM
MobiSys’11.

[13] Electronic Arts Inc. Bejeweled Blitz. http://play.google.com/
store/apps/details?id=com.ea.BejeweledBlitz na.

[14] Enck,W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., McDaniel,
P., and Sheth, A. N. TaintDroid: An information-�ow tracking sys-
tem for realtime privacy monitoring on smartphones. In USENIX
OSDI’10.

[15] Feng, O. Greenify. https://play.google.com/store/apps/
details?id=com.oasisfeng.greenify.

[16] Flinn, J., and Satyanarayanan, M. Energy-aware adaptation for
mobile applications. In ACM SOSP’99.

[17] Flinn, J., and Satyanarayanan, M. PowerScope: A tool for pro-
�ling the energy usage of mobile applications. In IEEE WMCSA’99.

[18] Gigaom. Google’s killer Android L feature: Up to 36%more battery
life thanks to Project Volta. http://gigaom.com/2014/07/
02/googles-killer-android-l-feature-up-to-36-more-battery-
life-thanks-to-project-volta.

[19] Google. Battery Historian. https://github.com/google/
battery-historian.

[20] Google. Our mobile planet. http://think.withgoogle.com/
mobileplanet/en.

[21] Hoffmann, H., Sidiroglou, S., Carbin, M., Misailovic, S., and
Agarwal, Anant ad Rinard, M. Dynamic knobs for responsive
power-aware computing. In ASPLOS’11.

[22] Jung, W., Kang, C., Yoon, C., Dongwon, K., and Cha, H. App-
Scope: Application energy metering framework for Android smart-
phone using kernel activity monitoring. In USENIX ATC’12.

[23] Kim, K., and Cha, H. WakeScope: Runtime wakelock anomaly
management scheme for Android platform. In ACM EMSOFT’13.

[24] Kim, W., Gupta, M. S., Wei, G.-Y., and Brooks, D. System level
analysis of fast per-core DVFS using on-chip switching regulators.
In IEEE HPCA’08.

[25] Knispel, S. BetterBatteryStats. https://play.google.com/store/
apps/details?id=com.asksven.betterbatterystats.

[26] Latedroid. JuiceDefender – battery saver. http://www.
juicedefender.com.

[27] LifeHacker.com. Android task killers explained: What they
do and why you shouldn’t use them. http://lifehacker.com/
5650894.

[28] Microsoft. Supporting your app with background tasks.
https://msdn.microsoft.com/en-us/library/windows/apps/
xaml/hh977056.aspx.

[29] Mittal, R., Kansal, A., and Chandra, R. Empowering develop-
ers to estimate app energy consumption. In ACMMobiCom’12.

[30] Mobile Enerlytics LCC. eStar: Because mobile devices are not
mobile if they are plugged in. http://mobileenerlytics.com.

[31] Monsoon Solutions Inc. Power monitor. http://www.msoon.
com/LabEquipment/PowerMonitor.

[32] Nike, Inc. Nike+ Running. http://play.google.com/store/
apps/details?id=com.nike.plusgps.

[33] Oliner, A. J., Iyer, A. P., Stoica, I., Lagerspetz, E., and
Tarkoma, S. Carat: Collaborative energy diagnosis for mobile
devices. In ACM SenSys’13.

[34] Paek, J., Kim, J., and Govindan, R. Energy-e�cient rate-adaptive
GPS-based positioning for smartphones. In ACMMobiSys’10.

[35] Pathak, A., Hu, Y. C., and Zhang, M. Bootstrapping energy
debugging on smartphones: A �rst look at energy bugs in mobile
devices. In ACM HotNets’11.

[36] Pathak, A., Hu, Y. C. H., and Zhang, M. Fine grained energy
accounting on smartphones with eprof. In EuroSys’12.

[37] Pathak, A., Jindal, A., Hu, Y. C., and Midkiff, S. P. What is
keeping my phone awake? characterizing and detecting no-sleep
energy bugs in smartphone apps. In ACMMobiSys’12.

[38] Qian, F.,Wang, Z., Gerber, A.,Mao, Z., Sen, S., and Spatscheck,
O. Pro�ling resource usage for mobile applications: a cross-layer
approach. In ACMMobiSys’11.

[39] Qualcomm. Trepn Pro�ler. http://developer.qualcomm.com/
mobile-development/increase-app-performance/trepn-
profiler.

[40] Reddit. NlpWakeLock and NlpCollectorWakeLock dis-
cussion. https://www.reddit.com/r/Android/comments/
1rvmlr/nlpwakelock and nlpcollectorwakelock discussion/.

[41] rovo89. Xposed development tutorial. https://github.com/
rovo89/XposedBridge/wiki/Development-tutorial.

[42] rovo89. Xposed module repository. http://repo.xposed.info.

[43] Roy, A., Rumble, S. M., Stutsman, R., Levis, P., Mazières, D.,
and Zeldovich, N. Energy management in mobile devices with
the Cinder operating system. In EuroSys’11.

[44] Siddha, S., Pallipadi, V., and Van De Ven, A. Getting maximum
mileage out of tickless. In Ottawa Linux Symposium’07.

[45] UzumApps. Wakelock Detector. https://play.google.com/
store/apps/details?id=com.uzumapps.wakelockdetector.

[46] Vekris, P., Jhala, R., Lerner, S., and Agarwal, Y. Towards
verifying android apps for the absence of no-sleep energy bugs. In
HotPower’12.

[47] Xu, F., Liu, Y., Li, Q., and Zhang, Y. V-edge: Fast self-constructive
powermodeling of smartphones based on battery voltage dynamics.
In USENIX NSDI’13.

[48] Xu, F., Liu, Y., Moscibroda, T., Chandra, R., Jin, L., Zhang, Y.,
and Li, Q. Optimizing background email sync on smartphones. In
ACMMobiSys’13.

[49] Zeng, H., Ellis, C. S., Lebeck, A. R., andVahdat, A. ECOSystem:
Managing energy as a �rst class operating system resource. In
ASPLOS’02.

[50] Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R. P., Mao,
Z. M., and Yang, L. Accurate online power estimation and auto-
matic battery behavior based power model generation for smart-
phones. In CODES+ISSS’10.

12

https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
http://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
http://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
http://developer.att.com/application-resource-optimizer
http://developer.att.com/application-resource-optimizer
http://www.cyanogenmod.org
http://play.google.com/store/apps/details?id=com.ea.BejeweledBlitz_na
http://play.google.com/store/apps/details?id=com.ea.BejeweledBlitz_na
https://play.google.com/store/apps/details?id=com.oasisfeng.greenify
https://play.google.com/store/apps/details?id=com.oasisfeng.greenify
http://gigaom.com/2014/07/02/googles-killer-android-l-feature-up-to-36-more-battery-life-thanks-to-project-volta
http://gigaom.com/2014/07/02/googles-killer-android-l-feature-up-to-36-more-battery-life-thanks-to-project-volta
http://gigaom.com/2014/07/02/googles-killer-android-l-feature-up-to-36-more-battery-life-thanks-to-project-volta
https://github.com/google/battery-historian
https://github.com/google/battery-historian
http://think.withgoogle.com/mobileplanet/en
http://think.withgoogle.com/mobileplanet/en
https://play.google.com/store/apps/details?id=com.asksven.betterbatterystats
https://play.google.com/store/apps/details?id=com.asksven.betterbatterystats
http://www.juicedefender.com
http://www.juicedefender.com
http://lifehacker.com/5650894
http://lifehacker.com/5650894
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh977056.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh977056.aspx
http://mobileenerlytics.com
http://www.msoon.com/LabEquipment/PowerMonitor
http://www.msoon.com/LabEquipment/PowerMonitor
http://play.google.com/store/apps/details?id=com.nike.plusgps
http://play.google.com/store/apps/details?id=com.nike.plusgps
http://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler
http://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler
http://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler
https://www.reddit.com/r/Android/comments/1rvmlr/nlpwakelock_and_nlpcollectorwakelock_discussion/
https://www.reddit.com/r/Android/comments/1rvmlr/nlpwakelock_and_nlpcollectorwakelock_discussion/
https://github.com/rovo89/XposedBridge/wiki/Development-tutorial
https://github.com/rovo89/XposedBridge/wiki/Development-tutorial
http://repo.xposed.info
https://play.google.com/store/apps/details?id=com.uzumapps.wakelockdetector
https://play.google.com/store/apps/details?id=com.uzumapps.wakelockdetector

	Introduction
	Motivation
	Background
	Mobile Power Management
	Android Applications: Dealing with Lifecycle Changes
	Dispatching Background Tasks

	Tamer
	Design
	Implementation

	Evaluation
	Dealing With Google Mobile Services
	Chasing Energy Bugs
	Looking at the Other Side of Events
	Performance Impact

	Related Work
	Discussion
	Policy Guidelines
	Potential Improvements

	Conclusion

