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ABSTRACT
Writing secure code requires a programmer to think both as
a defender and an attacker. One can draw a parallel between
this model of thinking and techniques used in test-driven de-
velopment, where students learn by thinking about how to
effectively test their code and anticipate possible bugs. In
this study, we analyzed the quality of both attack and de-
fense code that students wrote for an assignment given in an
introductory security class of 75 (both graduate and senior
undergraduate levels) at NYU. We made several observa-
tions regarding students’ behaviors and the quality of both
their defensive and offensive code. We saw that student de-
fensive programs (i.e., assignments) are highly unique and
that their attack programs (i.e., test cases) are also relatively
unique. In addition, we examined how student behaviors in
writing defense programs correlated with their attack pro-
gram’s effectiveness. We found evidence that students who
learn to write good defensive programs can write effective at-
tack programs, but the converse is not true. While further
exploration of causality is needed, our results indicate that
a greater pedagogical emphasis on defensive security may
benefit students more than one that emphasizes offense.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education; K.6.5 [Security and Protec-
tion]: Unauthorized access; D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms
Security, Experimentation, Measurement
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1. INTRODUCTION
Testing is an integral part of any real-world software de-

velopment process. As such, software testing has become an
integral part of computer science (CS) curricula in recent
years [14, 4]. Researchers have extensively examined stu-
dents’ test-writing skills [16, 19, 7] and the primary focus
has been on quantifying the quality of students’ test codes,
measuring their bug-revealing capabilities, and developing
techniques to assess student-written software tests. Secure
coding and software security testing, on the other hand, are
relatively recent areas of exploration within the pedagogical
community. In the wake of an increasing number of security
breaches caused by software vulnerabilities, it has become
essential that tomorrow’s developers acquire crucial skills of
writing secure code and developing software packages that
can withstand malicious attacks.

In order to write secure code, students must learn how to
think about system failure and software vulnerability, by de-
veloping what is often called a security mindset. They must
learn how to think as an attacker and find ways to circum-
vent and exploit code flaws. In such a scenario, the program
under attack is considered a defense program and the test
case that is trying to break or exploit the defense program
is an attack program. Writing programs that can defend
against an attacker is at least as difficult as writing reliable
programs. Acquiring the mindset to foresee potential vul-
nerabilities in a program is a valuable skill for students to
learn.

We anticipate that including software security testing tech-
niques as part of the typical software testing exercises used
in CS classrooms will expand students’ programming toolset
and make them better equipped to tackle programming tasks.
Software tests look for bugs that produce errors despite plau-
sible input, whereas an attack program can trigger bugs with
any possible input. A student who is able to write both de-
fensive and attack programs is already thinking about ways
to exploit vulnerabilities and ways to protect against pos-
sible breaches. Our study suggests that this more holis-
tic approach may enhance students’ programming skills and
help them become more proficient in finding flaws in their
own programs. The recent addition of IAS (Information
Assurance and Security) to ACM/IEEE Computer Science
Curricula 2013 [3] is a good starting point, but faculty need
more examples of how to integrate these topics into their
existing curriculum.
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To test our hypothesis and to examine the overall effect
of employing a security mindset approach in teaching CS,
we examined students’ abilities in writing both defensive
and offensive programs, using a set of publicly available pro-
gramming assignments [2]. Our study focused on both the
quality of students’ defense and attack programs, and the
correlation between the two, in the context of a security as-
signment. Thus, we investigated more than traditional test-
writing skills and quality of student-written tests. Specifi-
cally, students were first asked to write a defense program.
After this, they were asked to write attack programs that
would find a comprehensive set of bugs (including perfor-
mance bugs and security related bugs) in the defense pro-
grams of all students in the class.

Using common techniques employed by the pedagogical
community, such as the ‘all-pair method ’ [10, 9, 7], we ex-
plored students’ ability to write resilient defensive programs,
effective attack programs, and the relationship between the
two skills. We observed the effectiveness of the security
mindset approach on the overall performance of our stu-
dents. Although some of our findings only reinforce what
has already been shown by others in the context of stu-
dents’ test-writing skills, some of our results are unique to
our experiment. Specifically, we observed the following out-
comes using this particular attack-defense assignment, ad-
ministrated to 75 students in a single class.

• In general, students wrote unique defense and attack
programs.

• The number of attacks correlated with the quality of
attacks. Thus, students who wrote more attack pro-
grams generally had more effective attacks.

• Some skills were indicative of students possessing other
skills. For example, knowledge of how to scope vari-
ables appropriately correlated with the ability to write
relatively bug free programs.

• Students who wrote good defense programs also wrote
good attack programs. However writing good attack
programs did not correlate with writing good defense
programs.

• Students who could subsequently attack their own de-
fense programs had written poor defensive programs.

In Section 2, we explain how our work relates to previous
work on the pedagogy of testing. In Section 3, we describe
the assignment, the class in which it was used, and how the
data were collected. In Section 4, we present an analysis of
our data and provide conclusions we draw from that data.

2. RELATED WORK
Over the past two decades, many CS educators have advo-

cated for the integration of software testing into the CS cur-
riculum [18, 11, 15]. Different strategies have been proposed
for introducing software testing early on in undergraduate
programs [13, 16, 10, 5, 17, 9]. Although introducing stu-
dents to software testing is now common practice, assessing
the quality of student-written tests has been a harder prob-
lem to address. The use of automated assessment tools [12,
5, 20, 6] and mutation analysis techniques [1, 19] have been
examined as a way to assess the quality of student writ-
ten tests. Most of these techniques measure ‘code coverage

ability’ of student-written tests, but recent work has shown
that such tools might produce an overestimation of student-
written test quality [7].

Some have suggested that the quality of a test can be as-
sessed by its ability to detect bugs or faults in a software
program rather than by looking at its coverage of execu-
tion paths [7]. One technique for measuring the quality of
testing is the ‘all-pairs’ technique proposed by Goldwasser
in 2002 [10] and further developed by Edwards et al. [9, 7].
Using this approach, all student tests are run against all
student programs.

How well do student written tests find significant bugs?
Researchers have reported that students’ tests are not high
quality and that there is a large degree of similarity among
student-written test programs. Moreover, most students are
only able to find a small portion of bugs in a given program.
Happy path testing–writing tests for typical scenarios–has
been targeted as one reason that student-written tests tend
to be quite similar [8].

3. PRELIMINARIES

3.1 The Assignment
Our observations in this paper are based on a two-part

assignment [2] about access control defense monitors. A
defense monitor, which runs as a user program, is similar
to a reference monitor, which is an abstract machine that
mediates all access to objects by subjects. Defense monitors
can be used to allow, deny, or change the behavior of any
set of calls. One critical aspect in creating a defense monitor
is ensuring that it cannot be bypassed. This is one of the
central concepts of computer security; successfully creating
secure code requires a security mindset.

The assignment was given to students in two separate
parts. In Part 1, students were asked to create a defense
monitor to stop a user from reading data, writing over ex-
isting data, or writing new data to the end of a file if there
was no permission to do so. This was more fine-grained
than the usual Linux permissions. Students implemented
five functions, as described in Table 1.

Function Description

setread Enable or disable reading from the file

setwrite Enable or disable writing to the file

setappend Enable or disable appending to the file

readat Read data from the file if read permission
is on

writeat Overwrite existing data if write permission
is on

Table 1: Summary of functions used in this assign-
ment

In the assignment scenario, a user might have all, some,
or none of the permissions enabled at any given time. By
default, these permissions would be disabled. The readat
function would allow the user to read data from the file if and
only if the user has read permissions. The writeat function
would allow the user to overwrite existing data if and only
if write permissions are enabled. Similarly, the user could
append new data to the file if and only if append permissions
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were enabled. Attempts to overwrite or append data when
the user does not have permissions to do so would result in
nothing being written. The assignment provided students
with an experience of thinking as a defender and reinforced
concepts of how to build a secure system.

Figure 1 shows a code snippet from the [inadequate] de-
fense monitor that was provided to the students.

def setread(self,enabled):

mycontext[’read’] = enabled

def readat(self,bytes,offset):

if not mycontext[’read’]:

raise ValueError

return self.file.readat(bytes,offset)

Figure 1: An excerpt from the example (inadequate)
defensive program students were given.

Students were asked to adhere to three design criteria
when writing their defense monitor programs:

• Precision: The security layer should only stop certain
actions from being blocked. All other actions should
be allowed even when combined with blocked actions.
For example, if a user tries to overwrite data and ap-
pend new data in the same write, and has permissions
to write, but not append, then the write should suc-
ceed and the append should fail. Thus, data would
be overwritten up to the end of the file, but nothing
would be appended.

• Efficiency: The security layer should use a minimum
number of resources so that performance is not com-
promised. The code should also avoid actions such as
re-reading a file before each write.

• Security: The attacker should not be able to circum-
vent the security layer. Hence, if any data can be writ-
ten without the corresponding permission, security will
be compromised.

In Part 2, each student wrote one or more attack programs
to circumvent the defense monitors written by others in Part
1. The second part of the assignment was not given until af-
ter all students had submitted their defense monitors, which
were then made available to the entire class. This allowed
students to view security from an attacker’s standpoint and
to think about how to trigger failures. A complete mod-
ule write-up for each part, with detailed instructions (and
instructor-only solutions), is available publicly online from
the assignment creators [2].

3.2 The Population
This assignment has been used in a dozen classes at four

different institutions. For this study, we selected the class
with the largest number of students. In Fall 2013, 75 stu-
dents completed the assignment described above for an ‘In-
troduction to Security’ course at NYU. This course is a
senior/first-year graduate level class designed for Computer
Science BS / MS students and also for Cybersecurity MS stu-
dents. All programs were written in a subset of Python [2].
The students were given one week to complete each part.

In order to make the assignments easier to complete, espe-
cially for students with no experience with Python, we gave
the students a template for a simple defense monitor that
inadequately checks for a desired security property. Stu-
dents submitted their defense monitors to complete Part 1
of the assignment. Each student submitted one monitor and
we received a total of 75 monitors. To ensure that student
monitors were free of syntax errors, all monitors were run
against an instructor-written attack test to check for valid-
ity. A total of 61 working, error-free monitors were identi-
fied. Students were strongly warned about consequences of
cheating and all submitted programs were checked for ev-
idence of cheating by examining code similarity as well as
behavioral similarity. We removed student assignments that
showed evidence of cheating, but we cannot be certain we
caught all instances.

After students completed the defensive assignment (Part
1), they were given a copy of all the students’ defensive pro-
grams and told to write attack programs that would bypass
as many defense programs as possible (constituting Part 2
of the assignment). Students were encouraged to write each
attack case as a separate file because any test that produced
incorrect results for an instructor-written defense monitor
would be discarded entirely. A total of 444 attack test files
were submitted. The attack programs were first run against
the instructor-written defense monitor to remove incorrect
attacks. All of the attack programs that printed that they
bypassed the instructor’s defense monitor were manually in-
spected and none were found to be correct. 68 students
produced viable attacks and a total of 325 viable attack files
were found. The number of attack files submitted by each
student varied from 1 to 14, with a median of 5. After care-
ful examination of the attack files, it was determined that
28 files were identical to the sample attack file that the in-
structor had given the students as a guide.

4. RESULTS AND ANALYSIS
To analyze students’ ability to attack and defend, we used

an ‘all-pairs testing’ strategy that has been shown to be
effective [10, 19, 9]. Our automated script ran each attack
test file against each defense monitor, for a total of 19,825
trials. An attack test was flagged as being successful for a
specific instance if the attack test was able to cause an error
in the defense monitor or to bypass its defense. The outcome
of each instance was recorded in a 2D matrix, which helped
us keep track of all attack/defense pairs. Below we describe
our findings and data analysis.

4.1 Were Student Submissions Unique?
The first area we explored was whether or not student

submissions were primarily unique or similar to others. For
example, did many students write defensive programs that
had the same flaws? Did submitted attack programs effec-
tively test the same flaws?

Methodology. To examine the variations in students
programs, we first looked for uniqueness in individual at-
tack tests. Two tests were considered different if there was
at least one defense monitor for which they gave different
results.

We observed that there were 150 unique tests; they had
an attack that differed from every other attack on at least
one monitor. We also looked at individual students’ work
and observed that 47 students (out of 68) had produced a
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testing pattern that was different from the rest of the class.
These results show that variations exist both in the individ-
ual programs and the collected test functionality provided by
a student’s attack programs. We also analyzed similarities
across the defense monitors. Two monitors were considered
different if they behaved differently in response to at least
one student attack test. In the 61 working monitors submit-
ted, 49 produced unique responses to the student attacks.

Conclusion. We find that student submissions for de-
fenses have a high degree of uniqueness, with about 80%
being unique. This shows that secure coding is a complex
problem and different students find different solutions.

However, we found that just over half (51%) of the attack
programs were unique. We think the reason for a lower num-
ber of unique test cases was due to two factors. First, stu-
dents were encouraged to submit individual, separate tests
for small cases. Thus, many students may have decided to
just submit the same basic test provided by the instructor.
(In fact, dozens of students submitted one of the trivial ex-
ample programs we had provided on the assignment sheet.)
Second, there were many more attack programs than defense
monitors, with most students (90%) submitting multiple at-
tack programs. Since there were 325 attack programs, there
was a higher chance of non-uniqueness. We note that 78%
of all students had at least one unique test in their sub-
missions. These factors are evidence that attack programs
submitted by students are also very unique.

4.2 Do Multiple Attacks Benefit Performance?
Given that most students wrote several unique attack pro-

grams, it is natural to ask what we can learn from their
submissions. We investigated to see if there was a common
pattern that would suggest which students benefitted from
multiple attack submissions and which ones did not. We
also explored the more specific question of whether the total
number of submissions was correlated with attack effective-
ness.

Methodology. To examine the possible benefit of writ-
ing multiple attack cases, we first measured the quality of
student attacks by defining a Student Attack Quality (SAQ
score) as a student’s overall ability to attack all monitors.
For students who submitted more than one attack file, a
student’s effort was considered a successful attack against
a monitor if at least one of her/his attack files was able to
break that particular monitor. The overall SAQ score for
the student was then calculated as the sum of all successful
attacks divided by the total number of monitors. Using this
data, we were able to look at whether students who wrote
more tests did better. Figure 2 summarizes, in one graph,
the results of our analysis. In this graph, students are sorted
according to the number of tests that they wrote (secondary
y-axis), and within each category students are sorted ac-
cording to their overall SAQ score (primary y-axis). We can
see that there was a wide range in SAQ scores–from 23% to
92%. This shows a wide range in testing skills and strate-
gies. Also, students who wrote between four and six tests
had the highest overall SAQ scores. We found that there
was a weak correlation between the number of tests and
SAQ score (correlation of r = 0.63, data not shown).

We next looked at how individual tests contributed to a
student’s overall SAQ score. We wanted to know whether
students partitioned the attack space into equal parts and
wrote an attack for each part or whether they had one attack

Figure 2: Students’ quality of attack versus number
of tests submitted. X-axis represents students who
submitted at least one attack program. Left y-axis
represents the SAQ score for each student and the
right y-axis represents the number of tests submit-
ted by each student.

script that accounted for most of their total, but added ad-
ditional scripts that played only a minor role. This analysis
is captured in Figure 3, which compares a student’s overall
SAQ score with the maximum score for a single script for
that particular student.

Figure 3: The benefit of having multiple attack tests.
The overall SAQ score (blue bar) and max SAQ
scores on a single test (red bar) are plotted for all
68 students. Students are sorted on the x-axis by
the number of tests per student.

Conclusion. We can see from Figure 3 that the maxi-
mum score is usually very close to the overall score, suggest-
ing that students wrote one script that accounted for most
of their points. At first glance, this seems to be at odds
with the first result that students who wrote more tests did
better. However, there are two different types of attacks
that students wrote: those that focused on specific types of
errors, and those that focused on a particular feature or ca-
pability addressed by the monitor. The former turned out
to be much more powerful for finding vulnerabilities. For
example, if the monitor made the implicit assumption that
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only one file would be open at a time, it was very likely
to have a bug that would be triggered by opening multiple
files. Writing an attack script to trigger this bug worked
for a large number of monitors. It seems that students who
had this realization were also thorough and checked sev-
eral features of the monitor, e.g., whether it handled read
permissions correctly, whether it handled write permissions
correctly, etc.

4.3 What Accounts For The Difference Between
Max and Overall SAQ?

We explored the source of the differential between maxi-
mum (max) and overall SAQ scores in student attacks. We
first studied whether the diversity of attack programs might
contribute to students’ low differential between max and
overall SAQ scores before zeroing in on a primary reason.

Methodology. The class instructor looked through the
attacks written by the 10 students with the highest differ-
ence between their max and overall SAQ scores (and thus
benefited the most from additional tests) and the 10 stu-
dents who had the lowest difference between their max and
overall SAQ (who received no benefit from additional tests).
Without knowing which were which, the instructor tried to
rate the level of diversity in the student attack programs.
For example, submitted attack programs that used different
calls/permissions patterns were considered diverse because
they would be likely to touch different code paths in de-
fense monitors. (The detailed results of this categorization
are omitted for space reasons.) 18 of the submissions were
rated to have a reasonable degree of diversity (all 10 with
the highest differential were in this category.)

Conclusion. Students who did well wrote diverse tests
(as one may expect). However, many students who exhibited
no benefit from any additional tests also wrote diverse tests.
We concluded that diversity was not sufficient to determine
whether additional attacks were useful.

With further investigation, we identified the main con-
tributing factor to be when a student wrote a multi-file at-
tack program and did not generate other attacks of high
quality. In our data set, some students wrote a defense mon-
itor that incorrectly placed information about permissions in
the global scope instead of treating them as a per-file prop-
erty. In our pool of student defenses, those defenses that did
correctly scope the permissions data to a file instance also
did not contain simple mistakes in the monitor. Thus the
understanding of how to appropriately scope variables was
an indicator of student ability to write reasonably error free
code for the remainder of the assignment.

4.4 Are Attack/Defense Abilities Correlated?
Another question to emerge from our work is to what ex-

tent attack and defense abilities are correlated. For example,
does skill in one indicate skill in the other?

Methodology.
We compared attack ability with student defense ability.

We first defined Defense against Attack Quality (DAQ score)
as the measure of a defense monitor’s resistance against stu-
dents’ attack programs. The DAQ score for a defense mon-
itor was calculated as the ratio of the number of students
who were not successful in attacking a particular monitor
divided by the total number of students who had viable at-
tack programs (68 in our case). The SAQ scores were then
plotted against DAQ scores, as shown in Figure 4. We la-

Figure 4: Quality of attack as a function of quality
of defense. Blue circles indicate students who are
able to break their own monitors and red x’s indi-
cate students who are not able to bypass their own
monitors.

beled the student points on this graph based upon whether
the student submitted an attack that could bypass their own
defense monitor.

Conclusion. Our observations here bring us back to the
security mindset to reveal something that was not clear at
first. The security mindset requires the ability to trigger
failure modes, but when it comes to secure coding, it also
requires an ability to recognize and reflect on assumptions.
There were a number of students who were able to attack
other reference monitors, and they seem to have a part of
the security mindset, but only some of them were able to
draw on that mindset to write secure programs. Moreover,
we saw that students who were able to attack their own
defense monitors were the least skilled at applying the se-
curity mindset in general and that their attacks were also
the weakest. A stronger measure of the security mindset is
whether one can write secure code.

Our findings show that students’ defensive ability is in-
dicative of their ability to attack. Having the ability to de-
fend entails being able to consider, and handle, possible at-
tacks. However, attack ability is not indicative of talent with
defense. Thus, a student may be a capable attacker, yet
not be able to write defensive programs. We plan to further
investigate this point in future work.

We also found that students who were able to break their
own defensive programs typically wrote very poor defensive
programs. One might be tempted to conclude that a stu-
dent’s ability to self-attack may serve as a meter of their
abilities. However, since students are given each other’s de-
fensive programs to examine when writing attacks, their ob-
servations of other students’ defensive programs may bias
the findings.

5. CONCLUSIONS AND FUTURE WORK
We have examined the effect of teaching the security mind-

set by analyzing students’ writing of attack and defense
monitors. In our study, both students’ defense and attack
programs showed a high degree of uniqueness. This stands
in contrast to observations that students tend to write test
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codes similar to their classmates when they are testing their
own code. However, diversity alone does not guarantee at-
tack test quality. In addition, we found that students who
wrote good defense monitors also wrote good attack tests.
These results suggest that the defense monitor exercise that
we used, and similar strategies, could be useful in improving
the quality of tests that students write. However, our exper-
iments do not prove causation. In the future we would like
to analyze whether there is a causal relationship. Another
question that we would like to test using our quantitative
framework is whether students who have written one de-
fense monitor do better when writing another one that has
significantly different content.

The assignment we used is not the only way to teach the
security mindset, and that opens up the possibility that
there may be other exercises that would improve testing
and secure coding skills. In future work we intend to ex-
plore similar assignments in lower level classes. We also
hope to perform a follow up study where we examine how
student attack and defense abilities carry over in classes that
specialize in these topics.
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