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ABSTRACT

Prior work has shown that extremely small code patterns, such as

the conditional operator and implicit type conversion, can cause

considerable misunderstanding in programmers. Until now, the real

world impact of these patterns ś known as ‘atoms of confusion’ ś

was only speculative. This work uses a corpus of 14 of the most pop-

ular and inluential open source C and C++ projects to measure the

prevalence and signiicance of these small confusing patterns. Our

results show that the 15 known types of confusing micro patterns

occur millions of times in programs like the Linux kernel and GCC,

appearing on average once every 23 lines. We show there is a strong

correlation between these confusing patterns and bug-ix commits

as well as a tendency for confusing patterns to be commented. We

also explore patterns at the project level showing the rate of secu-

rity vulnerabilities is higher in projects with more atoms. Finally,

we examine real code examples containing these atoms, including

ones that were used to ind and ix bugs in our corpus. In total this

work demonstrates that beyond simple misunderstanding in the lab

setting, atoms of confusion are both prevalent ś occurring often in

real projects, and meaningful ś being removed by bug-ix commits

at an elevated rate.
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1 INTRODUCTION

The development of structured programming was designed to

bridge the gap between machine instructions easily executable

by computers, and natural language well-understood by humans.
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As with natural language, however, humans are apt to misinterpret

certain programming language constructs. This misunderstanding

can be at the level of the algorithm, or the functional requirements

of the product. Sometimes, though, these errors come as a result of

misunderstanding at the level of the syntax and semantics of the

language itself.

Recently, there has been an investigation into the human factors

of code comprehension, showing that minimally small patterns in

code can and do confuse programmers [13]. These tiny, confusing

patterns, known as atoms of confusion ś ‘atoms’ for short ś have

had several rounds of human subject experiments to demonstrate

their ability to cause programmers to misunderstand code. Based

on this evidence, we theorized that if certain code is known to

confuse programmers, it would be likely to cause or permit bugs as

well. In this work we illustrate the relationship between atoms and

buggy code across several dimensions. From bug ixes, to trends

across projects, to source-level predictors of bugs, we demonstrate

that atoms are just as problematic in large projects as they are to

individual programmers.

In this work, we show that atoms of confusion are:

• Prevalent: There are over 3.6 million atoms in 14 popular

open source C/C++ projects and 4.38% of lines have an atom.

• Buggy: Bug-ix commits are 1.25x more likely to remove

atoms than other commits in GCC. At the project level, code-

bases with more atoms are more likely to have more security

vulnerabilities and bugs by domain. Moreover, our team

found and ixed multiple previously unrecognized bugs in

the Linux kernel caused by atoms of confusion.

• Confusing: Atoms of confusion are 1.13x more likely to be

commented than other code. Defect-free code containing

atoms has proven to be very diicult to understand even if

you are familiar with the concepts.

Our work forms a comprehensive picture of the role of atoms in

popular open source C/C++ projects. From macro-level statistics, to

individual confusing examples, we illustrate where and how atoms

of confusion interact with widely-used software projects.

2 ATOMS OF CONFUSION

Gopstein, et al. [13] recently introduced the ‘atom of confusion’, the

smallest code pattern that can reliably cause misunderstanding in a

programmer. The foundation of the paper is the idea that program-

mers don’t always think code works the same way a computer does,

and that this misunderstanding is measurable. The group deines

‘confusion’ as what happens when a programmer, presented with

a deterministic and syntactically/semantically valid piece of code,

believes the output of the code is diferent from the output given by

a computer. Based on this concept, the investigation pursued the

smallest possible pieces of code that can be measured in this way.

https://doi.org/10.1145/3196398.3196432
https://doi.org/10.1145/3196398.3196432
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Table 1: Previously Identiied Atoms of Confusion

Atom Name Efect Size Atom Example Transformed

Literal Encoding 0.63 printf("%d",013) printf("%d",11)

Preprocessor in Statement 0.54 int V1 = 1

#define M1 1

+ 1;

#define M1 1

int V1 = 1 + 1;

Macro Operator Precedence 0.53 #define M1 64-1

2*M1

2*64-1

Assignment as Value 0.52 V1 = V2 = 3; V2 = 3;

V1 = V2;

Logic as Control Flow 0.48 V1 && F2(); if (V1) F2();

Post-Increment 0.45 V1 = V2++; V1 = V2;

V2 += 1;

Type Conversion 0.42 (double)(3/2) trunc(3.0/2.0)

Reversed Subscript 0.40 1["abc"] "abc"[1]

Conditional Operator 0.36 V2 = (V1==3)?2:V2; if (V1==3) V2=2;

Operator Precedence 0.33 0 && 1 || 2 (0 && 1) || 2

Comma Operator 0.30 V3 = (V1 += 1, V1) V1 += 1;

V3 = V1;

Pre-Increment 0.28 V1 = ++V2; V2 += 1;

V1 = V2;

Implicit Predicate 0.24 if (4 % 2) if (4 % 2 != 0)

Repurposed Variable 0.22 argc = 7; int V1 = 7;

Omitted Curly Brace 0.22 if(V) F(); G(); if(V){F();}G();

The group surveyed known confusing programs published by

the International Obfuscated C Code Contest (IOCCC) [26] for min-

imal, potentially confusing recurring patterns. From the corpus of

IOCCC winning programs, Gopstein, et al. identiied 19 potentially

confusing patterns. They then designed and ran an experiment

in order to validate whether the patterns did in fact cause misun-

derstanding in programmers. Each minimal pattern was inserted

into a small (4 SLOC average) program and juxtaposed against a

functionally equivalent small program which replaced the pattern

in question with a piece of code hypothesized to be less confusing.

An example obfuscated/simpliied pair is shown below:

void main() {
char V1 = 2["qwert"];
printf("%c\n", V1);

}
Obfuscated

void main() {
char V1 = "qwert"[2];
printf("%c\n", V1);

}
Simpliied

Each of these code pairs were used as questions in a human

subject experiment with 73 participants. Each subject was asked

to hand evaluate each program, reporting their belief about the

standard output of each program. By measuring the diference

between how often subjects correctly answered programs with

suspected confusing patterns versus how often subjects correctly

answered programs with the suspected confusing patterns removed,

the researchers were able to quantitatively measure how confusing

each pattern was relative to baseline code.

Of the 19 potentially confusing patterns tested, 15 were con-

irmed to be statistically signiicantly more confusing than their

simpliied counterparts, and thus accepted as atoms of confusion.

These 15 veriied atoms of confusion are summarized in Table 1.

The column labeled łEfect Sizež denotes how much more misun-

derstood the atom was compared to its transformed pair. The value

shown is the φ (phi) coeicient used in conjunction with chi-square-

based statistical tests. A value of 0.5 indicates a ‘high’ efect size,

and 0.1 a ‘low’ one [10].

In the context of slightly longer programs (between 14-84 LOC)

Gopstein, et al. demonstrated that atoms of confusion can be re-

moved from obfuscated code to reduce misunderstanding. Atoms

of confusion were also associated with secondary negative efects,

as well. Subjects were observed to give up more often and write

less output while evaluating programs with more atoms.

The 15 known atoms of confusion comprise the focus of our study

in this paper. Each pattern was already empirically demonstrated

to cause misunderstanding in programmers in a lab setting. Our

work measures the impact of these patterns on real world projects.

3 METHODS

All of our experiments are based on inding examples of atoms of

confusion in software projects. These atoms exist in both syntax

and semantics as well as in the imaginations of our participants.

Consequently, we searched using a hybrid technique of parsing

and semantic analysis of source code, informed by the results of

Gopstein, et al. [13].

3.1 Analysis Tools

Prior work laid out concrete examples of confusing patterns, namely

the code snippets developed for the Existence Study in Gopstein, et

al.. Our work necessarily needed to generalize from those examples

to the underlying rules that deine individual atoms of confusion.

From these generalizations we wrote a series of ‘classiiers’ ś func-

tions that use heuristics to determine whether speciied code is an

atom of confusion. These classiiers are then used by several higher-

level functions which help us ask questions about the context and

usage of atoms of confusion.

We searched for atoms in the portion of the abstract syntax tree

(AST) which is visible in the source (e.g. we do not search parts of

the tree generated by the preprocessor). We also search code that

doesn’t directly result in AST nodes (e.g. preprocessor directive

deinitions). We call this slightly modiied version of the AST the

‘human-visible AST’, as it is meant to replicate what a programmer

can see directly when reading a program.

Speciically, there are two types of code that we treated difer-

ently than trivially searching the AST. First, we parse and search

macro deinition bodies, where possible. Not every macro body is a

stand-alone expression or statement which can be parsed, but in

situations where we could infer the contents of a macro deinition,

we parsed it and looked for atoms. We reason that atoms are a result

of human misperception of code text. Even though macro bodies

don’t on their own correspond to an AST (e.g. a macro body which

is never expanded), there is still potential for confusion. Conversely,

we do not search for non-macro atoms that are wholly contained in

macro expansions. Macros are often used to generate large portions

of repetitive code (analogous to how procedures are often used),

and to count atom occurrences in these expansions would redun-

dantly measure atoms for every macro expansion. Our guiding rule

in these decisions was to parse and analyze any piece of code that

is directly visible to the programmer in the source code, regardless

of the actual AST that eventually gets built by the compiler.
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Many of our analyses deal with rates of atoms, rather than raw

counts so that project size is not a factor. In these cases we talk

about the proportion of a program containing the relevant pattern,

out of all the human-visible AST nodes. For example, the expression

x = y++ parses into a tree with 6 nodes: (= (id x) (++ (id y)).

Of these 6 nodes, one is a Post-Increment atom, therefore the ‘atom

rate’ is 1
6 or 0.166.

We use the Eclipse CDT [11] library to parse C/C++ code. CDT

does very well on large codebases, as well as ofering partial compi-

lation in situations where it doesn’t have enough build information

to do a perfect job. This lets us make inferences over the vast ma-

jority of large projects, without having to eliminate entire iles that

have a single compiler-speciic feature.

Our classiiers are written in Clojure. Using Clojure allows us

to interact with the entire ecosystem of JVM (Java Virtual Ma-

chine) libraries and utilities while still writing interactive, high-

level, maintainable code. In this context, some classiiers are trivial

to implement. For example Comma Operator atom is detected by:

(defn comma-operator-atom? [node]

(instance? IASTExpressionList node))

Other atoms are more nuanced. A more typical classiier is the

Reversed Subscript classiier below:

(defn basic-expr-type? [node]

(let [expr-type (.getExpressionType node)]

(or (instance? IBasicType expr-type)

(and (instance? IQualifierType expr-type)

(instance? IBasicType (.getType expr-type))))))

(defn reversed-subscript-atom? [node]

(let [[expr1 expr2] (children node)]

(and (instance? IASTArraySubscriptExpression node)

(basic-expr-type? expr1)

(not (basic-expr-type? expr2)))))

The most intricate heuristic, Macro Operator Precedence, is just

under 300 SLOC. It must parse both the deinition and expansion of

each macro and compare the inferred structure of both ASTs. The

median length classiier,Omitted Curly Brace, is 32 SLOC. The classi-

ier source is available at https://github.com/dgopstein/atom-inder/

tree/master/src/atom_inder/classiier

3.2 Corpus

We searched for atoms in several large and signiicant open-source

C/C++ projects. Our projects were selected based on 3 criteria:

• Signiicance - The project has impacted the computer science

community, or the world in general.

• Popularity - The project currently has wide-scale adoption

in its domain.

• Development - The project has undergone signiicant engi-

neering since its initial deployment.

Candidates for our corpus were sourced from the US DOD FOSS

GRAS (United States Department of Defense Free and Open Source

Software Generally Recognized as Safe) list [5] and The IDA Open

Source Migration Guidelines from the European Commission [15].

Substitutions were made for projects with waning popularity, e.g.

our inclusion of Git and Subversion instead of the widely cited

Table 2: Source repositories analyzed in this work

Project Domain Creation KLOC Revision

Linux Operating System 1991 22641 f341578

FreeBSD Operating System 1993 20496 c2b6ea8

Gecko Browser Renderer 1998 15170 dd47bee

WebKit Browser Renderer 2001 8216 e8c7320

GCC Compiler Suite 1988 5488 2201c33

Clang Compiler Suite 2007 2001 2bcd2d0

MongoDB Database 2007 3872 67f735e

MySQL Database 2000 2990 0138556

Subversion Version Control 2000 720 0a73cab

Git Version Control 2005 253 ba78f39

Emacs Text Editor 1985 484 cb73c70

Vim Text Editor 1991 459 6ce6504

Httpd Webserver 1996 637 6fe2348

Nginx Webserver 2002 187 9cb9ce7

CVS relect the rapidly shifting trends in Version Control Systems

[1, 32]. Each project was paired with another in its same application

domain so that we could perform basic comparisons by application

type. In the end we settled on 14 projects selected in pairs from 7

diverse application domains. Snapshots were taken of each project

in late 2017 at the revision listed in Table 2. These projects span in

creation date from 1985 (Emacs) to 2007 (MongoDB). They range in

size from 187 KLOC (Nginx) to 22,640 KLOC (Linux). Together they

form a diverse and representative sample of signiicant, popular,

modern projects in the open source software community.

4 RESULTS

Gopstein, et al. [13] addressed the human side of atoms of confusion,

demonstrating that small patterns can indeed be very confusing.

What that paper did not show was the degree to which those pat-

terns actually occurred naturally. We take a two pronged approach

to investigating the role of atoms of confusion in software projects.

First we contextualize each of the atoms by measuring their usage

and prevalence in our corpus. Secondly we correlate these occur-

rences with external factors signiicant to the software engineering

ecosystem, like bugs and comment rates. This approach allows us

to understand both the ‘where’ and the ‘why it matters’ of atoms.

We explore the nature of atoms of confusion in popular software

projects through the following research questions (RQs):

• How often are atoms used in real software?

• Do atoms occurwith diferent frequency in diferent projects?

• Does project age inluence the rate of atoms?

• Are atoms removed more often in bug-ix commits?

• Do projects with more atoms also have more bugs?

• Does prevalence correlate with amount of confusion?

• Are atoms commented more often than other code?

4.1 Prevalence

We’ll irst provide an overview of atoms of confusion in the wild.

Which atoms are most common, where they appear most often,

how they’ve changed over time. Prior to this study, the prevalence

of atoms in the łreal worldž was unknown. There was lab-based

https://github.com/dgopstein/atom-finder/tree/master/src/atom_finder/classifier
https://github.com/dgopstein/atom-finder/tree/master/src/atom_finder/classifier
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Figure 2: The rate of individual atoms per AST node across

all projects

experimental evidence that atoms readily caused misunderstanding

in programmers when they were isolated or limited to small test

programs, but there was no indication that they even existed with

any signiicant frequency in real code. Our work shows that atoms

do exist in open source projects, appearing in many diferent kinds

of code, and occurring quite frequently in some circumstances.

4.1.1 How oten are atoms used in real sotware? Atoms of con-

fusion occur quite frequently in practice. In our corpus of 14 large

and signiicant open-source projects, atoms appeared at a rate of

1.34%, which is to say that of all human-visible AST nodes in the

software systems we observed, 1 in 75 is potentially confusing. The

numbers get more daunting on a per-line basis. Since a typical line

of source corresponds to multiple AST nodes, 1 in 23 lines in our

corpus has an atom of confusion. In total, we found over 3.6 million

atoms of confusion, with up to hundreds of thousands per project

in the larger codebases like Linux and FreeBSD.

Atoms of confusion are not a homogeneous group by any def-

inition. Instead, each pattern is unique in its syntax, semantics,

and the way it causes misunderstanding in readers. Some atoms

exist only in the preprocessor (e.g. Macro Operator Precedence),

and some are entirely semantic (e.g. Literal Encoding). Some atoms

likely occur because humans don’t parse as well as computers (e.g.

Operator Precedence) while others likely occur because diferent

programmers construct diferent narratives for the code (e.g. Re-

purposed Variable). Consequently, we performed a more nuanced

investigation that highlights each pattern separately.

Per-atom-type occurrence rates are listed in Figure 2. The most

common confusing element in use is the omission of curly braces

from if-statements, for/do/while-loops, and the occasional switch

statement. Conventionally, omitting curly braces isn’t always con-

sidered a negative pattern. In fact, the Linux kernel coding standard

encourages its use: łDo not unnecessarily use braces where a single

statement will do.ž [33]. The fact that it’s socially acceptable makes

Omitted Curly Brace so popular. Operator Precedence, the second

most common atom is also encouraged by the software engineer-

ing community. A common feature in IDEs and code formatting

tools is the option to remove łunnecessaryž parentheses, thereby

automatically adding atoms of confusion to your code for you.
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Figure 3: Atom rates (individually and combined) across

each project in our corpus

On the other end of the spectrum are infrequently used patterns.

Some, like Reversed Subscript are likely unused simply because

they provide no perceived beneit relative to more common idioms.

Relatively few people know that it’s even possible to swap the order

of the array object and the index in array subscript notation, let

alone would want to do it. In contrast, Type Conversion ś a pattern

by which an expression’s value is implicitly changed by a type

conversion ś is likely so rare because its a known antipattern that’s

actively discouraged in many style guides.

Key Takeaway: Atoms are frequent in practice, occurring once

per 23 lines, for a total of 3.6 million atoms in our corpus. Atom

types range from very obscure (Reversed Subscript - 1 in 5 million

AST nodes to very popular (Omitted Curly Brace - 1 in 167 nodes).

4.1.2 Do atoms occur with diferent frequency in diferent projects?

Given that diferent projects encourage diferent patterns (e.g. Linux

promotes the use of Omitted Curly Brace), the rates of various atoms

in diferent projects becomes important. We broke down atom us-

age in each of the projects we investigated and found that diferent

projects do use diferent atoms in diferent ways.

Figure 3a shows the overall rate with which atoms appear in

each project in our codebase. Git has the most atoms proportional

to its size, and Nginx has the fewest at nearly one quarter the rate.
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Of the 7 application domains our 14 projects fall into, when sorted

by overall atom rate 4 of the 7 domain pairs are ordered next to

each other. The odds of this happening random are low at p = 0.014

indicating that application domain has a relationship to the usage

of atoms of confusion.

Figure 3b shows each project, colored by its application domain,

and the rate at which atoms are used in its codebase. Both the

rows and the columns have been hierarchically clustered so that

projects with similar atom distributions are co-located, and atoms

that appear similarly in projects are also placed next to each other.

Atom rates are computed by inding the project with the highest

usage, and normalizing the data from each project against that

maximum. Each column illustrates a proile of each project relative

to the whole corpus, and each row shows the homogeneity of usage

of each atom from project to project.

Again there is similarity between projects of the same domain. 3

of the 7 domain pairs are put adjacent to each other when sorted

by atom similarity (p = 0.073). Linux and Git are also placed next

to each other which, despite being of diferent application domains,

were both created by Linus Torvalds and other common authors.

Git even mentions Linux conventions in its style guide [2]. Lastly,

the most neutral projects lie in the middle, with Mongo, Subversion,

and Nginx showing both fewer, and more evenly-distributed atom

usage. While it is known that code features (e.g. in service of defect

prediction) do not directly translate between projects even in the

same domain [21], it appears that atoms may be able to contribute

to models that make comparisons between diferent projects.

The ordering of the atoms is telling as well. Projects that have

Preprocessor in Statement also have Macro Operator Precedence, in-

dicating an ainity for advanced macro usage. Omitted Curly Brace

is beside Operator Precedence, which could just as easily have been

called łOmitted Parenthesesž, in either case less punctuation is used

at the expense of explicitness. The relative levels at which projects

use atoms suggest their preference for various coding styles. Some

projects prefer meta-programming to repeated code, some projects

prefer redundant punctuation to ambiguity. The measures of these

traits can show us similarities between the projects.

Key Takeaway: Similar projects tend to have similar atom

usage rates, while unrelated projects use atoms diferently. For

example, Type Conversion is very popular in compilers, but rarely

used in version control systems.

4.1.3 Does project age influence the rate of atoms?

The software industry has evolved dramatically in the past 30+

years since the oldest project in our corpus was born. In the case

of some atoms, they were encouraged due to perceived eiciency

concerns, for example Assignment as Value could be used to save

a single assembly instruction on some PDP-11 compilers [25]. In

recent years, however, maintainability has taken precedence over

performance. We’ve also simply learned which things work and

which things don’t. The C++ community, for example, has eschewed

the use of many types of preprocessor directives in favor of newer

techniques like compile-time templates, when applicable. With

these changes, its likely that atoms of confusion have changed in

usage over time.

Figure 4a plots each project’s initial commit date against its av-

erage atom rate across the project’s existence. With the notable
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Figure 4: Atom rates for each project, as a function of time.

exception of Git, there is a strong downwards correlation in the

graph. The Pearson Correlation Coeicient of the data is very mean-

ingful, at r = −0.65. As a guideline for r values Cohen [10] quotes

Ghiselli łthe practical upper limit of predictive efectiveness ... [is]

... a validity coeicient of the order of .50ž. Concretely, this means

projects created more recently have fewer atoms of confusion. The

downwards trend is sloped at -0.00040 atoms per AST-node per

year, it’s a decrease in the density of atoms year-over-year. For

two hypothetical projects, each the size of the Linux kernel, one

started in the 1990’s and one started in the 2010’s, the newer project

would have half as many atoms, over 500k fewer of these confusing

patterns than the older project.

While this trend is apparent between projects, we found no

strong evidence that an arbitrary project signiicantly alters its rate

of usage of atoms of confusion. Figure 4b shows the average rate

of change in atoms over the course of each project except Emacs.

Emacs, was removed from this plot due to parsing errors caused by

K&R-style function deinitions. The aggregate over all remaining

projects is a subtle downward trend through time. Individually

though, some projects slightly increase in atoms over time, some

reduce the rate of atoms. Efectively, a team is likely to continue

writing the same kind of code it always has, but that style is strongly

inluenced by the generation in which the project was started.

Key Takeaway: Newer projects use fewer atoms than older

projects, even though individual projects aren’t likely to dramati-

cally increase or decrease their usage of atoms.
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Figure 5: Relative rate at which atoms are removed in bug-

ix and non-bug-ix commits. An atom that appears on the

top/right-hand side of the graph is removed more often in-

side of bug-ix commits. Atoms on the bottom/left-hand side

of the graph are more likely to be removed in non-bug-ix

commits. Bar width corresponds to the total number of re-

moved atoms of each type.

4.2 Correlations

In this section we look beyond raw counts to tie atoms of confu-

sion to interesting features from both inside and outside the code.

Among others, we draw correlations between atoms of confusion

and bugs, security vulnerabilities, and comments.

4.2.1 Are atoms removed more oten in bug-fix commits? Mea-

suring the cause of bugs directly is diicult, but one of the best

proxies we have is the code that changes when a bug is ixed. Many

software projects keep bug repositories where they record reports

of incorrect behavior of their code, and keep tabs on when and how

each issue is ixed. From these repositories we can go back to the

version control histories for each bug and analyze which code was

changed to ix the problem. We infer that code removed in a bug-ix

commit is more likely to have contributed to a bug than code re-

moved in non-bug-ix commits. This categorization of commits as

containing or not containing bugs allows us to compare the rate at

which atoms are removed in bug-ixing commits vs. non-bug-ixing

commits, therefore giving us a proxy to measure whether atoms of

confusion are more likely to contribute to bugs. It is known that

bug-ix commits are inherently diferent than non-bug-ix commits,

and that bug-ix commits are not linked with bugs uniformly [4].

While solving this problem outright is diicult, we mitigate some

of the bias by comparing the ratio (rather than absolute counts) of

atoms and non-atoms within a speciic commit-type.

Due to GCC’s long history, substantial size, and meticulous bug

tracking, we selected it as an example from which to mine bug data.

We analyzed each of GCC’s commits to determine if it was a bug-ix

patch or not and aggregated statistics based on this relationship.

Throughout GCC’s history, atoms are 1.25x as likely to be re-

moved in a bug-ix commit than a non-bug-ix commit, with p <

1e−10. Figure 5 breaks down the relative likelihood for atoms to

be removed in bug-ix commits vs. non-bug-ix commits. In total 9

atoms are removed more often in bug-ix commits, 6 more often

in non-bug-ix commits. We calculate p-values for the hypothe-

sis that atoms are removed at diferent rates based on the type of

commit. Since we are testing multiple hypotheses, a Bonferroni

adjustment to the traditional critical value of α = 0.05 will set alpha

to α = 0.0033. At this newer, more conservative critical level, atoms

marked with 3 or 4 stars (*** or ****) are statistically signiicant,

leaving 5 types of atoms removed more often in bug-ix commits,

and 2 in non-bug-ix commits.

While there is no overall trend connecting atom prevalence and

removal rate, the two most common atoms (Omitted Curly Brace

and Operator Precedence) also have very similar atom-removal rates.

This observation lends further support to the idea that the two

atoms are similar in nature. In addition to having similar prevalence

rates in the entire corpus and having similar usage patterns in each

project, they also ind themselves removed at similar rates in bug-ix

commits.

The extremes of the plot show atoms which are removed (in

either type of commit) less frequently than other atoms. With the

lower sample size, comes higher variance and more extreme non-

bug-ix/bug-ix commit ratios. For example, both Reversed Subscript

and Literal Encoding were removed only 12 times in our data set.

With this small sample size, it is more probable that these atoms

reach more extreme values.

Key Takeaway: Bug-ix commits are 1.25x as likely to be

removed in bug-ix commits than non-bug-ix commits. Of the

individual types of atoms, 5 are removed signiicantly more often in

bug-ix commits, relative to 2 removed more often in non-bug-ix

commits.

4.2.2 Do projects with more atoms also have more bugs? In addi-

tion to inding correlations on the level of the AST, we hypothesized

that if atoms cause confusion, and they are used frequently, their

efect should be measurable on the project level. We measured

macro-level relationships with atoms on both security vulnerabili-

ties and bugs reports. For each project we gathered CVE (Common

Vulnerabilities and Exposures) data from the National Vulnerability

Database (NVD) [6] and bug data from each project’s respective

bug tracking repository when available. Since Git does not have a

bug tracker, we inferred the number of bugs from the number of

messages in the development mailing list, iltering for messages

containing the word łbugž. Acknowledging that not every kind

of project has the same attack surface (ways to become vulnera-

ble), we paired our data by domain, and analyzed based on those

relationships.

Figure 6 shows the relationship between each project’s rate of

atoms vs. CVEs, and atom-rate vs. bugs. In both graphs, data col-

lection was a noisy process. In Figure 6a lines between projects

that receive fewer than 1 CVE/year are dotted to denote the lower

sample sizes. Similarly, in Figure 6b Git’s line is dotted to indicate

that its lack of defect-tracker results in a somewhat arbitrary rate

of bugs in our plot.

We had hypothesized that in both graphs, for application domain

pairs, the project with more atoms per AST node would also have

more CVEs/bugs per year per AST node. This hypothesis is repre-

sented visually in Figure 6 as the number of positive-sloped lines.
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Figure 6: Projects plotted by their atom rate compared to

defects normalized by time and project size. Each project is

connected by a line to the other project in the same domain.

Dotted lines indicate questionable data.

Due to the inherent small sample size of each of these analyses

(7 total domain pairs each), statistical signiicance was not quite

achieved for either hypothesis, however only a perfect result of 7

positive slopes out of 7 would have had a p-value below the accepted

critical value of α = 0.05. In the case of CVEs, 6 of 7 domains had a

positive correlation between atoms and vulnerabilities (p = 0.063).

For bugs, 5 of 7 domains had a positive correlation between atoms

and bug reports (p = 0.23). While not an a priori hypothesis, there

is statistical signiicance if the data is combined for a total of 11

positive correlations out of 14 (p = 0.029). While the statistics do

not directly conirm our hypotheses, given the small sample size

of our observations it may be more appropriate to make do with

somewhat anecdotal evidence.

Key Takeaway: Accepting the small sample size, projects with

more atoms tend to have more CVEs and bugs by domain.

4.2.3 Does prevalence correlate with amount of confusion? Sev-

eral studies have indicated there is a relationship between how

frequently code occurs and how well programmers understand

those idioms [18, 28]. Jones demonstrates that łsoftware developer

performance is efected by the number of times language constructs

are encountered in source codež since less common operator pairs

were able to be parsed correctly less often by subjects. Ray and

Hellendoorn et al. go one step further and show that entropic (un-

common) patterns are highly correlated with bugs. In Section 4.1.1,

we showed that atoms likeOmitted Curly Brace,Operator Precedence,

and Implicit Predicate happen frequently. Gopstein, et al. showed

these same atoms have lower efect sizes (i.e. were misunderstood

less often) than the other patterns conirmed to cause confusion in

programmers. This suggests a correlation between comprehension

and usage in atoms of confusion as well.

We plot the prevalence of each atom against its measured efect

size in Figure 7. These efect sizes (which are also listed in 1) are

taken directly from the phi (φ) coeicients reported by Gopstein, et

al.. There is a strong, negative, logarithmic correlation between the

confusingness of an atom, and the atom’s prevalence in software

projects. The magnitude of the Pearson Correlation Coeicient of
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Figure 7: Comparison of confusingness with prevalence

this relationship is large, at r = −0.45. This inding helps conirm

Jones’ and Ray/Hellendoorn’s.

We cannot determine whether the relationship between confu-

sion and prevalence is causal, and if so, in what way. Perhaps pro-

grammers understand that some patterns are inherently confusing,

and avoid using them for that reason. Or maybe new programmers

only read common idioms, and never learn less frequent patterns.

There are diferent implications to the diferent regions of the

plot. The bottom left represents relatively uninteresting constructs,

patterns that aren’t very confusing and don’t occur very often

in practice. No known atoms of confusion live in that region. By

contrast, every atom is either frequently used, or very confusing.

The combination of both ś popular and confusing ś live in the

top right of the chart, and these are perhaps the most dangerous

patterns in practice. Atoms like Preprocessor in Statement, Logic as

Control Flow, and Assignment as Value are all used quite frequently

in production code, and are measured to cause a high degree of

misunderstanding in programmers.

Key Takeaway: There is a strong, negative, logarithmic corre-

lation (r = −0.45) showing that less confusing atoms are used more

often in practice.

4.2.4 Are atoms commented more oten than other code? Com-

ments, among other purposes, document the behavior of diicult

to understand code. In these scenarios we would expect the code

receiving comments to be more confusing to programmers than

the code that isn’t commented. Conversely, we would expect atoms

of confusion to be commented at a higher rate than non-atom code.

We collected every comment in our corpus and associated them

with the AST nodes that fall on the same line as partial-line com-

ments, or immediately after full-line comments. Comments at the

top level of each ile were excluded to focus only comments that

were speciically about code instead of things like legal licenses

and behavior documentation. From the remaining code-comment

associations we divided the found AST nodes into groups of atoms

and non-atoms.

Out of the 15 atomswe surveyed, 13 were found to be commented

more often than non-atom code. Each measurement was statisti-

cally signiicant, all having p-values well below 1e−10 these values

remain signiicant even after any correction for repeated measures.
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Figure 8: The rate at which atoms are commented. The yel-

low bar represents code that doesn’t contain an atom. Bar

width indicates the total number found of that type of atom.

Numbers above each bar show how often each atom is com-

mented relative to non-atoms.

In total atoms are commented 1.13x more often than non-atom code.

Again we see that the most prevalent atoms, Omitted Curly Brace

and Operator Precedence are clustered closest to non-atoms which

further supports that there’s a an inverse correlation between usage

frequency and confusingness.

Some atoms, like Preprocessor in Statement are less susceptible

to being commented at all, since comments cannot be placed on

the same line as a macro deinition. On the other end of the spec-

trum Reversed Subscript appears of-the-charts with comment rate

of 0.54, meaning that in over half of the atom’s appearances it’s

accompanied by a comment (for an example see Section 5). This is

likely only possible since the atom appears many fewer times than

any other atom.

Key Takeaway: Atoms are 1.13x more likely to be commented

than non-atoms, with uncommon atoms receiving considerably

more comments. 13 out of the 15 known atom types are commented

more often than non-atoms.

5 EXAMPLES

While collecting data for this paper, we stumbled on many inter-

esting cases that caught our attention. The analyses we already

described paint the overall picture of atoms of confusion in projects

in the wild. Individual examples, however, can help give life to those

abstract ideas. What follows is a series of usages that exemplify

some of our more interesting discoveries.

New Bugs in Linux - Macro Operator Precedence. There are some

patterns identiied in Gopstein, et al. [13] that are relatively un-

common in correct code, and their appearance strongly implies a

misunderstanding on the part of the author. Anecdotally, we found

it extremely common for examples of Macro Operator Precedence to

indicate a bug. We found (and committed a ix for) several bugs in

the Linux kernel where atoms caused clear problems. For example,

in mathematics, the absolute value function has a speciic, unam-

biguous deinition which we found incorrectly realized in multiple

places due to a mistake regarding macro parameter expansion. The

following macro was occasionally used to deine ABS in Linux:

#define ABS(x) ((x) < 0 ? (-x) : (x))

While the deinition is almost correct, the author failed to correctly

parenthesize the negative-argument branch of the conditional oper-

ator. Instead of -(x) the code has (-x)which will preix any textual

substitution with a minus sign, regardless of how it would bind. For

example the given deinition, when called as ABS(1-2), expands to:

((1-2) < 0 ? (-1-2) : (1-2)) which evaluates to -3.

But the correct expansion would be:

((1-2) < 0 ? -(1-2) : (1-2)) which evaluates to 1.

Consequently, several places in the kernel using this deinition of

ABS with a low precedence inix-expression argument would have

resulted in an incorrect result for negative values.

Old Bugs in FreeBSD - Operator Precedence, Conditional Opera-

tor, Omited Curly Braces, Implicit Predicate. Aside from bugs we

discovered based on obvious mathematical deinitions, we also sur-

veyed bugs which had already been ixed that contained an atom of

confusion. FreeBSD, for example, had a commit with the following

message which acknowledged the cause of the bug was theOperator

Precedence atom: łBitwise OR has higher precedence than ternary

conditional.ž The original code is here:

ulpmc->cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE) |

is_t4(sc) ? F_ULP_MEMIO_ORDER : F_T5_ULP_MEMIO_IMM);

And its replacement here:

uint32_t cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));

if (is_t4(sc))

cmd |= htobe32(F_ULP_MEMIO_ORDER);

else

cmd |= htobe32(F_T5_ULP_MEMIO_IMM);

ulpmc->cmd = cmd;

The commit message indicates that the intent of the original

code was to bitwise-or the result of the conditional expression and

the call to htobe32. Instead, the code used the result of htobe32 in

the condition of the ternary operator. This is precisely the type of

mistake captured in the Operator Precedence atom. What’s more,

the author didn’t simply add parentheses to ix the issue, they

replaced the conditional operator with a full if-statement. Since the

Conditional Operator is another atom of confusion, their ix actually

removes two atoms at once to resolve the issue. In a lateral move,

however, they also added an atom as well. In the if-statement used

to replace the conditional expression, the author left of the curly

braces which is itself known to increase misunderstanding.

Correct Code at the Expense of Readability - Parameterizing #im-

ports with temporary #defines. During this work, we occasionally

found ourselves confused while reading the very patterns we were

studying, despite knowing the code was correct. This is not an

uncommon occurrence, in fact GCC’s łFrequently Reported Non-

bugsž [3] ś a list of often reported ‘bugs’ that are actually user

misunderstanding ś contains many examples of atoms of confu-

sion. The implication of this phenomenon is that even perfectly

correct code should be considered dangerous if it is suiciently

diicult to understand.
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One surprisingly common pattern that fundamentally relies on

an atom of confusion is the łX-Macrož [24] idiom. The X-Macro uses

interwoven macro declarations and preprocessor inclusion to efec-

tively parameterize reusable macros at their expansion site. Below is

a representative example adapted from Gecko’s gfx/harfbuzz/src:

/* hb-shape-plan.cc */

for (unsigned int i = 0; i < HB_SHAPERS_COUNT; i++)

if (0)

;

#define HB_SHAPER_IMPLEMENT(shaper) \

else if (shapers[i].func == _hb_##shaper##_shape) \

HB_SHAPER_PLAN (shaper);

#include "hb-shaper-list.hh"

#undef HB_SHAPER_IMPLEMENT

/* hb-shaper-list.hh */

#ifdef HAVE_UNISCRIBE

HB_SHAPER_IMPLEMENT (uniscribe)

#endif

#ifdef HAVE_DIRECTWRITE

HB_SHAPER_IMPLEMENT (directwrite)

#endif

The included ile (hb-shaper-list.hh) has several calls to a

macro (HB_SHAPER_IMPLEMENT) which is not globally deined. It

is up to the including ile (hb-shape-plan.cc) to irst deine the

macro, then include hb-shaper-list.hh, so it can be used with the

custom deinition. In this particular example, the co-constructed

macros are used to build a variable number of else-if clauses. The cc

ile uses a blank if-statement to allow each of the macro-produced

else-if’s to have a uniform structure, or be omitted entirely if need

be.

The X-Macro pattern is designed tomake preprocessor codemore

reusable by adding expansion site extensibility, however it comes at

a large cost to understandability. Even though the technical beneits

are great, and there are no indications that existing X-Macro usages

are more prone to bugs, it seems likely that the resultant code is

much more likely to be misunderstood by maintainers. We have

no hard evidence about the larger pattern in general, except to say

that it is composed of at least two atoms (Preprocessor in Statement

and Macro Operator Precedence), both of which are confusing on

their own, and together likely compound.

Showing Of with Atoms - Reversed Subscript. There are people

who write confusing code speciically for the challenge. The Re-

versed Subscript atom is by far the least common atom, and would

otherwise seem to have no redeeming qualities. We did, however,

ind a handful of the atom conspicuously placed in various projects.

One such example is in FreeBSD’s crypto module. In security.c

in FreeBSD’s implementation of FTP, the developers use a Reversed

Subscript to select the data channel protection level [16]:

ret = command("PROT %c", level["CSEP"]); /*XXX :-) */

In this code, level is an int and it’s being used to select a single

character from the string "CSEP", each of which specify a diferent

protection level. The comment following the code, containing a

smiley face, suggests the author knows that this usage is poor

form, yet they do it anyway. Normally this is perhaps a cute ś but

unnecessary ś snippet, but given the nature of the code and its

signiicant security implications, intentionally adding confusing

code seems overly risky.

6 RELATED WORK

This work is situated at the intersection of many overlapping ields,

from program comprehension, to code quality metrics.

Code Smells and Antipaterns. Code smells are conceptually simi-

lar to atoms in that they are both small antipatterns in code. Atoms

of confusion tend to apply to syntax and semantics while code

smells often occur in object oriented design. This diference is a

consequence of the design of atoms of confusion. The efect of

atoms, by deinition, must be empirically measurable on human

subjects. While there have been eforts to measure the impact of

code smells on programmer efort [31], these measurements must

be done on a more macro level. As with our work, there have been

eforts to automatically detect code smells statically [27], but due

to the somewhat subjective deinition of many code smells, often

times meta-data has to be used to ind code smells in addition to

the source code itself. Developer perceptions of code smells have

been shown not to correlate with code metrics [22], this pitfall is

obviated in our work where we begin from developer performance

and ind code directly based on the outcome of that work. Khomh et

al. [20] show that antipatterns predict the degree to which classes

in object-oriented software are prone to both changes and faults.

Chatzigeorgiou & Manakos [8] look at patterns of code smells in

source repositories over time.

uality Metrics. Atoms of confusion impact how humans under-

stand code, which is also a major factor in the quality and main-

tainability of code. Complexity metrics try to measure the quality

of source code based on speciic measurable features. Classic ex-

amples are Halstead [14], McCabe [23], CK [9] (for OOP). These

metrics are all based on the underlying structure of programs, and

designed to capture semantically important concepts in the lan-

guage. Each of these foundational metrics is designed completely

around the code. Instead we’re using heuristics that have been

developed through human subject experiments to determine the

efect on the programmer, rather than just the program.

More recently Shao & Wang [30] proposed a metric based on

the cognitive weight of source code. While conceptually their work

is very important for ours, their work is only theoretical in that it

has never been validated against human subjects.

There are a sparse few experiments which have tried to experi-

mentally validate complexity metrics, however they tend to base

their measurements on developer opinion rather than objective

measures. Katzmarski & Rainer [19], for example, survey devel-

oper opinion about code quality, then relate those perceptions to

mathematical complexity models.

There are several lines of research that correlate the frequency

with which code appears and how understandable or buggy they

are. Derek M. Jones [18] shows that programmers understand oper-

ator precedence proportional to how often they are found in code.

Further, Ray & Hellendoorn et al. show that the entropy of code is

predictive of bugs. These indings are conirmed by our own in the

context of atoms of confusion.

Additionally, many of these metrics are correlated with SLOC

[17, 29]. As a micro-metric, functioning on the level of individual

AST nodes, atoms of confusion do not correlate with code size,

providing a degree of independence from other types of metrics.
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Empirical Program Comprehension. Slightly diferent from code

quality metrics are evaluations of comprehension, which focus less

on software engineering tasks, and more on the programmer. Ya-

mashita & Moonen [35] followed 6 professional developers while

adapting 4 Java systems, from these observations they generated a

taxonomy of the challenges each developer faced. Atoms of confu-

sion fall into Yamashita & Moonen’s category of łConfusion and

erroneous hypothesis generation during program comprehensionž.

Buse & Weimer [7] conducted a large scale survey of developer

opinions about source code readability and extrapolated low-level

predictors of code quality from them.

7 LIMITATIONS & THREATS TO VALIDITY

Code Parsing. We used the Eclipse CDT C/C++ library to parse

code. Additionally, we used several heuristics to parse individual

code iles, and small fragments of code outside their larger context

to mimic how humans read small pieces of code in large source

iles. This process is not technically supported by any C specii-

cation, and is largely a best-efort attempt on our behalf. For ex-

ample, we ran into issues when parsing isolated expressions like

(u16)(x), which, depending on context, can be either a cast or func-

tion application. Over our entire corpus, while compiling whole

iles, 0.58% of AST nodes were reported as unparsable by the CDT

library. Out of the ~220,000 iles we analyzed, there were 6 iles

for which CDT threw an exception and was not able to even par-

tially parse. Notably, some of the iles in GCC’s ‘torture’ test suite

threw exceptions upon compilation. One example of a diicult to

parse program is GCC’s limits-declparen.c, which initializes an

int pointer with 10,000 levels of indirection, e.g. the declaration

is equivalent to int ***(99994 asterisks)*** x;. Programs like

these were skipped after the parser threw an exception.

Atom Definitions. In Gopstein, et al. [13] researchers identiied

confusing patterns in obfuscated code, and distilled them into min-

imal questions that we could test on subjects. For each confusing

pattern, they only tested 3 concrete examples. Thus, we know cer-

tain representative examples of these patterns are confusing, and

we extrapolate from there that the entire class of pattern is confus-

ing. In doing so, we are implicitly creating formal deinitions for

these patterns which previously were only deined by example. It is

possible that the patterns we test here do not match the originally

designed atoms of confusion.

We designed our classiiers to be conservative ś we prefer false

negatives to false positives. To quantify the precision of our heuris-

tics, we subjected each classiier to validation by a member of our

team not involved in its authorship. For each atom, we validated 20

randomly selected examples of code labeled confusing. With the

exception of the Comma Operator atom, each classiier achieved

precision of 0.95 or 1 ś either 1 false positive out of 20 or none.

The lower limit of the binomial proportion conidence interval [34]

(with α = 0.05) of these results are 0.76 and 0.84, respectively, mean-

ing that of the values we report there is at most a 5% chance that our

values are inlated by more than 24%. The Comma Operator atom,

however, had 8 false positives out of 20 samples, for a 5% lower

conidence bound of 0.39. This is due to the complexities of parsing

function-like macro arguments without the macro’s deinition.

Code Difing. At irst we used mature tree-diing approaches

provided by ChangeDistiller[12] to test for the addition/removal of

atoms between versions. While the quality of the result was quite

high, we found it prohibitively slow for diing large iles. Many

source iles in our corpus have several hundred thousandAST nodes,

the largest of which, sqlite3.c has nearly a half million. Each ile

then gets difed anywhere between 100 and and 10,000 times based

on its role in our analysis. To make AST diing more tractable we

use a more naive approach that serializes ASTs and uses standard

sequence diing tools. We combine this method with the ability to

reduce the scope of difed region based on the patches provided by

version control. Together this system is orders of magnitude faster,

and only slightly less accurate.

8 CONCLUSION

More than just theoretically misunderstood patterns, atoms of con-

fusion are commonly used idioms that are predictive of bugs. We

have shown that atoms of confusion are distinct from other code

not only from a perceptual standpoint but also in how they ap-

pear, and interact with the surrounding code. Speciically, atoms of

confusion are:

• Prevalent: There are over 3.6 million atoms in 14 popular

open source C/C++ projects and 4.38% of lines have an atom.

• Buggy: Bug-ix commits are 1.25x more likely to remove

atoms than other commits in GCC. At the project level, code-

bases with more atoms are more likely to have more security

vulnerabilities and bugs by domain. Moreover, our team

found and ixed multiple previously unrecognized bugs in

the Linux kernel caused by atoms of confusion.

• Confusing: Atoms of confusion are 1.13x more likely to be

commented than other code. Defect-free code containing

atoms has proven to be very diicult to understand even if

you are familiar with the concepts.

• Unique: Each atom type has its own usage proile across

projects. Atoms are used in similar ways in similar projects,

and in diferent ways in diferent projects.

• Waning: Older projects havemore atoms than newer projects.

The most confusing atoms also tend to be used less often

than more confusing atoms.

Beyond the experimental results of this work, we also provide

important infrastructure for future development. Our codebase

provides programmatic classiiers for identifying all previously

identiied atoms of confusion. These open source classiiers enable

future researchers to build tools to aid programmers in inding

and removing atoms of confusion. Links to all our materials are

available at https://atomsofconfusion.com/2017-atom-inder.
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