
CovSBOM: Enhancing Software Bill of Materials
with Integrated Code Coverage Analysis

Yunze Zhao∗, Yuchen Zhang∗�, Dan Chacko†, Justin Cappos∗
∗New York University

†Depository Trust & Clearing Corporation

Abstract—The widespread integration of open-source software
into commercial codebases, government systems, and critical in-
frastructure presents significant security challenges, particularly
due to the inclusion of vulnerable components. Software Bills of
Materials (SBOMs) are crucial for tracking these components;
however, they lack detailed insights into the actual utilization of
each component, thereby limiting their effectiveness in vulner-
ability management. This paper introduces CovSBOM, a novel
tool that integrates code coverage analysis into SBOMs to pro-
vide enhanced transparency and facilitate precise vulnerability
detection. CovSBOM addresses the gap between current SBOM
and security scanning tools by providing detailed insights into
which parts of third-party libraries are actually being used,
thereby reducing inefficiencies and the misallocation of developer
resources caused by overemphasizing irrelevant vulnerabilities.
Through a comprehensive evaluation of 23 large-scale applica-
tions, encompassing 1,614 dependencies and 145 vulnerability
alerts, CovSBOM has demonstrated a significant reduction in
false positives, accurately identifying 105 such instances. This
improvement enhances the precision of vulnerability detection by
approximately 72%, while effectively maintaining a reasonable
level of scalability and usability.

Index Terms—SBOMs, Software Supply Chain, Security

I. INTRODUCTION

As open-source software becomes increasingly integrated
into commercial codebases, its ubiquity in software develop-
ment presents significant security challenges, highlighted by
the recent Open Source Security and Risk Analysis (OSSRA)
report by Synopsys [1]. This report reveals that 96% of audited
codebases contain open-source components, underscoring a
concerning increase in high-risk vulnerabilities since 2019.
Similarly, findings from the National Telecommunications and
Information Administration (NTIA) [2] indicate the prevalence
of outdated open-source components, compounding the diffi-
culty of managing vulnerabilities effectively.

In response, the Software Bill of Materials (SBOM) has
increasingly been recognized as an essential tool for enhancing
software security and managing risks within the software
supply chain [3]–[5]. An SBOM provides a detailed inventory
of software components, which enhances transparency and
facilitates the rapid identification and effective mitigation of
vulnerabilities. Endorsed by initiatives from the Cybersecurity
and Infrastructure Security Agency (CISA) and the National
Institute of Standards and Technology (NIST), SBOMs are
pivotal in transitioning towards a more secure and resilient
software supply chain. However, despite their ability to pro-
vide visibility into software components, SBOMs lack detailed

�Yuchen Zhang is the corresponding author

User

Application SBOM SBOM

Scanning Tool

CVE-1 (Critical)
False Positive

True PositiveCVE-2 (Medium)

Fig. 1: Overview of resource misallocation in vulnerability in-
vestigations. “False Positive” indicates vulnerability (CVE-1)
does not impact the “User Application”, while “True Positive”
applies to vulnerability (CVE-2), which does affect it.

insights into the specific usage of these components within
applications. This limitation, noted in previous research [6],
suggests that while current SBOM security tools can detect
vulnerabilities by merely comparing component versions with
existing vulnerability databases (e.g., OSV), they fail to con-
firm if an application’s actual utilization of these components
is truly impacted by the listed vulnerabilities in Common
Vulnerabilities and Exposures (CVEs). This uncertainty can
lead to inefficiencies in SBOM operations and potentially
result in the misallocation of developer resources, as illustrated
in Figure 1. This misallocation often results in either an
overemphasis on mitigating irrelevant vulnerabilities (e.g.,
CVE-1 labeled as Critical Severity) or the neglect of relevant
ones (e.g., CVE-2 labeled as Medium Severity) due to an
incomplete understanding of the component’s application-
specific use. Consequently, the primary challenge is to bridge
the information disparity between the dependency listings of
SBOMs and the specific vulnerability details from CVEs.

In this paper, we present CovSBOM, a novel tool designed to
address the critical issue of software vulnerability management
by investigating the specific code coverage of third-party
dependencies within Java applications. CovSBOM integrates
the comprehensive visibility of SBOMs with the detailed
insights from CVEs, thereby enhancing the understanding and
management of software vulnerabilities. Our focus on Java
is driven by several compelling factors. First, it ranks among
the top-three languages globally according to most recognized
metrics [7]. Second, its well-established ecosystem of third-
party dependencies, primarily managed through Maven or
Gradle, is crucial in sectors such as government, financial
services, and enterprise software systems developments. While
our choice of Java highlights its complexity and the intricate
nature of its ecosystem, making it a challenging yet insightful

228

2024 IEEE 35th International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/24/$31.00 ©2024 IEEE
DOI 10.1109/ISSRE62328.2024.00031

20
24

 IE
EE

 3
5t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

So
ftw

ar
e

R
el

ia
bi

lit
y

En
gi

ne
er

in
g

(I
SS

R
E)

 |
97

9-
8-

35
03

-5
38

8-
4/

24
/$

31
.0

0
©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
SR

E6
23

28
.2

02
4.

00
03

1

Authorized licensed use limited to: New York University. Downloaded on December 05,2024 at 20:30:53 UTC from IEEE Xplore. Restrictions apply.

target, the theoretical foundation of our tool is universal
and adaptable to other programming languages like Rust and
Golang. This adaptability ensures that our approach can be
extended to diverse programming environments, highlighting
our tool’s modularity, scalability, and maintainability.

Central to our framework are two essential components.
First, we have developed a lightweight static analyzer to
address the shortcomings of existing Java code coverage tools.
While conventional tools perform well on the main applica-
tion—specifically, the source code implemented by developers
themselves—they fall short in analyzing code coverage for im-
ported libraries. In contrast, our analyzer is explicitly tailored
for conducting an in-depth code coverage analysis of Java
third-party libraries. By providing a function as root entry,
it enables developers to achieve a detailed analysis, down
to the granularity of line coverage of all utilized third-party
libraries. We chose static analysis to ensure a conservative
approach in our evaluations, aimed at minimizing the risk
of causing false negatives. Second, the outcomes of this
analysis are integrated back into the SBOM, supporting both
CycloneDX and SPDX formats, thereby enriching its content
with precise tracking of individual function usage within third-
party libraries. This enhancement significantly bridges the gap
between the SBOMs’ overarching component inventories and
the granular vulnerability intelligence provided by CVEs. By
delivering a context-driven analysis that aligns SBOMs with
existing CVEs, our tool significantly reduces the incidence of
irrelevant vulnerability alerts, thereby focusing patching efforts
on true positive CVEs.

To assess the feasibility and utility of our tool, we con-
ducted a comprehensive evaluation of CovSBOM from multiple
dimensions. First, we collected 23 renowned open-source
Java applications, which contain 1614 dependencies and are
widely utilized in the industry. These applications have been
confirmed as integral components of infrastructure and soft-
ware ecosystems by our industry partners’ development teams.
Subsequently, we generated SBOMs for these applications
and then applied the state-of-the-art SBOM analyzing tools,
namely OWASP Dependency-Track [8], Grype [9], Vulert
Vulnerability Scanner [10], and Bomber [11], identifying 145
potential vulnerability reports with CVEs. Second, we ran
CovSBOM on each application to obtain code coverage of third-
party libraries and integrate the results back into the “External
Reference” field of the SBOM. Third, we correlated the CVEs
with our code coverage analysis to determine if the vulnerabil-
ities are true positives or not. Finally, CovSBOM identified 105
vulnerabilities that were false positives, thereby enhancing the
precision of vulnerability detection by approximately 72%.
In summary, our contributions are as follows:
▶ We designed and implemented a static analysis tool that

enhances SBOMs by integrating the application’s code cov-
erage with the dependencies or third-party libraries.

▶ We conducted an extensive evaluation of our tool. The re-
sults demonstrated that our tool can significantly reduce the
rate of false positive alerts regarding software vulnerabilities
reported by SBOM security tools.

▶ Our experimental datasets and the source code of our
tool are made publicly available in the repository at https:
//github.com/Yunzez/CovSBOM.

II. BACKGROUND AND MOTIVATION

A. Software Bills of Material

Beginning in May 2021, President Joe Biden’s executive or-
der has significantly encouraged the adoption of Software Bills
of Materials (SBOMs) among various practitioners, including
software developers, security analysts, etc. Derived from the
manufacturing sector, where a Bill of Materials (BOM) [12]
provides a comprehensive inventory of all sub-assemblies and
components within a parent assembly, the SBOM serves as
the software equivalent. It plays a crucial role in enhancing
the security of the software supply chain.

There are primarily three standard formats for SBOMs:
a) Software Package Data Exchange (SPDX) [13], an open-
source standard managed by the Linux Foundation and pri-
marily aimed at ensuring software license compliance, b)
CycloneDX [14], introduced by OWASP in 2017, which
emphasizes the security aspects of software components, and
c) Software Identification (SWID) Tagging [15], focused on
providing a transparent method for software and component
identification. Among these, SPDX and CycloneDX formats
are notably the most prevalent, while SWID Tagging, managed
by the US NIST, is less commonly used.

In this paper, we focus on both CycloneDX and SPDX
standards. Our decision is driven by their rapid development,
consistently updated specifications, and the broad range of
tooling providers that support generating SBOMs in both
formats. For clarity, Figure 2 presents a simplified segment of
the CycloneDX SBOM for Java application “Spark” [16]. This
example highlights the three main elements of the CycloneDX
standard, which are similarly adopted by SPDX:
❖ Metadata Section: provides comprehensive information

regarding the SBOM generation tool and the project context.
❖ Components Section: lists the dependencies (i.e., third-

party libraries) found in the project.
❖ Dependencies Section: provides an overview of the rela-

tionships among all listed dependencies.

B. SBOM Security Tools

The discovery of vulnerabilities, such as the Log4j [17] in
2021, highlights the complexities and challenges involved in
securing software supply chains. This incident underscores the
essential role of SBOMs and emphasizes the necessity to delve
into the specialized ecosystem of SBOM security tools.

In response to these challenges, leading SBOM security
tools such as OWASP Dependency-Track [8], Bomber [11],
Grype [9], and Vulert Vulnerability Scanner [10] are widely
used in industry. Their popularity is largely due to the open-
source or free-to-use nature, with each tool offering distinct
functionalities that enhance the vulnerability scanning process.
OWASP Dependency-Track excels in software dependency
analysis, uncovering known vulnerabilities; Grype, developed
by Anchore, is a robust vulnerability scanner designed for

229

Authorized licensed use limited to: New York University. Downloaded on December 05,2024 at 20:30:53 UTC from IEEE Xplore. Restrictions apply.

{
"bomFormat": "CycloneDX",
"specVersion": "1.x",
"metadata": {
"tools": {

"components": [{
"group": "@cyclonedx",
"name": "cdxgen",
"version": "xx.x.x",
"publisher": "OWASP Foundation"

}
]

},
"component": {

"group": "com.sparkjava",
"name": "spark-core",
"version": "2.9.4-SNAPSHOT",
"purl": "pkg:maven/.../spark-core@

2.9.4-SNAPSHOT?type=bundle",
"bom-ref": "pkg:maven/.../spark-core@

2.9.4-SNAPSHOT?type=bundle"
}

},
"components": [{

"group": "org.eclipse.jetty",
"name": "jetty-server",
"version": "9.4.48.v20220622",
"purl": "pkg:maven/jetty-server@

9.4.48.v20220622?type=jar",
"bom-ref": "pkg:maven/jetty-server@

9.4.48.v20220622?type=jar"
},

]
"dependencies": [{

"ref": "pkg:maven/.../spark-core
@2.9.4-SNAPSHOT?type=bundle",

"dependsOn": [
"pkg:maven/.../jetty-server@

9.4.48.v20220622?type=jar"
},

]
}

Fig. 2: Snippet of CycloneDX standard Software Bill of Mate-
rials (SBOM) in JSON format for the Java project “Spark [16]”

container images and filesystems; Bomber integrates secu-
rity analysis within the software development lifecycle; and
Vulert Vulnerability Scanner has extensive scanning capabili-
ties across multiple software platforms. The core functionality
of such tools is the thorough examination of SBOMs’ detailed
component listings, leveraging databases such as the Open
Source Vulnerabilities (OSV) to identify vulnerabilities. How-
ever, this approach—primarily matching component versions
with vulnerability database entries—has its own limitations.
For instance, as illustrated in Figure 2, the “Spark” project uses
“jetty-server” library, version 9.4.48.v20220622. And if
we apply this SBOM to the security tools mentioned above, all
four tools raise an alarm regarding the potential impact by the
vulnerability CVE-2023-2604. However, merely identifying
a potential vulnerability does not confirm that “Spark” is
actually at risk, highlighting the limitations of current SBOM

Applicationi Libraryj

LF1

AF1

LCC1ACC1

V1

Fig. 3: Vulnerability detection for Applicationi. AF denotes
application function, ACC represents code coverage in applica-
tion, LF indicates library function, LCC signifies code coverage
in Libraryi, and V marks the vulnerability location.

security tools in accurately assessing the real-world impact of
identified vulnerabilities on projects.

C. Motivation

Driven by the uncertainty in above mentioned Java project
“Spark”, we conducted a detailed study through manual anal-
ysis. First, we inspected the CVE in depth and confirmed that
this particular vulnerability can only be triggered by invok-
ing function “HttpServletRequest.getParameter()” or
“HttpServletRequest.getParts()” in “jetty-server”.
Second, we marked all functions defined in “jetty-server”,
but invoked by “Spark” as entry roots. We then simulated
a forward slicing analysis starting from each marked func-
tion, recursively tracing the function call paths, terminating
only when no further calls within a function were found,
thereby generating a comprehensive call graph. We opted
for manual static analysis for conservative reasons because
dynamic analysis (e.g., execution of pre-shipped unit tests)
might not capture all code coverage due to limited test scope.
In contrast, manual static analysis can start from “Spark” and
assess its reachability in “jetty-server” on the call graph.
After cross-referencing the call graph with the two vulnerable
locations, we confirmed that “Spark” does not reach either of
these functions, thereby indicating that, the vulnerability alert
raised by SBOM security tools is a false positive.

As presented in Figure 3, current SBOM security tools,
which simply map dependency utilization to CVEs, tend to
signal that Applicationi is vulnerable due to its use of LF1

from Libraryi, which is known to contain vulnerability V1.
However, our comprehensive analysis reveals that the actual
code coverage of LF1 in Libraryi does not overlap with
the identified vulnerability location V1. This discrepancy not
only highlights a critical shortfall in prevailing vulnerability
management practices but also underscores the need for a more
fine-grained approach that goes beyond mere dependency map-
ping to precisely trace how these dependencies are utilized,
particularly in relation to specific function calls. The prevalent
inaccuracies in SBOM analysis also pose significant oper-
ational challenges and complicate effective implementation.
For instance, both Red and Blue teams in the industry could
be spending considerable effort investigating false positive

230

Authorized licensed use limited to: New York University. Downloaded on December 05,2024 at 20:30:53 UTC from IEEE Xplore. Restrictions apply.

User

Application

Dependencies

Analysis

Output Coverage Analysis

Preliminary SBOMs SBOMs with Code Coverage

Construct

Dependency Graph

Collect Library Functions

 Maven

Dependency Tree

Download Library

Source Code

Download

Library Jars

Pre-Process Analyze Output

SBOM Generation Tools

Fig. 4: Overview of the CovSBOM workflow.

TABLE I: Comparison of the leading tools for code coverage
capabilities in both main applications and third-party libraries.

Tools Coverage Analysis Capability
Main Apps. Third-Party Libs.

Clover ✓ ✗
Emma ✓ ✗
JaCoCo ✓ ✗
Cobertura ✓ ✗
JCov ✓ ✗
Codecov ✓ ✗
Parasoft JTest ✓ ✗

vulnerabilities. Without the ability to accurately determine the
real impact of these vulnerabilities, organizations are forced
to adopt a conservative approach, analysing every vulnera-
bility and consequently unnecessarily allocating substantial
resources. Furthermore, these investigations are rarely shared
among teams within the same company, much less between
different companies, which further undermines the trust in
SBOMs’ capability to accurately identify vulnerabilities.

Compounding these challenges is the inadequacy of current
Java code coverage tools in analyzing code coverage within
third-party libraries. As detailed in Table I, we conduct a
survey of the prevailing Java tools for code coverage. The
findings indicate that although these tools perform well in
analyzing main application domain—primarily providing code
coverage for unit tests—they fall short in third-party library
analysis. As illustrated in Figure 3, while these tools can
verify that AF1 correlates to ACC1, they lack the capability to
establish a similar correlation between LF1 and LCC1, further
highlighting the limitation in previous security tools’ ability to
provide comprehensive and accurate vulnerability assessments.

To sum up, the existing gap in the vulnerability management
landscape within the SBOM ecosystem has motivated our re-
search and underscored the necessity for a novel tool designed
to bridge these disparities. Such a tool would provide a more

integrated and effective method for analyzing the specific use
of dependencies in relation to known vulnerabilities, thereby
enhancing the ability to make informed decisions regarding
vulnerability exposure and remediation strategies.

III. COVSBOM

To enhance the granularity of SBOMs and thereby reduce
the rate of false positive vulnerability reports from SBOM
security tools, we propose a novel tool, CovSBOM. This tool
integrates code coverage information from third-party libraries
directly into the SBOM while preserving the original structure
and specifications to ensure compatibility with existing vulner-
ability scanning tools.

The workflow of CovSBOM is shown in Figure 4. Users may
generate an SBOM using their preferred tools in either SPDX
or CycloneDX format. Concurrently, users can utilize our tool
to perform preliminary processing of the target application,
which includes collecting dependencies and constructing de-
pendency graph. Subsequently, our process involves identify-
ing the library functions—specifically, those defined in third-
party libraries. Next, all collected data is analyzed by our
lightweight static analyzer to provide detailed code coverage
analysis. Finally, the coverage information is integrated back
into the generated SBOM. In the rest of this section, we
elaborate on the designs of our tool.

A. Collect Dependencies

Since CovSBOM employs static analysis techniques to an-
alyze dependencies, obtaining the source code for each de-
pendency is necessary. Our analyzer, which partially utilizes
JavaParser [18], a library designed to parse and navigate
Java code, also requires JAR files for comprehensive analy-
sis. To facilitate this, we use Maven commands, specifically
“mvn dependency:sources”, to download the necessary
JAR files for dependencies. Once downloaded, these files
are then automatically decompressed to extract the source

231

Authorized licensed use limited to: New York University. Downloaded on December 05,2024 at 20:30:53 UTC from IEEE Xplore. Restrictions apply.

A

B E

F

G

C

D

Possible Call Paths:

Path-1: A -> B -> E -> F

Path-2: A -> B -> E -> C

Path-3: A -> C -> F -> G

Path-4: A -> C -> E -> B

Path-5: A -> D -> G -> F

Path-6: A -> D -> G -> C

.
.

.

Fig. 5: Simplified dependency graph constructed by CovSBOM

code. Additionally, to align with the original SBOMs, the
dependencies we collect must exactly match those listed in
the SBOM. To achieve this, we follow the approach used
by SBOM generation tools, which leverage another Maven
command “mvn dependency:tree”, to obtain the full
list of dependencies in a tree-like structure. This command
generates a dependency tree of the target application, showing
relationships as depicted in Figure 5, such as (A→B→E), where
A is the target application using B as a dependency, which in
turn uses E. However, this tree structure does not effectively
reveal subsequent layers of dependencies relationship, such as
when E uses C, indicating the tree’s inability to represent the
full dependency relationships.

To overcome these limitations, CovSBOM constructs its own
dependency graph, where each node in the graph represents a
dependency. Unlike the misleadingly simple hierarchical struc-
ture implied by the term “Dependency Tree”, dependencies
within a project exhibit a complex graph structure. This com-
plexity arises from the interconnected nature of dependencies,
where a sub-dependency may be common across multiple
modules, or dependencies may be interdependent, forming a
dense network. As shown in Figure 5, our graph can represent
all potential call paths and further dependency relationships,
such as (A→B→E→C), which a traditional dependency tree
cannot accommodate due to its hierarchical nature.

Furthermore, we introduce the concepts of direct and tran-
sitive dependencies; for example, B is a direct dependency
of A, while E is a transitive dependency. However, from B’s
perspective, E represents a direct dependency and C is a
transitive dependency. Thus, the role of each dependency may
change over time and depends on the specific dependency
being analyzed. These concepts play a crucial role in our
analysis and will be further discussed in §III-C. Additionally,
it is important to note that while this study primarily utilizes
Maven, the approach is equally applicable to projects managed
with Gradle, due to their similar structures in dependency
management. The primary distinction between them lies in
the specific build commands utilized.

B. Collect Library Functions

After the preprocessing phase, we have successfully col-
lected all the JAR files for the direct and transitive depen-
dencies used by the target application. This setup prepares

1 public class ApplicationA {
2 public static void main(String[] args) {
3 DependencyB.func_x();
4 func_m();
5 }
6 public static void func_m() {
7 System.out.println("func_m from A.");
8 }
9 }
10 --
11 public class DependencyB {
12 public static void func_x() {
13 DependencyE.func_y();
14 // Call internel function func_z
15 func_z();
16 }
17 public static void func_z() {
18 System.out.println("func_z from B.");
19 }
20 }
21 --
22 public class DependencyE {
23 public static void func_y() {
24 // Call external function func_h from C
25 DependencyC.func_h();
26 }
27 }
28 --
29 public class DependencyC {
30 public static void func_h() {
31 System.out.println("func_h from C.");
32 }
33 }

Fig. 6: Java code snippet to present Path-2 (A→B→E→C)
from Figure 5.

CovSBOM to focus on identifying library functions—those de-
fined and implemented within third-party libraries. We collect
these library functions, which serve as the entry points to
direct dependencies, enabling us to further analyze transitive
dependencies.

To effectively distinguish between library (i.e., external)
and internal functions, we first use JavaParser to convert the
target program’s source code into an Abstract Syntax Tree
(AST) by analyzing all collected JAR files. Subsequently, we
construct a HashMap where each function is mapped to its
declaring type—the class or interface that originally defines
the function. As we navigate through the AST, we inspect
each function’s declaration node to retrieve its declaring type.
During this iteration, we conduct further analysis on each
function’s declaring type to determine its scope. Functions
identified as internal—indicating that they belong to the target
application—are skipped, while external functions are added
to the HashMap along with their declaring types.

Consider the example shown in Figure 6, where our target
application is A, and it utilizes B as a dependency. During the
analysis, CovSBOM will recognize function “func x” at line
3 as an external library function from the dependency B, and
will add the pair (i.e., function and its declaring type) to the
HashMap. Conversely, when encountering function “func m”

232

Authorized licensed use limited to: New York University. Downloaded on December 05,2024 at 20:30:53 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: EXHAUSTIVE DEPENDENCY RESOLUTION

1 Initialize: LoadingBuffer = new HashMap();
2 Initialize: DoneBuffer = new HashMap();
3 Procedure ResolveDependencies(pair):
4 CalleePair = JavaParserAnalysis(pair);
5 if CalleePair exists then
6 if CalleePair.scope is external then
7 LoadingBuffer.add(CalleePair);
8 J .append(pair.declaring type.coverage);
9 DoneBuffer.add(pair);

10 LoadingBuffer.remove(pair);
11 end
12 if CalleePair.scope is internal then
13 J .append(pair.declaring type.coverage);
14 DoneBuffer.add(pair);
15 LoadingBuffer.remove(pair);

/* Recursively analyze the callee pair */
16 ResolveDependencies(CalleePair);
17 end
18 end
19 return;
20 Algorithm:

input : HashMap of library functions M
output : Analysis results in JSON J

21 for Each pair in M do
22 LoadingBuffer.add(pair);
23 end
24 while LoadingBuffer not empty do
25 for each pair in LoadingBuffer do

/* To avoid infinite loops in call path */
26 if pair not in DoneBuffer then
27 ResolveDependencies(pair);
28 end
29 end
30 end
31 return J ;

at line 4, CovSBOM identifies this function as an internal
function because its declaring type is found within the target
application A at line 6, and therefore excludes it from further
analysis. By the end of this iterative process through the AST
of application A, the HashMap contains only the desired library
functions, preparing it for further use in the next phase.

C. Dependency Analysis

Following the identification of library function calls within
the target program, the next phase involves analyzing the code
coverage of dependencies using these functions as root entry
points. This step employs a lightweight static analyzer that
incorporates our proposed algorithm, Exhaustive Dependency
Resolution (EDR), as represented in algorithm 1, which forms
the core of CovSBOM. During the analysis, dependencies are
categorized into two types, as introduced in §III-A: direct and
transitive. Direct dependencies are those libraries with which
the program directly interacts, while transitive dependencies
are those that interact indirectly. This distinction is essential
to our algorithm, since it utilizes recursion to analyze direct
dependencies first. Due to the graph nature of dependency
relationships, once direct dependencies are resolved, transitive
dependencies will be treated as direct dependencies. This pro-

cess will recursively continues until no further dependencies
remain, ensuring a comprehensive and efficient analysis of all
dependencies.

Before initiating CovSBOM’s analyzer, we will first initialize
two HashMaps for each node in the constructed dependency
graph: LoadingBuffer to store functions pending analysis,
and DoneBuffer to keep track of functions that have been ana-
lyzed, pairing each function with its declaring type (Line 1-2).
The analysis process starts by iterating through the library
functions HashMap anding add each function-declaring type
pair into the corresponding LoadingBuffer (Line 21-23).

The analysis proceeds in a “while” loop as long as the
LoadingBuffer is not empty, ensuring an exhaustive analysis
(Line 24-30). Within each loop iteration, we first ensure the
current pair is not already in the DoneBuffer to avoid re-
dundant processing and prevent falling into infinite loops (Line
26). The analysis then resolves each pair’s code coverage by
calling ResolveDependencies (Line 27).

The resolver then utilizes the JavaParser to obtain the
CalleePair—still comprising the function and its declaring
type (Line 4). If the CalleePair exists, indicating potential
for further analysis, we check the function’s scope (i.e, Exter-
nal or Internal). If external, it is be added to the corresponding
LoadingBuffer based on its declaring type. Concurrently,
the code coverage information (i.e., lines of code covered)
for the current function is appended to the final result, and
the pair is then added to the DoneBuffer, and removed
from the LoadingBuffer (Lines 8-10). If the function in
the CalleePair is internal, its code coverage is directly
appended. The CalleePair is then moved to the DoneBuffer
and removed from the LoadingBuffer. The CalleePair will
be recursively analyzed by ResolveDependencies until no
further CalleePair can be found (Lines 13-16).

To better illustrate the EDR algorithm and demonstrate
how CovSBOM’s static analyzer works, consider the example
presented in Figure 6, where the call path is (A→B→E→C).
Initially, CovSBOM creates two HashMaps, LoadingBuffer
and DoneBuffer, for each dependency—B, E, and C. It
then starts analyzing application A, classifying “func x” at
line 3 as an external function from B and adding it to the
library function HashMap. Conversely, “func m” at line 4 is
identified as an internal function and is thus discarded.

The analysis then proceeds by iterating through the library
function HashMap. Upon encountering “func x”, it is placed
into B’s LoadingBuffer. The “while” loop will be triggered
due to B’s LoadingBuffer not being empty, prompting the
analysis of “func x” within B. This analysis reveals “func y”
at line 13 as an external function from dependency E, which
is then added to E’s LoadingBuffer. Meanwhile, “func z”
at line 15 is recognized as internal function; its code coverage
is analyzed and appended to the final result JSON file, along
with the coverage of “func x”, which is then added to the
DoneBuffer and removed from the LoadingBuffer.

As the dependency graph traversal continues, EDR observes
that dependency E’s LoadingBuffer is not empty, leading
to the analysis of “func y” at line 23. This function calls

233

Authorized licensed use limited to: New York University. Downloaded on December 05,2024 at 20:30:53 UTC from IEEE Xplore. Restrictions apply.

{
"Dependency": "groupId=org.mockito",

"artifactId=mockito-core",
"version=1.10.19",
"jarPath=/mockito-core-1.10.19.jar",

"declaringType":
"org.mockito.ArgumentCaptor",

"methodSignature": "getValue()",
"methodName": "getValue",
"lineNumber": ["153"],
"fullExpression":

"cookieArgumentCaptor.getValue()",
"currentLayer": 0,
"declarationInfo": {
"sourceFilePath":

"/ArgumentCaptor.java",
"declarationStartLine": 118,
"declarationEndLine": 120,
"methodName": "getValue",
"declarationSignature": "getValue()",
"innerMethodCalls": [

"declaringType":
"org.mockito.CapturingMatcher",

"methodSignature": "getLastValue()",
"methodName": "getLastValue",
"lineNumber": ["119"],
"fullExpression":

"capturingMatcher.getLastValue()",
"currentLayer": 1,
"declarationInfo": {
"sourceFilePath":

"/CapturingMatcher.java",
"declarationStartLine": 35,
"declarationEndLine": 42,
"methodName": "getLastValue",
"declarationSignature": "getLastValue()",
"innerMethodCalls": [

]
}

}

Fig. 7: Snippet of the coverage result produced by CovSBOM
in JSON format for the Java project “Spark [16]”

“func h” at line 25, an external function from dependency C,
which is then added to C’s LoadingBuffer. Concurrently, the
code coverage of “func y” is documented, “func y” is added
to E’s DoneBuffer and removed from LoadingBuffer.

Following this, the analysis of “func h” in dependency
C reveals no further function calls; its code coverage is
appended to the final result JSON file. Then, “func h” is
added to C’s DoneBuffer and removed from LoadingBuffer.
At this point, all LoadingBuffer in the dependency graph
are empty, signaling the completion of the analysis. The
analyzer then terminates, producing a final JSON file that en-
capsulates the code coverage information for functions across
all dependencies. As shown in Figure 7, CovSBOM provides
detailed code coverage information for each function across
dependencies. This includes attributes such as “methodName”,
which specifies the function name; “lineNumber”, the line

where it was called; and “declarationStartLine/EndLine”, the
actual implementation range of that function. Additionally,
“innerMethodCalls” is included to store information about the
recursively called functions, thereby enhancing the complete-
ness of code coverage analysis.

D. Integration of Coverage Results into SBOM

After completing the analysis, we have obtained comprehen-
sive code coverage information for each dependency. The next
step involves integrating these results back into the SBOM to
enhance information granularity, detailing the exact function
call chains and the specific lines of code covered by each
function. To maximize the usability of CovSBOM, we offer two
options tailored to different operational environments:
❖ Internet Accessible Environments: In settings where in-

ternet access is available, the code coverage results (i.e.,
JSON files) can be uploaded to the cloud storage solutions,
such as Google Cloud. Then, CovSBOM inserts a link to these
results in the “External Reference” section of SBOMs. This
approach allows for frequent updates and retrieval of data
without touching the original SBOMs.

❖ Air Gap Environments: In environments lacking or for-
bidding internet access, CovSBOM can embed the coverage
results directly into the SBOMs. Specifically, the results are
incorporated into the “External Reference” section of the
SBOMs as well, ensuring that all relevant information is
contained within a single SBOM document. This allows for
local verification or attestation (e.g., in-toto [19]).

E. Mitigation of False Positives

The final component of CovSBOM involves leveraging code
coverage information to mitigate false positive vulnerability
reports. To achieve this, CovSBOM incorporates a feature that
automatically scans the SBOMs after integrating the coverage
results. It utilizes a HashMap where the key is the CVE ID, as
reported by the security tools, and the value is the correspond-
ing vulnerability locations. Although automating the precise
identification of vulnerability locations remains challenging,
we currently inspect CVEs manually. However, with advance-
ments in Large Language Models (LLMs), this process has
the potential to become automated in the future. CovSBOM then
cross-references the code coverage data of each dependency
against the known vulnerabilities within the corresponding
HashMap to determine whether the vulnerability location falls
within the code coverage range. This assessment significantly
automates the detection process, determining whether reported
vulnerabilities are true positives or false positives, and also
facilitates easy integration into the existing scanning pipeline
of SBOM security tools.

IV. IMPLEMENTATION AND EVALUATION

We have primarily implemented CovSBOM in Java, with
additional components in Bash Script and Python, comprising
approximately 4,000 lines of code. The tool is now publicly
available at repository: https://github.com/Yunzez/CovSBOM.

234

Authorized licensed use limited to: New York University. Downloaded on December 05,2024 at 20:30:53 UTC from IEEE Xplore. Restrictions apply.

TABLE II: False-Positive detection capability of CovSBOM on 145 vulnerabilities from the 23 recommended projects. The cases
highlighted in “light-gray” indicate that these projects contain no vulnerabilities as reported by SBOM security tools.

Project Version CVE FP
latencyutils 2.0.4 CVE-2020-15250 ✓
time4j 5.9.4 - -
xchart 3.8.8 - -
activej 6.0 CVE-2023-33546 ✓
activej 6.0 CVE-2024-1023 ⊠
activej 6.0 CVE-2024-1300 ⊠
activej 6.0 CVE-2024-29025 ⊠
activej 6.0 CVE-2023-6378 ⊠
activej 6.0 CVE-2018-14335 ✓
beanmother 0.9.0 CVE-2017-18640 ✓
beanmother 0.9.0 CVE-2022-25857 ✓
beanmother 0.9.0 CVE-2022-38749 ✓
beanmother 0.9.0 CVE-2023-2976 ✓
beanmother 0.9.0 CVE-2020-8908 ✓
beanmother 0.9.0 CVE-2022-38751 ⊠
beanmother 0.9.0 CVE-2022-38752 ✓
beanmother 0.9.0 CVE-2022-41854 ✓
beanmother 0.9.0 CVE-2022-1471 ⊠
beanmother 0.9.0 CVE-2022-38750 ✓
blade 2.1.2 CVE-2024-29025 ⊠
blade 2.1.2 CVE-2023-34462 ⊠
blade 2.1.2 CVE-2018-14040 ⊠
blade 2.1.2 CVE-2018-14041 ⊠
blade 2.1.2 CVE-2018-14042 ⊠
blade 2.1.2 CVE-2019-8331 ⊠
blade 2.1.2 CVE-2019-11358 ⊠
blade 2.1.2 CVE-2020-11023 ⊠
blade 2.1.2 CVE-2020-13956 ✓
blade 2.1.2 CVE-2022-45688 ✓
blade 2.1.2 CVE-2023-5072 ✓
blade 2.1.2 CVE-2024-31033 ⊠
blade 2.1.2 CVE-2023-2976 ✓
blade 2.1.2 CVE-2020-8908 ✓
connect-java-sdk 2.20191120.0 CVE-2021-28168 ✓
connect-java-sdk 2.20191120.0 CVE-2019-16942 ✓
connect-java-sdk 2.20191120.0 CVE-2019-16943 ✓
connect-java-sdk 2.20191120.0 CVE-2019-17531 ✓
connect-java-sdk 2.20191120.0 CVE-2020-25649 ✓

Project Version CVE FP
connect-java-sdk 2.20191120.0 CVE-2020-36518 ✓
connect-java-sdk 2.20191120.0 CVE-2022-42003 ✓
connect-java-sdk 2.20191120.0 CVE-2022-42004 ✓
connect-java-sdk 2.20191120.0 CVE-2020-15250 ✓
datafaker 2.1.1 - -
fixture-factory 3.1.1 CVE-2020-15250 ✓
fixture-factory 3.1.1 CVE-2014-0114 ✓
fixture-factory 3.1.1 CVE-2019-17571 ✓
fixture-factory 3.1.1 CVE-2021-4104 ✓
fixture-factory 3.1.1 CVE-2022-23302 ✓
fixture-factory 3.1.1 CVE-2022-23305 ✓
fixture-factory 3.1.1 CVE-2022-23307 ✓
fixture-factory 3.1.1 CVE-2023-26464 ✓
fixture-factory 3.1.1 CVE-2020-25638 ✓
fixture-factory 3.1.1 CVE-2018-1000632 ✓
fixture-factory 3.1.1 CVE-2020-10683 ✓
jfairy 0.6.5 CVE-2022-42889 ✓
jfairy 0.6.5 CVE-2023-2976 ✓
jfairy 0.6.5 CVE-2020-8908 ✓
jfairy 0.6.5 CVE-2023-6378 ⊠
jfairy 0.6.5 CVE-2023-6378 ⊠
jwt-java 1.2.0 CVE-2022-45688 ✓
jwt-java 1.2.0 CVE-2023-5072 ✓
light-4j 2.1.33 CVE-2016-6311 ⊠
light-4j 2.1.33 CVE-2023-1973 ✓
light-4j 2.1.33 CVE-2023-5685 ✓
light-4j 2.1.33 CVE-2023-51775 ✓
light-4j 2.1.33 CVE-2018-14335 ✓
light-4j 2.1.33 CVE-2018-8088 ✓
light-4j 2.1.33 CVE-2018-11771 ✓
light-4j 2.1.33 CVE-2019-12402 ✓
light-4j 2.1.33 CVE-2021-35515 ✓
light-4j 2.1.33 CVE-2021-35516 ✓
light-4j 2.1.33 CVE-2021-35517 ✓
light-4j 2.1.33 CVE-2021-36090 ✓
light-4j 2.1.33 CVE-2024-25710 ⊠
light-4j 2.1.33 CVE-2019-17571 ✓
light-4j 2.1.33 CVE-2021-4104 ✓

Project Version CVE FP
light-4j 2.1.33 CVE-2022-23302 ✓
light-4j 2.1.33 CVE-2022-23305 ✓
light-4j 2.1.33 CVE-2022-23307 ✓
light-4j 2.1.33 CVE-2023-26464 ✓
parity 0.7.1 - -
password4j 1.8.1 - -
philadelphia 2.0.1 - -
simple-java-mail 8.7.1 CVE-2024-23081 ✓
simple-java-mail 8.7.1 CVE-2024-23082 ✓
spatial4j 0.9 - -
ta4j 0.16 CVE-2023-6481 ⊠
ta4j 0.16 CVE-2024-22949 ✓
thymeleak 3.1.3 CVE-2016-1000027 ✓
thymeleak 3.1.3 CVE-2024-22243 ⊠
thymeleak 3.1.3 CVE-2024-22233 ✓
thymeleak 3.1.3 CVE-2023-34053 ✓
thymeleak 3.1.3 CVE-2024-22257 ✓
thymeleak 3.1.3 CVE-2020-5408 ✓
thymeleak 3.1.3 CVE-2024-22234 ⊠
thymeleak 3.1.3 CVE-2023-6378 ⊠
thymeleak 3.1.3 CVE-2022-1471 ✓
thymeleak 3.1.3 CVE-2022-25857 ✓
thymeleak 3.1.3 CVE-2022-38749 ✓
thymeleak 3.1.3 CVE-2022-38750 ✓
thymeleak 3.1.3 CVE-2022-38751 ✓
thymeleak 3.1.3 CVE-2022-38752 ✓
thymeleak 3.1.3 CVE-2022-41854 ✓
thymeleak 3.1.3 CVE-2023-32697 ✓
thymeleak 3.1.3 CVE-2024-29025 ✓
thymeleak 3.1.3 CVE-2023-34062 ⊠
thymeleak 3.1.3 CVE-2023-34054 ⊠
wicket 10.1.0 CVE-2016-6345 ✓
wicket 10.1.0 CVE-2016-6346 ✓
wicket 10.1.0 CVE-2016-6347 ✓
wicket 10.1.0 CVE-2017-7561 ✓
wicket 10.1.0 CVE-2020-10688 ✓
wicket 10.1.0 CVE-2020-1695 ✓
wicket 10.1.0 CVE-2021-20289 ✓

Project Version CVE FP
wicket 10.1.0 CVE-2020-13956 ✓
wicket 10.1.0 CVE-2023-2976 ✓
wicket 10.1.0 CVE-2020-8908 ✓
wicket 10.1.0 CVE-2023-40167 ✓
wicket 10.1.0 CVE-2018-18531 ✓
wicket 10.1.0 CVE-2020-15250 ✓
wicket 10.1.0 CVE-2009-2625 ✓
wicket 10.1.0 CVE-2012-0881 ✓
wicket 10.1.0 CVE-2013-4002 ✓
wicket 10.1.0 CVE-2022-23437 ⊠
wicket 10.1.0 CVE-2017-10355 ✓
xstream 1.5.0 CVE-2018-1000632 ⊠
xstream 1.5.0 CVE-2020-10683 ⊠
xstream 1.5.0 CVE-2021-33813 ⊠
xstream 1.5.0 CVE-2022-40149 ✓
xstream 1.5.0 CVE-2022-40150 ✓
xstream 1.5.0 CVE-2022-45685 ⊠
xstream 1.5.0 CVE-2022-45693 ⊠
xstream 1.5.0 CVE-2023-1436 ✓
xstream 1.5.0 CVE-2022-45688 ✓
xstream 1.5.0 CVE-2023-5072 ✓
xstream 1.5.0 CVE-2013-5816 ⊠
xstream 1.5.0 CVE-2019-12401 ⊠
xstream 1.5.0 CVE-2020-25638 ⊠
xstream 1.5.0 CVE-2019-14900 ⊠
xstream 1.5.0 CVE-2022-41853 ⊠
xstream 1.5.0 CVE-2020-15250 ✓
springdoc-openapi 2.5.1 CVE-2024-22258 ⊠
springdoc-openapi 2.5.1 CVE-2023-52428 ✓
springdoc-openapi 2.5.1 CVE-2024-29025 ✓
springdoc-openapi 2.5.1 CVE-2018-14335 ✓
springdoc-openapi 2.5.1 CVE-2024-31033 ⊠
spark 2.9.4 CVE-2023-26048 ✓
spark 2.9.4 CVE-2023-26049 ✓
spark 2.9.4 CVE-2023-40167 ✓
spark 2.9.4 CVE-2020-15250 ⊠
spark 2.9.4 CVE-2020-13956 ✓
spark 2.9.4 CVE-2022-25647 ✓

The rest of this section presents our evaluation of CovSBOM,
centering around three primary questions:
• Capability: Can CovSBOM reduce the number of false pos-

itive vulnerabilities reported by SBOM security tools?
• Scalability: Can CovSBOM be applied to large projects while

maintaining a tolerable performance overhead?
• Usability: Can CovSBOM provide user-friendly operation and

integrate the coverage information into SBOMs flexibly?

A. Capability
To measure the detection capability of CovSBOM, we ini-

tially selected 23 open-source projects recommended by our
industry partner, confirmed to simulate the actual development
scenarios within their software ecosystem. For each project,
we generate SBOMs in both SPDX and CycloneDX formats,
then scanned these SBOMs using previously collected security
tools, including OWASP Dependency-Track, Vulert Vulner-
ability Scanner, Grype, and Bomber. This analysis yielded
a comprehensive list of potential vulnerabilities. Due to the
often generic nature of these reports, specific details such as
the exact location of vulnerabilities are not always available.
We thus conduct a manual inspection of each reported CVE,
consulting various vulnerability databases (e.g., NVD, Debian
Security Tracker and SUSE) to identify and document the
specific functions that contain or could trigger each vulnerabil-
ity. Following this preparatory step, we subjected all selected
projects to CovSBOM. As detailed in Table II, out of the 145
potential vulnerabilities reported by SBOM security tools, 105
were confirmed as false positives, constituting approximately
72.4% of the total. Of the remaining 40 vulnerabilities, only
13 (about 8.97% of the total reported vulnerabilities) were
verified as true positives. Additionally, 6 vulnerabilities, such
as CVE-2018-14040∼14042 were unrelated to Java, pertain-
ing instead JavaScript, and thus were beyond our analysis

scope. The remaining 21 could not be definitively linked to
specific buggy code locations; conservatively, we categorized
these as true positives. This experiment demonstrates that the
conventional approach of combining SBOMs with vulnera-
bility scanning tools suffers from a high rate of false positive
reports. However, our tool, CovSBOM, has successfully lowered
the incidence of false positive reports by more than 72%,
significantly enhancing the reliability of vulnerability detec-
tion and simultaneously enabling more efficient allocation of
security resources across industries.

B. Scalability
CovSBOM applies static analysis to target projects; however,

this analysis may be affected by the complexity and size
of modern software projects that often integrate hundreds of
third-party libraries. To this end, the projects we selected are
sufficiently large to stress test scalability. As presented in Ta-
ble III, CovSBOM can successfully analyze both small projects
with a few dependencies (e.g., “latencyutils”) and large-
scale projects with more than 200 dependencies, including
“activej” (with 240 dependencies), “thymeleaf” (with 226
dependencies), and “wicket” (with 226 dependencies).

We also measure the time cost of running CovSBOM consid-
ering it a critical factor related to scalability, since extremely
high run times would render the tool impractical for large
programs. Furthermore, given the nature of frequently updated
dependencies, the need to maintain stable codebases over time,
and the frequent assignment of new CVEs, our tool may need
to run frequently on continuous integration systems. As shown
in Table III, CovSBOM can complete the analysis of the majority
of projects within 60 seconds. Even activej, which has the
largest number of dependencies, only takes about 5 minutes
to analyze. After consulting with industry experts, we believe
the time length is acceptable and tolerable in practice.

235

Authorized licensed use limited to: New York University. Downloaded on December 05,2024 at 20:30:53 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Performance of CovSBOM on the selected projects

Project Deps. Count Time (Sec)
latencyutils 3 5s
time4j 4 4s
xchart 27 7s
activej 240 301s
beanmother 32 8s
blade 46 25s
connect-java-sdk 27 21s
datafaker 40 19s
fixture-factory 23 11s
jfairy 37 62s
jwt-java 10 3s
light-4j 153 45s
parity 37 5s
password4j 4 4s
philadelphia 34 7s
simple-java-mail 91 6s
spatial4j 10 4s
ta4j 22 13s
thymeleak 226 60s
wicket 226 133s
xstream 90 16s
springdoc-openapi 196 33s
spark 36 17s

C. Usability

CovSBOM is designed to prioritize not only accuracy but
also user convenience and integration flexibility for both
developers and security teams. Usage-wise, CovSBOM offers
a user-friendly command-line interface (CLI) that facilitates
easy integration into existing development and security work-
flows. Developers can invoke CovSBOM directly from the
CLI without the extensive configuration, making it accessible
even to those with minimal technical expertise in SBOM
management. However, CovSBOM may increase SBOM size
due to its capability to embed analysis results directly into the
SBOM “external reference” field. On average, CovSBOM can
increase the original SBOM size by 11.5x, as presented in Ta-
ble IV. However, the degree of increase varies, ranging from
“light-4j” (approximately 37.1x) to “simple-java-mail”
(approximately 1.26x). Therefore, CovSBOM also provides an
alternative for scenarios where storage space is limited; devel-
opers can store results externally in centralized cloud storage
services (e.g., Amazon S3) and then CovSBOM embeds the
links into the SBOM “external reference” field. This approach
not only keeps the SBOM size manageable, but also ensures
that detailed code coverage analyses are accessible without
overburdening local storage systems. Whether operating in
isolated networks or cloud-enabled environments, CovSBOM
adapts flexibly, providing robust analysis capabilities without
impacting system performance.

V. RELATED WORKS

A. SBOM Generation Tools

A wide range of tools are available to generate SBOMs,
designed to support different programming languages. For Cy-
cloneDX format, the CycloneDX Generator [20] is recognized

TABLE IV: Comparison of original and enhanced SBOM sizes

Projects SBOM Size in KB
Orig. SBOM Cov + SBOM Increased

latencyutils 7.68 155 20.2x
time4j 8.5 26.6 3.13x
xchart 57 278 4.88x
activej 426 10862.4 25.5x
beanmother 66 215.5 3.27x
blade 98 617.5 6.30x
connect-java-sdk 61 157.2 2.58x
datafaker 86 2640.7 30.7x
fixture-factory 49 893.5 18.3x
jfairy 82 2446.8 29.8x
jwt-java 25 63.4 2.54x
light-4j 274 10156.9 37.1x
parity 70 183.5 2.62x
password4j 12 91.5 7.63x
philadelphia 57 328 5.75x
simple-java-mail 205 258 1.26x
spatial4j 25 68.7 2.75x
ta4j 45 174.8 3.88x
thymeleak 459 1979.2 4.31x
wicket 467 15260 32.7x
xstream 193 1421.8 7.37x
springdoc-openapi 410 780.9 1.90x
spark 78 712 9.13x

as the official OWASP tool. It supports an extensive array
of programming languages and package managers, making
it particularly suitable for multi-language projects. It offers
a command-line interface (CLI) and an API server for on-
demand SBOM checks, enhancing its utility in continuous
integration environments. In the domain of SPDX format, tools
such as the SPDX SBOM Generator [21] and the SBOM
Tool [22] are endorsed by the SPDX community. These tools
are also capable of managing multiple languages and package
managers and are primarily designed for CLI environments.
They support outputs in SPDX files, which are beneficial for
compliance and licensing management.

Additionally, many tools also support both CycloneDX and
SPDX formats. For examples, Syft [23] by Anchore supports
a wide range of package formats and operating systems.
It generates SBOMs for container images, filesystem paths,
and compressed archives, making it adaptable for diverse
development environments. Syft also allows SBOMs to be
signed, enhancing security and integration with other tools
such as vulnerability scanners. Tern [24], primarily used for
analyzing container images and Docker files, perform software
composition analysis to produce SBOMs detailing each layer’s
package information. Although flexible in output formats, its
focus on containers may be limiting for broader application
uses. ScanCode Toolkit [25], another open-source tool, scans
codebases for licenses and copyright and is capable of gener-
ating detailed reports in both SPDX and CycloneDX formats.
Its comprehensive scanning capabilities are designed to help
developers ensure software compliance before distribution.

Our tool, CovSBOM, complements and enhances the existing
landscape of SBOM generation tools by integrating code
coverage analytical results into the SBOMs generated by any

236

Authorized licensed use limited to: New York University. Downloaded on December 05,2024 at 20:30:53 UTC from IEEE Xplore. Restrictions apply.

of these tools. This compatibility ensures that both tooling
providers and developers can directly incorporate CovSBOM
into their existing environments with minimal effort and with-
out any modifications to their current implementations.

B. Dependency Visualization Tools

LCM: As evidenced through collaboration with an industry
partner in the financial sector, the firm is actively working
to bridge the gaps among its myriad business applications,
their open-source software dependencies, and the associated
vulnerabilities. The internally developed tool, Life Cycle Man-
agement (LCM), plays a important role in both vulnerability
management and the enhancement of lifecycle management
for business applications that incorporate open-source com-
ponents. Through strategic resource allocation, LCM helps
maintain the integrity of business applications and minimizes
the attack surface. This tool is pivotal for private sector entities
that rely on open-source software to maintain competitiveness
and ensure security. The firm is engaging in discussions to
consider the integration of CovSBOM into its LCM product line.

GUAC: In the ecosystem of SBOMs generation and analysis,
the tool Graph for Understanding Artifact Composition [26]
represents a significant advancement. Developed to enhance
the visibility and manageability of dependencies within soft-
ware projects, GUAC utilizes a graph-based approach to trace
and document the relationships between software components.
GUAC’s innovative utilization of graph algorithms allows it
to identify indirect dependencies that are often overlooked by
traditional flat-list SBOM generators. However, because it does
not use static or dynamic analysis, it also suffers from the
issue of false positive vulnerability reports. We are actively
engaging with the GUAC community to integrate CovSBOM
into their existing pipeline, aiming to reduce these inaccuracies
and enhance overall vulnerability management.

VI. CONCLUSION

This paper first presents a case study on the false posi-
tive vulnerability reports generated by SBOM security tools,
shedding light on the primary reasons for these inaccuracies.
Inspired by this study, the paper introduces CovSBOM, a
tool specifically designed to enhance SBOMs by integrating
comprehensive code coverage analysis, thereby significantly
reducing the rate of false positives. Unlike existing techniques
that merely map dependency versions to CVEs, CovSBOM’s
lightweight static analyzer effectively analyzes the code cov-
erage of third-party libraries. Our evaluation demonstrates
CovSBOM’s robust capability, showing that it can reduce around
70% of false positive vulnerability reports in large-scale Java
projects, while maintaining decent scalability and usability.

VII. ACKNOWLEDGMENT

We thank the internal reviewers from the Depository Trust
& Clearing Corporation (DTCC): Preethi Sampath, Lei Shen,
Sridevi Pudhiyanayagam, and Derek Brown. We also extend
our gratitude to Michael Lieberman from Kusari and our
anonymous reviewers for their feedback. This research was

supported by the National Science Foundation (Grant#: TI-
2346219; CNS-2001161; CNS-2054692). Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

REFERENCES

[1] B. Fred, “2024 open source security and risk analysis report.”
https://www.synopsys.com/software-integrity/resources/analyst-reports/
open-source-security-risk-analysis.html, 2 2024.

[2] É. Ó. Muirı́, “Framing software component transparency: Establishing
a common software bill of material (sbom),” NTIA, Nov, vol. 12, 2019.

[3] Y. Hasan, “Realities of sbom: What is under the hood of sbom.” https:
//apps.dtic.mil/sti/citations/trecms/AD1201272, 5 2023.

[4] L. J. Camp and V. Andalibi, “Sbom vulnerability assessment & cor-
responding requirements,” NTIA Response to Notice and Request for
Comments on Software Bill of Materials Elements and Considerations.

[5] J. T. Stoddard, M. A. Cutshaw, T. Williams, A. Friedman, and J. Murphy,
“Software bill of materials (sbom) sharing lifecycle report,” Idaho
National Lab.(INL), Idaho Falls, ID (United States), Tech. Rep., 2023.

[6] T. Stalnaker, N. Wintersgill, O. Chaparro, M. Di Penta, D. M. German,
and D. Poshyvanyk, “Boms away! inside the minds of stakeholders:
A comprehensive study of bills of materials for software systems,”
in Proceedings of the 46th IEEE/ACM International Conference
on Software Engineering, ser. ICSE ’24. New York, NY, USA:
Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3597503.3623347

[7] Stephen, Cass, “The top programming languages 2023 python and sql
are on top, but old languages shouldn’t be forgotten,” https://spectrum.
ieee.org/the-top-programming-languages-2023, 2023.

[8] The OWASP community, “Owasp dependency-track: is an intelligent
component analysis platform,” https://dependencytrack.org/, 2023.

[9] The Anchore, Inc., “Grype is an open source vulnerability scanner for
container images and filesystems,” https://github.com/anchore/grype.

[10] The Vulert Community, “Vulert vulnerability scanner,” https://vulert.
com/abom, 2023.

[11] S. DJ and S. Mikhail, “bomber is an application that scans SBOMs for
security vulnerabilities.” https://github.com/devops-kung-fu/bomber.

[12] J. Jiao, M. M. Tseng, Q. Ma, and Y. Zou, “Generic bill-of-materials-
and-operations for high-variety production management,” Concurrent
Engineering, vol. 8, no. 4, pp. 297–321, 2000.

[13] Linux Foundation, “System Package Data Exchange,” https://spdx.dev/.
[14] OWASP, “OWASP CycloneDX Software Bill of Materials (SBOM)

Standard,” https://cyclonedx.org/, 2017.
[15] NIST, “Software Identification (SWID) Tagging,” https://csrc.nist.gov/

projects/software-identification-swid, 2009.
[16] W. Per and H. Axel, “Spark - a tiny web framework for Java 8,” https:

//github.com/perwendel/spark, 2023.
[17] CISA, “Apache Log4j Vulnerability Guidance.” https://www.cisa.gov/

news-events/news/apache-log4j-vulnerability-guidance, 2021.
[18] Federico, Tomassetti, “Javaparser: Tools for your java code,” https://

github.com/javaparser/javaparser, 2015.
[19] S. Torres-Arias, H. Afzali, T. K. Kuppusamy, R. Curtmola, and J. Cap-

pos, “in-toto: Providing farm-to-table guarantees for bits and bytes,”
in 28th USENIX Security Symposium (USENIX Security 19), 2019, pp.
1393–1410.

[20] The OWASP Community, “CycloneDX Generator,” https://github.com/
CycloneDX/cdxgen, 2017.

[21] P. Nirav, K. Pratik, and H. Khalifa, “SPDX Software Bill of
Materials (SBOM) Generator,” https://github.com/opensbom-generator/
spdx-sbom-generator, 2021.

[22] Microsoft, “Sbom tool,” https://github.com/microsoft/sbom-tool, 2022.
[23] G. Alex, Z. Keith, and D. Alfredo, “syft: A cli tool and go library

for generating a software bill of materials (sbom),” https://github.com/
anchore/syft, 2020.

[24] J. Rose and R. Michael, “Tern is a software package inspection tool that
can create a sbom,” https://github.com/tern-tools/tern, 2019.

[25] The nexB Community, “scancode-toolkit: A typical software project
often reuses hundreds of third-party packages,” https://github.com/nexB/
scancode-toolkit, 2019.

[26] The Kusari Company, “Guac: Graph for understanding artifact compo-
sition,” https://github.com/guacsec/guac, 2022.

237

Authorized licensed use limited to: New York University. Downloaded on December 05,2024 at 20:30:53 UTC from IEEE Xplore. Restrictions apply.

