
Stork: Package Management for
Distributed VM Environments

Justin Cappos, Scott Baker, Jeremy Plichta, Duy Nyugen, Jason Hardies, Matt Borgard, Jeffry
Johnston, and John H. Hartman – University of Arizona

ABSTRACT

In virtual machine environments each application is often run in its own virtual machine
(VM), isolating it from other applications running on the same physical machine. Contention for
memory, disk space, and network bandwidth among virtual machines, coupled with an inability to
share due to the isolation virtual machines provide, leads to heavy resource utilization.
Additionally, VMs increase management overhead as each is essentially a separate system.

Stork is a package management tool for virtual machine environments that is designed to
alleviate these problems. Stork securely and efficiently downloads packages to physical machines
and shares packages between VMs. Disk space and memory requirements are reduced because
shared files, such as libraries and binaries, require only one persistent copy per physical machine.
Experiments show that Stork reduces the disk space required to install additional copies of a
package by over an order of magnitude, and memory by about 50%. Stork downloads each
package once per physical machine no matter how many VMs install it. The transfer protocols
used during download improve elapsed time by 7X and reduce repository traffic by an order of
magnitude. Stork users can manage groups of VMs with the ease of managing a single machine –
even groups that consist of machines distributed around the world. Stork is a real service that has
run on PlanetLab for over four years and has managed thousands of VMs.

Introduction

The growing popularity of virtual machine (VM)
environments such as Xen [3], VMWare [31], and
Vservers [17, 18], has placed new demands on pack-
age management systems (e.g., apt [2], yum [36],
RPM [27]). Traditionally, package management sys-
tems deal with installing and maintaining software on
a single machine whether virtual or physical. There
are no provisions for inter-VM sharing, so that multi-
ple VMs on the same physical machine individually
download and maintain separate copies of the same
package. There are also no provisions for inter-
machine package management, centralized administra-
tion of which packages should be installed on which
machines, or allowing multiple machines to download
the same package efficiently. Finally, current package
management systems have relatively inflexible secu-
rity mechanisms that are either based on implicit trust
of the repository, or public/private key signatures on
individual packages.

Stork is a package management system designed
for distributed VM environments. Stork has several
advantages over existing package management sys-
tems: it provides secure and efficient inter-VM pack-
age sharing on the same physical machine; it provides
centralized package management that allows users to
determine which packages should be installed on
which VMs without configuring each VM individu-
ally; it allows multiple physical machines to download
the same package efficiently; it ensures that package

updates are propagated to the VMs in a timely fashion;
and it provides a flexible security mechanism that
allows users to specify which packages they trust as
well as delegate that decision on a per-package basis
to other (trusted) users.

Stork’s inter-VM sharing facility is important for
reducing resource consumption caused by package
management in VM environments. VMs are excellent
for isolation, but this very isolation can increase the
disk, memory, and network bandwidth requirements of
package management. It is very inefficient to have each
VM install its own copy of each package’s files. The
same is true of memory: if each VM has its own copy
of a package’s files then it will have its own copy of the
executable files in memory. Memory is often more of a
limiting factor than disk, so Stork’s ability to share
package files between VMs is particularly important for
increasing the number of VMs a single physical ma-
chine can support. In addition, Stork reduces network
traffic by only downloading a package to a physical
machine once, even if multiple VMs on the physical
machine install it.

Stork’s inter-machine package management fa-
cility enables centralized package management and effi-
cient, reliable, and timely package downloads. Stork
provides package management utilities and configura-
tion files that allow the user to specify which packages
are to be installed on which VMs. Machines download
packages using efficient transfer mechanisms such as
BitTorrent [9] and CoBlitz [22], making downloads

21st Large Installation System Administration Conference (LISA ’07) 79

Stork: Package Management for Distributed VM Environments Cappos, et al.

efficient and reducing the load on the repository. Stork
uses fail-over mechanisms to improve the reliability of
downloads, even if the underlying content distribution
systems fail. Stork also makes use of publish/subscribe
technology to ensure that VMs are notified of package
updates in a timely fashion.

Central Signed and
File Type Repository Client Mgmt Embedded
User Private Key No No Yes No
User Public Key No † Yes Yes No
Master Configuration File No † Yes Yes No
Trusted Packages (TP) Yes Yes Yes Yes
Pacman Packages Yes No Yes Yes
Pacman Groups Yes No Yes Yes
Packages (RPM, tar.gz) Yes Yes Yes Secure Hash
Package Metadata Yes Yes Yes No
Repository Metahash Yes Yes No Signed Only

Table 1: Stork File Types: This table shows the different types of files used by Stork. The repository column indi-
cates whether or not the file is obtained from the repository by the clients. The client column indicates whether
or not the file is used for installing packages or determining which packages should be installed locally based
upon the files provided by the centralized management system. The centralized management column indicates if
the files are created by the management tools. The signed/embed column indicates which files are signed and
have a public key embedded in their name.

† In order to automatically deploy Stork on PlanetLab, this restriction is relaxed. See the PlanetLab section for
more details.

Stork provides all of these performance benefits
without compromising security; in fact, Stork has addi-
tional security benefits over existing package manage-
ment systems. First, Stork shares files securely between
VMs. Although a VM can delete its link to a file, it
cannot modify the file itself. Second, a user can se-
curely specify which packages he or she trusts and may
delegate this decision for a subset of packages to
another user. Users may also trust other users to know
which packages not to install, such as those with secu-
rity holes. Each VM makes package installation deci-
sions based on a user’s trust assumptions and will not
install packages that are not trusted. While this paper
touches on the security aspects of the system that are
necessary to understand the design, a more rigorous
and detailed analysis of security is available through
documentation on our website [29].

In addition, Stork is flexible and modular, allowing
the same Stork code base to run on a desktop PC, a
Vserver-based virtual environment, and a PlanetLab
node. This is achieved via pluggable modules that isolate
the platform-specific functionality. Stork accesses these
modules through a well-defined API. This approach
makes it easy to port Stork to different environments and
allows the flexibility of different implementations for
common operations such as file retrieval.

Stork has managed many thousands of VMs and
has been deployed on PlanetLab [23, 24] for over four
years. Stork is currently running on hundreds of Planet-
Lab nodes and its package repository receives a request
roughly every ten seconds. Packages installed in multiple

VMs by Stork typically use over an order of magnitude
less space and 50% the memory of packages installed by
other tools. Stork also reduces the repository load by
over an order of magnitude compared to HTTP-based
tools. Stork is also used in the Vserver [18] environment
and can also be used in non-VM environments (such as
on a home system) as an efficient and secure package
installation system. The source code for Stork is avail-
able at http://www.cs.arizona.edu/stork .

Stork

Stork provides manual management of packages
on individual VMs using command-line tools that have
a syntax similar to apt [2] or yum [36]. Stork also pro-
vides centralized management of groups of VMs. This
section describes an example involving package man-
agement, the configuration files needed to manage VMs
with Stork, and the primary components of Stork.

An Example

Consider a system administrator that manages
thousands of machines at several sites around the
globe. The company’s servers run VM software that
allow different production groups more flexible use of
the hardware resources. In addition, the company’s
employees have desktop machines that have different
software installed depending on their use.

The system administrator has just finished testing
a new security release for a fictional package foobar and
she decides to have all of the desktop machines used for
development update to the latest version along with any
testing VMs that are used by the coding group. The ad-
ministrator modifies a few files on her local machine,
signs them using her private key, and uploads them to a
repository. Within minutes all of the desired machines
that are online have the updated foobar package in-
stalled. As offline machines come online or new VMs

80 21st Large Installation System Administration Conference (LISA ’07)

Cappos, et al. Stork: Package Management for Distributed VM Environments

are created, they automatically update their copies of
foobar as instructed.

The subsequent sections describe the mecha-
nisms Stork uses to provide this functionality to its
users. The walkthrough section revisits this example
and explains in detail how Stork provides the func-
tionality described in this scenario.

File Types
Stork uses several types of files that contain dif-

ferent information and are protected in different ways
(Table 1). The user creates a public/private key pair
that authenticates the user to the VMs he or she con-
trols. The public key is distributed to all of the VMs
and the private key is used to sign the configuration
files. In our previous example, the administrator’s
public key is distributed to all of the VMs under her
control. When files signed by her private key were
added to the repository, the authenticity of these files
was independently verified by each VM using the
public key.

The master configuration file is similar to those
found in other package management tools and indi-
cates things such as the transfer method, repository
name, user name, etc. It also indicates the location of
the public key that should be used to verify signatures.

The user’s trusted packages file (TP file) indi-
cates which packages the user considers valid. The TP
file does not cause those packages to be installed, but
instead indicates trust that the packages have valid
contents and are candidates for installation. For exam-
ple, while the administrator was testing the latest
release of foobar she could add it to her trusted pack-
ages file because she believes the file is valid.

There are two pacman files used for centralized
management. The groups.pacman file allows VMs to
be categorized into convenient groups. For example,
the administrator could configure her pacman groups
file to create separate groups for VMs that perform
different tasks. VMs can belong in multiple groups
such as ALPHA and ACCOUNTING for an alpha test
version of accounting software. Any package manage-
ment instructions for either the ALPHA group or the
ACCOUNTING group would be followed by this
VM.

The packages.pacman file specifies what actions
should be done on a VM or a group of VMs. Packages
can be installed, updated, or removed. Installation is
different from updating in that installation will do
nothing if there is a package that meets the criteria
already installed while update ensures that the pre-
ferred version of the package is installed. For exam-
ple, when asked to install foobar, if any version of the
package is currently installed then no operation will
occur. If asked to update foobar, Stork checks to see if
the administrator’s TP file specifies a different version
of foobar and if so, replaces the current version with
the new version.

The packages (for example, the foobar RPM
itself) contain the software that is of interest to the
user. The package metadata is extracted from pack-
ages and is published by the repository to describe the
packages that are available. The repository metahash
is a special file that is provided by the repository to
indicate the current repository state.

Architecture

Stork consists of four main components:
• a re p o s i t o r y that stores configuration files, pack-

ages, and associated metadata;
• a set of client tools that are used in each Stork

client VM to manage its packages by interacting
either directly with the repository or through the
nest when it is available;

• a nest process that runs on physical machines
and coordinates sharing between VMs as well
as providing repository metadata updates to its
client VMs and downloading packages;

• and centralized management tools that allows a
user to control many VMs concurrently, create
and sign packages, upload packages to the repos-
itory, etc.

Internet

Physical Machines

Repository

Packages
&

Metadata

VMM

VM 1 VM 2 VM 3

mew-2.2- 5.rpm

foobar -1.0.rpm

CT CT CT

NEST
VM

CacheAdministrator

Figure 1: Stork Overview. Stork allows centralized
administration and sharing of packages. The ad-
ministrator publishes packages and metadata on
the repository. Updates are propagated to VMs
running on distributed physical machines. Each
physical machine contains a single nest VM, and
one or more client VMs that run the Stork client
tools.

The client tools consist of the stork command-line
tool (referred to simply as stork), which allows users to
install packages manually, and pacman, which supports
centralized administration and automated package in-
stallation and upgrade. While a client VM may com-
municate with the repository directly, it is far more

21st Large Installation System Administration Conference (LISA ’07) 81

Stork: Package Management for Distributed VM Environments Cappos, et al.

efficient for client VMs to interact with their local nest
process, who interacts with the repository on their
behalf.

Repository
The Stork repository’s main task is to serve files

much like a normal web server. However, the repository
is optimized to efficiently provide packages to Stork
client VMs. First, the repository provides secure user
upload of packages, trusted packages files, and pacman
packages and groups files. Second, the repository pushes
notifications of new content to interested VMs. Third,
the repository makes packages available via different
efficient transfer mechanisms such as BitTorrent.

Handling Uploaded Data The Stork repository
allows multiple users to upload files while retaining
security. TP, groups.pacman, and packages.pacman files
must be signed by the user that uploads them. Every
signed file has a timestamp for the signature embed-
ded in the portion of the file protected by the signa-
ture. The public key of the user is embedded in the
file name of the signed file (similar to self-certifying
path names [19]). This avoids naming conflicts and
allows the repository to verify the signature of an
uploaded file. The repository will only store a signed
file with a valid signature that is newer than any exist-
ing signed file of the same name. This prevents replay
attacks and allows clients to request files that match a
public key directly.

Packages and package metadata are treated differ-
ently than configuration files. These files are not signed,
but instead incorporate a secure hash of their contents in
their names. This prevents name collisions and allows
clients to request packages directly by secure hash. In all
cases, the integrity of a file is verified by the recipient
before it is used (either by checking the signature or the
secure hash, as appropriate). The repository only per-
forms these checks itself to prevent pollution of the
repository and unnecessary downloads, rather than to
ensure security on the clients.

Pushing Notifications The repository notifies
interested clients when the repository contents have
changed. The repository provides this functionality by
pushing an updated repository metahash whenever data
has been added to the repository. However, this does not
address the important question of what data has been
updated. This is especially difficult to address when
VMs may miss messages or suffer other failures.

One solution is for the repository to push out
hashes of all files on the repository. As there are many
thousands of metadata files on the repository, it is too
costly to publish the individual hashes of all of them
and have the client VMs download each metadata file
separately. Instead, the repository groups metadata
files together in a tarball organized by type. For exam-
ple, one tarball contains all of the trusted packages
files, another with all of the pacman files, etc. The
hashes of these tarballs are put into the repository

metahash which is pushed to each interested client
VM. No matter how many updates the client VM
misses, it can examine the hash of the local tarballs
and the hashes provided by the repository and deter-
mine what needs to be retrieved.

Efficient Transfers The repository makes all of its
files available for download through HTTP. However,
having each client download its files via separate HTTP
connections is prohibitively expensive. The repository
therefore supports different transfer mechanisms for bet-
ter scalability, eff i c i e n c y, and performance. Some trans-
fer mechanisms are simple (like CoBlitz and Coral)
which require no special handling by the repository and
others (like BitTorrent) which do.

To support BitTorrent [9] downloads the reposi-
tory runs a BitTorrent tracker and a modified version
of the btlaunchmany daemon provided by BitTorrent.
The btlaunchmany daemon monitors a directory for any
new or updated files. When a new file is uploaded to the
repository it is placed in the monitored directory. When
the daemon notices the new file it creates a torrent file
that is later seeded. Unique naming is achieved by
appending the computed hash of the shared file to the
name of the torrent. The torrent file is placed in a public
location on the repository for subsequent download by
the clients through HTTP.

Client Tools
The client tools are used to manage packages in a

client VM and include the stork, pacman, and stork_
receive_update commands. The stork tool uses com-
mand-line arguments to install, update, and remove
packages. Its syntax is similar to apt [2] or yum [36].
The stork tool resolves dependencies and installs addi-
tional packages as necessary. It also upgrades and
removes packages. The stork tool downloads the latest
metadata from package repositories, verifies that pack-
ages are trusted by the user’s TP file, and only installs
trusted files.

Package management with the stork tool is a
complex process involving multiple steps including
dependency resolution, trust verification, download,
and installation. For example, consider the installation
of the foobar package. Assume foobar depends on a few
other packages, such as emacs and glibc, before foobar
itself can be installed. In order to perform the installa-
tion of foobar, the stork tool must determine whether foo-
bar, emacs, and glibc are already installed on the client
and if not, locate candidate versions that satisfy the
dependencies. These steps are similar to those per-
formed by other package managers [2, 36, 27]. Finally
Stork ensures that those candidates satisfy the trust
requirements that the user has specified.

Figure 2 shows a TP file example. This file
specifically allows emacs-2.2-5.i386.rpm, several ver-
sions of foobar, and customapp-1.0.tar.gz to be installed.
Each package listed in the TP file includes the hash of
the package, and only packages that match the hashes

82 21st Large Installation System Administration Conference (LISA ’07)

Cappos, et al. Stork: Package Management for Distributed VM Environments

may be installed. It trusts the planetlab-v4 user to know
the validity of any package it says (this user has a list
of hashes of all of the Fedora Core 4 packages). It also
trusts the stork user to know the validity of any pack-
ages that start with ‘‘stork’’.

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?>
<TRUSTEDPACKAGES>
<!-- Trust some packages that the user specifically allows -->
<FILE PATTERN="emacs-2.2-5.i386.rpm" HASH="aed4959915ad09a2b02f384d140c4\
626b0eba732" ACTION="ALLOW"/>
<FILE PATTERN="foobar-1.01.i386.rpm" HASH="16b6d22332963d54e0a034c11376a\
2066005c470" ACTION="ALLOW"/>
<FILE PATTERN="foobar-1.0.i386.rpm" HASH="3945fd48567738a28374c3b238473\
09634ee37fd" ACTION="ALLOW"/>
<FILE PATTERN="simple-1.0.tar.gz" HASH="23434850ba2934c39485d293403e3\
293510fd341" ACTION="ALLOW"/>
<!-- Allow access to the planetlab Fedora Core 4 packages -->
<USER PATTERN="*" USERNAME="planetlab-v4" PUBLICKEY="MFwwDQYJKoZIhvcNAQEB\
BQADSwAwSAJBALtGteQPdLa0kYv+klFWTklH9Y7frYhl5JV1hgJa5PlGI3yK+R22UsD65_J4P\
V92RUgVd_uJMuB8Q4bi1w4o6JMCAwEAAQ" ACTION="ALLOW"/>
<!-- Allowing the ’stork’ user lets stork packages be installed -->
<USER PATTERN="stork*" USERNAME="stork" PUBLICKEY="MFwwDQYJKoZIhvcNAQEBBQADSwAw\
SAJBAKgZCjfKDl9ISoclfBuZsQze6bXtu+QYF64TLQlI9fgEg2CDyGQVOsZ2CaX1ZEZ_O69AYZ\
p8nj+YJLIJM3+W3DMCAwEAAQ" ACTION="ALLOW"/>
</TRUSTEDPACKAGES>

Figure 2: Example TP File. This file specifies what packages and users are trusted. Only packages allowed by a TP
file may be installed. FILE actions are used to trust individual packages. USER actions allow hierarchical trust
by specifying a user whose TP file is included. The signature, timestamp, and duration are not shown and are
contained in an XML layer that encapsulates this file.

Once satisfactory trusted candidates have been
found, Stork downloads the packages from the reposi-
tory and verifies that the packages it downloaded
match the entries in the TP file, including the secure
hashes. Finally, the packages themselves are installed.

Package removal is much less complex than
installation. Before removing a package, the stork
command first checks to see if other packages depend
upon the package to be removed. For RPM packages,
stork leverages the rpm command and its internal data-
base to check dependencies. Tar packages do not sup-
port dependencies at this time and can always be
removed. If there are dependencies that would be bro-
ken by removal of the package, then stork reports the
conflict and exits. Stork removes an installed package
by deleting the package’s files and running the unin-
stall scripts for the package.

The pacman (‘‘package manager’’) tool is the
entity in a VM that locally enacts centralized admini-
stration decisions. The pacman tool invokes the appro-
priate stork commands based on two configuration files:
groups.pacman (Figure 3) and packages.pacman (Figure
4). The groups.pacman file is optional and defines VM
groups that can be used by an administrator to manage
a set of VMs collectively. The groups.pacman syntax
supports basic set operations such as union, intersec-
tion, compliment, and difference. For example, an ad-
ministrator for a service may break their VMs into
alpha VMs, beta VMs, and production VMs. This

allows developers to test a new release on alpha VMs
(where there are perhaps only internal users) before
moving it to the beta VMs group (with beta testers)
and finally the the production servers.

<GROUPS>
<GROUP NAME="ALPHA">
<INCLUDE NAME="planetlab1.arizona.net"/>
<INCLUDE NAME="planetlab2.arizona.net"/>
</GROUP>

<GROUP NAME="ACCOUNTING">
<INCLUDE NAME="ALPHA"/>
<INCLUDE NAME="pl1.unm.edu"/>
</GROUP>
</GROUPS>

Figure 3: Example groups.pacman. The ‘‘ALPHA’’
group consists of two machines in Arizona. The
‘‘ACCOUNTING’’ group also includes a machine
at the University of New Mexico.

The packages.pacman file specifies which pack-
ages should be installed, updated, or removed in the
current VM based on a combination of VM name,
group, and physical machine. This makes it easy, for
example, to specify that a particular package should be
installed on all VMs on a physical machine, while
another package should only be installed on alpha
VMs, etc.

Although pacman can be run manually, typically
it is run automatically via one of several mechanisms.
First, pacman establishes a connection to the stork_
receive_update daemon. This daemon receives the re-
pository metahashes that are pushed by the repository
whenever there is an update. Upon receiving this noti-
fication, stork_receive_update alerts pacman to the new

21st Large Installation System Administration Conference (LISA ’07) 83

Stork: Package Management for Distributed VM Environments Cappos, et al.

information. A change to the repository metahash
indicates that the repository contents have changed
which in turn may change which packages are in-
stalled, etc. Second, when stork_receive_update is un-
available pacman wakes up every 5 minutes and polls
the repository for the repository metahash. As before,
if there is a discrepancy between the stored data and
the described data, pacman downloads the updated
files. Third, pacman also runs when its configuration
files change.

<PACKAGES>
<CONFIG SLICE="stork" GROUP="ACCOUNTING">

<INSTALL PACKAGE="foobar" VERSION="2.2"/>
<REMOVE PACKAGE="vi"/>

</CONFIG>
<CONFIG>

<UPDATE PACKAGE = "firefox"/>
</CONFIG>

</PACKAGES>

Figure 4: Example packages.pacman. VMs in the slice (a term used to mean a VM on PlanetLab) ‘‘stork’’ and in
the group ‘‘ACCOUNTING’’ will have foobar 2.2 installed and vi removed. All VMs in this user’s control will
have firefox installed and kept up-to-date with the newest version.

The stork_receive_update daemon runs in each
client VM and keeps the repository’s metahash up-to-
date. Metadata is received from the repositories using
both push and pull. Pushing is the preferred method
because it reduces server load, and is accomplished
using a multicast tree or publish/subscribe system such
as PsEPR [5]. Heartbeats are pushed if no new meta-
hash is available. If stork_receive_update doesn’t receive
a regular heartbeat it polls the repository and downloads
new repository metahash if necessary. This download is
accomplished using an efficient transfer mechanism
from one of Stork’s transfer modules (discussed further
in the transfer modules section). This combination of
push and pull provides an efficient, scalable, fault toler-
ant way of keeping repository information up-to-date in
the VMs.

Nest
The Stork nest process enables secure file-shar-

ing between VMs, prevents multiple downloads of the
same content by different VMs, and maintains up-to-
date repository metadata. It accomplishes these in two
ways. First, it operates as a shared cache for its client
VMs, allowing metadata and packages to be down-
loaded once and used by many VMs. Second, it per-
forms package installation on behalf of the VMs,
securely sharing read-only package files between mul-
tiple VMs that install the package (discussed further in
the sharing section). The nest functionality is imple-
mented by the stork_nest daemon.

The stork_nest daemon is responsible for main-
taining connections with its client VMs and processing
requests that arrive over those connections (typically
via a socket, although this is configurable). A client
must first authenticate itself to stork_nest. The authen-
tication persists for as long as the connection is estab-
lished. Once authenticated, the daemon then fields

requests for file transfer and sharing. File transfer
operations use the shared cache feature of the reposi-
tory to provide cached copies of files to the clients.
Sharing operations allow the clients to share the con-
tents of packages using the prepare interface (dis-
cussed further in the section on prepare modules).

Typically, the nest runs on each machine that
runs Stork; however, there may be cases where the
nest is not run, such as in a desktop machine or a
server that does not use VMs. In the case where no
nest is running or the nest process fails, the client tools
communicate directly with the repository.

Centralized Management Tools
The centralized management tools allow Stork

users to manage their VMs without needing to contact
the VMs directly. In our example the administrator
wanted to install foobar automatically on applicable
systems under her control rather than logging into
them individually. Unlike the client tools that are run
in Stork client VMs, the centralized management tools
are typically run on the user’s desktop machine. They
are used to create TP files, pacman packages and
groups files, the master configuration file, public/pri-
vate keypairs, etc. These files are used by the client
tools to decide what actions to perform on the VM. In
addition to managing these files, the centralized man-
agement tools also upload metadata and/or packages
to the repository, and assist the user in building pack-
ages.

The main tool used for centralized management
is storkutil, a command-line tool that has many differ-
ent functions including creating public/private key
pairs, signing files, extracting metadata from pack-
ages, and editing trusted packages, pacman packages
and groups files. Administrators use this tool to create
and modify the files that control the systems under
their control. While files can be edited by other tools
and then resigned, storkutil has the advantage of auto-
matically resigning updated files. After updating these
files they are then uploaded to the repository.

Stork on PlanetLab

Stork currently supports the Vserver environ-
ment, non-VM machines, and PlanetLab [23, 24]. The
PlanetLab environment is significantly different from

84 21st Large Installation System Administration Conference (LISA ’07)

Cappos, et al. Stork: Package Management for Distributed VM Environments

the other two, so several extensions to Stork have been
provided to better support it.

PlanetLab Overview

PlanetLab consists of over 750 nodes spread
around the world that are used for distributed system
and network research. Each PlanetLab node runs a
custom kernel that superficially resembles the Vserver
[18] version of Linux. However there are many isola-
tion, performance, and functionality differences.

The common management unit in PlanetLab is
the slice, which is a collection of VMs on different
nodes that allow the same user(s) to control them. A
node typically contains many different VMs from
many different slices, and slices typically span many
different nodes. The common PlanetLab (mis)usage of
the word ‘‘slice’’ means both the collection of simi-
larly managed VMs and an individual VM.

Typical usage patterns on PlanetLab consist of an
authorized user creating a new slice and then adding it
to one or more nodes. Many slices are used for rela-
tively short periods of time (a week or two) and then
removed from nodes (which tears down the VMs on
those nodes). It is not uncommon for a group that
wants to run an experiment to create and delete a slice
that spans hundreds of nodes in the same day. There
are relatively loose restrictions as to the number of
nodes slices may use and the types of slices that a
node may run so it is not uncommon for slices to span
all PlanetLab nodes.

Bootstrapping Slices on PlanetLab

New slices on PlanetLab do not have the Stork
client tools installed. Since slices are often short-lived
and span many nodes, requiring the user to log in and
install the Stork client tools on every node in a slice is
impractical. Stork makes use of a special initscript to
automatically install the Stork client tools in a slice.
The initscript is run whenever the VMM software
instantiates a VM for the slice on a node. The Stork
initscript communicates with the nest on the node and
asks the nest to share the Stork client tools with it. If
the nest process is not working, the initscript instead
retrieves the relevant RPMs securely from the Stork
repository.

Centralized Management

Once the Stork client tools are running they need
the master configuration file and public key for the
slice. Unfortunately the ssh keys that are used by Plan-
etLab to control slice access are not visible within the
slice, so Stork needs to obtain the keys through a dif-
ferent mechanism. Even if the PlanetLab keys were
available it is difficult to know which key to use
because many users may be able to access the same
VM. Even worse, often a different user may want to
take control of a slice that was previously managed by
another user. Stork’s solution is to store the public key
and master configuration file on the Stork repository.

The repository uses PlanetLab Central’s API to vali-
date that users have access to the slices they claim and
stores the files in a area accessible by https. The client
tools come with the certificate for the Stork repository
which pacman and stork use to securely download the
public key and master configuration file for the slice.
This allows users to change the master configuration
file or public key on all nodes by simply adding the
appropriate file to the Stork repository.

Modularity

Stork is highly modular and uses several inter-
faces that allow its functionality to be extended to
accommodate new protocols and package types:

Transfer A transfer module implements a trans-
port protocol. It is responsible for retrieving a particu-
lar object given the identifier for that object. Transfer
protocols currently supported by Stork include Co-
Blitz [21], BitTorrent [9], Coral [12], HTTP, and FTP.

Share A share module is used by the Stork nest
to share files between VMs. It protects files from
modification, maps content between slices, and au-
thenticates client slices. Currently Stork supports Plan-
etLab and Linux VServers. Using an extensible inter-
face allows Stork to be customized to support new
VM environments.

Package A package module provides routines
that the Stork client tools use to install, remove, and
interact with packages. It understands several package
formats (RPM, tar) and how to install them in the cur-
rent system.

Prepare A prepare module prepares packages
for sharing. Preparing a package typically involves
extracting the files from the package. The Prepare
interface differs from the Package interface in that
package install scripts are not run and databases (such
as the RPM database) are not updated. The nest
process uses the prepare module to ready the package
files for sharing.

Transfer Modules

Transfer modules are used to download files
from the Stork repository. Transfer modules encapsu-
late the necessary functionality of a particular transfer
protocol without having to involve the remainder of
Stork with the details.

Each transfer module implements a retrieve_files
function that takes several parameters including the
name of the repository, source directory on the reposi-
tory, a list of files, and a target directory to place the
files in. The transfer module is responsible for opening
and managing any connections that it requires to the
repositories. A successful call to retrieve_files returns a
list of the files that were successfully retrieved.

Transfer modules are specified to Stork via an
ordered list in the main Stork configuration file. Stork
always starts by trying the first transfer module in the

21st Large Installation System Administration Conference (LISA ’07) 85

Stork: Package Management for Distributed VM Environments Cappos, et al.

list. If this transfer module should fail or return a file
that is old, then Stork moves on to the next module in
the list.

Content Retrieval Modules
CoBlitz uses a content distribution network (CDN)

called CoDeeN [33] to support large files transfers with-
out modifying the client or server. Each node in the
CDN runs a service that is responsible for splitting large
files into chunks and reassembling them. This approach
not only reduces infrastructure and the need for resource
provisioning between services, but can also improve
reliability by leveraging the stability of the existing
CDN. CoBlitz demonstrates that this approach can be
implemented at low cost, and provides efficient transfers
even under heavy load.

Similarly, the Coral module uses a peer-to-peer
content distribution network that consists of volunteer
sites that run CoralCDN. The CoralCDN sites auto-
matically replicate content as a side effect of users
accessing it. A file is retrieved via CoralCDN simply
by making a small change to the hostname in an
object’s URL. Then a peer-to-peer DNS layer trans-
parently redirects browsers to nearby participating
cache nodes, which in turn cooperate to minimize load
on the origin web server. One of the system’s key
goals is to avoid creating hot spots. It achieves this
through Coral [12], a latency-optimized hierarchical
indexing infrastructure based on a novel abstraction
called a distributed sloppy hash table (DSHT).

BitTorrent is a protocol for distributing files. It
identifies content by URL and is designed to integrate
seamlessly with the web. Its advantage over HTTP is
that nodes that download the same file simultaneously
also upload portions of the file to each other. This
greatly reduces the load on the server and increases
scalability. Nodes that upload portions of a file are
called seeds. BitTorrent employs a tracker process to
track which portions each seed has and helps clients
locate seeds with the portions they need. BitTorrent
balances seed loads by having its clients preferentially
retrieve unpopular portions, thus creating new seeds
for those portions.

Stork also supports traditional protocols such as
HTTP and FTP. These protocols contact the repository
directly to retrieve the desired data object. It is prefer-
able to use one of the content distribution networks
instead of HTTP or FTP as it reduces the repository
load.

Stork supports all of these transfer mechanisms
with performance data presented in the results section.
One key observation is that although these transfer
methods are efficient, the uncertainties of the Internet
make failure a common case. For this reason the trans-
fer module tries a different transfer mechanism when
one fails. For example, if a BitTorrent transfer fails,
Stork will attempt CoBlitz, HTTP, or another mecha-
nism until the transfer succeeds or gives up. This

provides efficiency in the common case, and correct
handling when there is an error.

Nest Transfer
In addition to the transfer modules listed above,

Stork supports a nest transfer module. The nest trans-
fer module provides an additional level of indirection
so that the client asks the nest to perform the transfer on
its behalf rather than performing the transfer directly. If
the nest has a current copy of the requested item in its
cache, then it can provide the item directly from the
cache. Otherwise, the nest will invoke a transfer module
(such as BitTorrent, HTTP, etc.) to retrieve the item,
which it will then provide to the client and cache for
later use.

Push
Stork supports metadata distribution to the nests

using a publish/subscribe system [11]. In a publish/
subscribe system, subscribers register their interest in
an event and are subsequently notified of events gen-
erated by publishers. One such publish/subscribe sys-
tem is PsEPR [5]. The messaging infrastructure for
PsEPR is built on a collection of off-the-shelf instant
messaging servers running on PlanetLab. PsEPR pub-
lishes events (XML fragments) on channels to which
clients subscribe. Behind the scenes PsEPR uses over-
lay routing to route events among subscribers.

The Stork repository pushes out metadata updates
through PsEPR. It also pushes out the repository’s meta-
hash file that contains the hashes of the metadata files;
this serves as a heartbeat that allows nodes to detect
missed updates. In this manner nodes only receive meta-
data changes as necessary and there is no burden on the
repository from unnecessary polling.

Directory Synchronization
In addition to pushing data, Stork also supports a

mechanism for pulling the current state from a reposi-
tory. There are several reasons why this might be nec-
essary, with the most obvious being that the pub-
lish/subscribe system is unavailable or has not pub-
lished data in a timely enough manner. Stork builds
upon the transfer modules to create an interface that
supports the synchronization of entire directories.

Directory synchronization mirrors a directory
hierarchy from the repository to the client. It first
downloads the repository’s metahash file (the same file
that the repository publishes periodically using PsEPR).
This file contains a list of all files that comprise the
repository’s current state and the hashes for those files.
Stork compares the hashes to the those of the most
recent copies of these files that it has on disk. If a hash
does not match, then the file must be re-downloaded
using a transfer module.

Share Modules

Virtual machines are a double-edged sword: the
isolation they provide can come at the expense of
sharing between them. Sharing is used in conventional

86 21st Large Installation System Administration Conference (LISA ’07)

Cappos, et al. Stork: Package Management for Distributed VM Environments

systems to provide performance and resource utiliza-
tion improvements. One example is sharing common
application programs and libraries. They are typically
installed in a common directory and shared by all
users. Only a single copy of each application and
library exists on disk and in memory, greatly reducing
the demand on these resources. Supporting different
versions of the same software is an issue, however.
Typically multiple versions cannot be installed in the
same common directory without conflicts. Users may
have to resort to installing their own private copies,
increasing the amount of disk and memory used.

Stork enables sharing in a VM environment by
weakening the isolation between VMs to allow file
sharing under the control of the nest. Specifically,
read-only files can be shared such that individual
slices cannot modify the files, although they can be
unlinked. This reduces disk and memory consumption.
These benefits are gained by all slices that install the
same version of a package. It also allows slices to
install different package versions in the standard loca-
tion in their file systems without conflict.

In Stork, sharing is provided via Share modules
that hide the details of sharing on different VM plat-
forms. This interface is used by the nest and provides
five routines: init_client, authenticate_client, share, pro-
tect, and copy. Init_client is called when a client binds to
the nest, and initializes the per-client state. Authenti-
cate_client is used by the nest to authenticate the client
that has sent a bind request. This is done by mapping a
randomly named file into the client’s filesystem and
asking it to modify the file in a particular way. Only a
legitimate client can modify its local file system, and
therefore if the client succeeds in modifying the file
the nest requested, the nest knows that it is talking to a
legitimate client. The share routine shares (or unshares)
a file or directory between the client and nest, protect
protects (or unprotects) a file from modification by the
client, and copy copies a file between the nest and a
client.

The implementation of the Share module de-
pends on the underlying platform. On PlanetLab the
Share module communicates with a component of the
VMM called Proper [20] to perform its operations.
The nest runs in an unprivileged slice – all privileged
operations, such as sharing, copying, and protecting
files, are done via Proper.

On the Vserver platform the nest runs in the root
context, giving it full access to all VM file systems
and allowing it to do all of its operations directly. Hard
links are used to share files between VMs. The
immutable bits are used to protect shared files from
modification. Directories are shared using mount --bind.
Copying is easily done because the root context has
access to all VM filesystems.
Package Modules

Stork supports the popular package formats RPM
and tar. In the future, other package formats such as

Debian may be added. Each type of package is encap-
sulated in a package module. Each package module
implements the following interfaces:

is_package_understood. Returns true if this pack-
age module understands the specified package type.
Stork uses this function to query each package module
until a suitable match is found.

get_package_provides. Returns a list of dependen-
cies that are provided by a package. This function is
used to generate the metadata that is then used to
resolve dependencies when installing packages.

get_packages_requires. Returns a list of packages
that this package requires. This function is used along
with get_package_provides to generate the package
metadata.

get_package_files. Returns a list of the files that
are contained in a package. This function is also used
when generating package metadata.

get_package_info. Returns the name, version, re-
lease, and size of a package. This information allows
the user to install a specific version of a package.

get_installed_versions. Given the name of a pack-
age, returns a list of the versions of the package that
are installed. This function is used to determine when
a package is already installed, so that an installation
can be aborted, or an upgrade can be performed if the
user has requested upgrades.

execute_transactions. Stork uses a transaction-based
interface to perform package installation, upgrade, and
removal. A transaction list is an ordered list of package
actions. Each action consists of a type (install, upgrade,
remove) and a package name.

Supported Package Types
stork_rpm. Stork currently supports RPM and tar

packages. The RPM database is maintained internally
by the rpm command-line tool, and Stork’s RPM pack-
age module uses this tool to query the database and to
execute the install, update, and remove operations,

stork_tar. Tar packages are treated differently be-
cause Linux does not maintain a database of installed
tar packages, nor is there a provision in tar packages
for executing install and uninstall scripts. Stork allows
users to bundle four scripts, .preinstall, .postinstall, .prere-
move, .postremove that are executed by Stork at the
appropriate times during package installation and re-
moval. Stork does not currently support dependency res-
olution for tar packages, but this would be a straightfor-
ward addition. Stork maintains a database that contains
the names and versions of tar packages that are installed
that mimics the RPM database provided by the rpm tool.

Nest Package Installation
A special package manager, stork_nest_rpm, is

responsible for performing shared installation of RPM
packages. Shared installation of tar packages is not
supported at this time. Performing a share operation is
a three-phase process.

21st Large Installation System Administration Conference (LISA ’07) 87

Stork: Package Management for Distributed VM Environments Cappos, et al.

In the first phase, stork_nest_rpm calls stork_rpm
to perform a private installation of the package. This
allows the package to be installed atomically using the
protections provided by RPM, including executing any
install scripts. In the second phase, stork_nest_rpm con-
tacts the Stork nest and asks it to prepare the package
for sharing. The prepare module is discussed in the
following section. Finally, in the third phase stork_
nest_rpm contacts the nest and instructs it to share the
prepared package. The nest uses the applicable share
module to perform the sharing. The private versions of
files that were installed by stork_rpm are replaced by
shared versions. Stork does not attempt to share con-
figuration files because these files are often changed
by the client installation. Stork also examines files to
make sure they are identical prior to replacing a pri-
vate copy with a shared copy.

Removal of packages that were installed using
stork_nest_rpm requires no special processing. stork_
nest_rpm merely submits the appropriate remove actions
to stork_rpm. The stork_rpm module uses the rpm tool to
uninstall the package, which unlinks the package’s files.
The link count of the shared files is decremented, but is
still nonzero. The shared files persist on the nest and in
any other clients that are linked to them.

Prepare Modules

Prepare modules are used by the nest to prepare a
package for sharing. In order to share a package, the
nest must extract the files in the package. This extrac-
tion differs from package installation in that no instal-
lation scripts are run, no databases are updated, and
the files are not moved to their proper locations.
Instead, files are extracted to a sharing directory.

Prepare modules only implement one interface,
the prepare function. This function takes the name of a
package and the destination directory in which to
extract the package.

RPM is the only package format that Stork cur-
rently shares. The first step of the stork_rpm_prepare
module is to see if the package has already been pre-
pared. If it has, then nothing needs to be done. If the
package has not been prepared, then stork_rpm_prepare
uses rpm2cpio to convert the RPM package into a cpio
archive that is then extracted. stork_rpm_prepare queries
the rpm tool to determine which files are configuration
files and moves the configuration files to a special loca-
tion so they will not be shared. Finally, stork_rpm_pre-
pare sets the appropriate permissions on the files that it
has extracted.

Stork Walkthrough

This section illustrates how the Stork compo-
nents work together to manage packages using the ear-
lier example in which an administrator installs an
updated version of the foobar package on the VMs the
company uses for testing and on the non-VM desktop
machines used by the company’s developers.

1. The administrator uses storkutil to add the new
version of the foobar package to her TP file.

2. She uses storkutil to add the groups Devel and
Test to her groups.pacman file, representing the
developer ’s end systems and the testing VMs,
respectively. Since groups can be reused, this
step most likely would have been done previ-
ously.

3. The administrator uses storkutil to add a line to
her packages.pacman file instructing the Test
group to update foobar. She does the same for
the Devel group.

4. Storkutil automatically signed these files with
her private key. She now uploads these files to
a Stork repository. If the new version of the foo-
bar package is not already on the repository she
uploads this as well.

5. The repository treats the TP and pacman files
similarly. The signatures are verified using the
administrator ’s public key that is embedded in
the file name. The new files replace the old if
their signatures are valid and their timestamps
newer. The foobar package is stored in a direc-
tory whose name is its secure hash. The pack-
age metadata is extracted and made available
for download.

6. The repository uses the publish/subscribe sys-
tem PsEPR to push out a new repository meta-
hash to the VMs.

7. The VMs are running stork_receive_update and
obtain the new repository metahash. The stork_
receive_update daemon wakes up the pacman
daemon.

8. The pacman daemon updates its metadata. On
non-VM platforms, the files are downloaded
efficiently using whatever transfer method is
listed in the Stork configuration file. On VM
platforms, pacman retrieves the files through the
nest (which means the files are downloaded
only once per physical machine).

9. Pacman processes its metadata and if the cur-
rent VM is in either the Test or Devel groups it
calls stork to update the foobar package.

10. The stork tool verifies that it has the current
metadata and configuration files. This is useful
because it is not uncommon for several files to
be uploaded in short succession. If this is not
the case it retrieves the updated files in the
same manner as pacman.

11. Stork verifies that the specified version of foobar
is not already installed; if it is, Stork simply exits.

12. Stork searches the package metadata for the
specified package. If no candidate is found then
it exits with an error message that the package
cannot be found. Multiple candidates may be
returned if the metadata database contains sev-
eral versions of foobar.

13. Stork verifies that the user trusts the candidate
versions of foobar. It does this by applying the

88 21st Large Installation System Administration Conference (LISA ’07)

Cappos, et al. Stork: Package Management for Distributed VM Environments

rules from the user’s TP file one at a time until
a rule is found that matches each candidate. If
the rule is a DENY rule, then the candidate is
rejected. If the rule is an ACCEPT rule, then
the candidate is deemed trustworthy. The result
of trust verification is an ordered list of package
candidates.

14. Stork now has one or more possible candidates
for foobar. However, if foobar depends on other
packages stork repeats steps 13-17 for the de-
pendencies to determine if those dependencies
can be satisfied.

15. Stork now has a list of packages that are to be
updated, including foobar and its missing depen-
dencies. Stork uses a transfer module to retrieve
foobar and dependent packages. The highest pri-
ority transfer method is to contact the reposi-
tory, which is via the nest in VM environments.

16. In a VM environment the nest receives the
requests for foobar and its dependencies from
the client VM. If these files are already cached
on the nest, then the nest provides those local
copies. If not, then the nest invokes the transfer
modules (BitTorrent, CoBlitz, etc.) to retrieve
the files. When retrieval is complete, the nest
shares the package with the client VM.

17. Stork now has local copies of foobar and its
dependent packages. The client queries the
package modules to find one that can install the
package. In non-VM environments the stork_
rpm module installs the packages using RPM
and returns to stork which exits. In VM environ-
ments the stork_nest_rpm module is tried first
(stork will fail over and use stork_rpm if this
module fails). Because foobar is an RPM pack-
age, stork_nest_rpm can process it. Stork builds a
transaction list and passes it to the execute_
transactions function of stork_nest_rpm

18. In a VM environment the stork_nest_rpm mod-
ule passes the transaction list to stork_rpm in
order to install a private non-shared copy of the
foobar package.

19. In a VM environment the stork_nest_rpm mod-
ule then contacts the nest and issues a request
to prepare and share foobar. The nest uses the
appropriate prepare module to extract the files
contained in foobar. The nest uses the appropri-
ate share module to share the extracted files
with the client VM. Sharing overwrites the pri-
vate versions of the files in the client’s VM
with shared versions from the foobar package.

In some cases there will be systems that do not
receive the PsEPR update. This could occur because
PsEPR failed to deliver the message or perhaps
because the system is down. If PsEPR failed then pac-
man check for updates every five minutes. If the system
was down then when it restarts pacman will run. Either
way pacman will start and obtain a new repository

metahash and the system will continue the process from
Step 8.

If nest or module failures happen, stork fails over
to other modules that might be able to service the
request. For example, if the packages cannot be down-
loaded by BitTorrent, the tool will instead try another
transfer method like CoBlitz as specified in the master
configuration file.

Results

Stork was evaluated via several experiments on
PlanetLab. The first measures the effectiveness of
Stork in conserving disk space when installing pack-
ages in VM environments. The second experiment
measures the memory savings Stork provides to pack-
ages installed in multiple VMs. The final set of exper-
iments measure the impact Stork has on package
downloads both in performance and in repository
load.

Disk Usage

The first experiment measured the amount of
disk space saved by installing packages using Stork
versus installing them in client slices individually
(Figure 5). These measurements were collected using
the 10 most popular packages on a sample of 11 Plan-
etLab nodes. Some applications consist of two pack-
ages: one containing the application and one contain-
ing a library used exclusively by the application. For
the purpose of this experiment they are treated as a
single package.

Package Disk Space (KB) Percent
Rank Name Standard Stork Savings

1 scriptroute 8644 600 93%
2 undns 13240 652 95%
3 chord 64972 1216 98%
4 j2re 61876 34280 45%
5 stork 320 32 90%
6 bind 6884 200 97%
7 file 1288 36 97%
8 make 808 32 96%
9 cpp 3220 44 99%

10 binutils 6892 60 99%

Figure 5: Disk Used by Popular Packages. This ta-
ble shows the disk space required to install the 10
most popular packages installed by the slices on a
sampling of PlanetLab nodes. The Standard col-
umn shows how much per-slice space the package
consumes if nothing is shared. The Stork column
shows how much per-slice space the package
requires when installed by Stork.

For all but one package, Stork reduced the per-
client disk space required to install a package by over
90%. It should be noted that the nest stores an entire

21st Large Installation System Administration Conference (LISA ’07) 89

Stork: Package Management for Distributed VM Environments Cappos, et al.

copy of the package to which the clients link; Stork’s
total space savings is therefore a function of the total
number of clients sharing a package.

One package, j2re, had savings of only 45%. This
was because many of the files within the package were
themselves inside of archives. The post-install scripts
extract these files from the archives. Since the post-
install scripts are run by the client, the nest cannot
share the extracted files between slices. By repackag-
ing the files so that the extracted files are part of the
package, this issue can be avoided.

Package Application Memory (MB) Percent
Rank Name Name Standard Stork Savings

1 scriptroute srinterpreter 5.8 3.2 45%
2 undns undns_decode 4.2 2.0 53%
3 chord adbd 7.6 2.3 70%
3 chord lsd 7.5 1.1 86%
4 j2re java 206.8 169.5 18%
5 stork stork 3.4 1.2 64%
6 bind named 36.7 32.1 12%
7 file file 2.6 1.3 50%
8 make make 2.5 1.1 54%
9 cpp cpp 2.5 1.2 52%
10 binutils objdump 3.3 1.4 59%
10 binutils strip 2.9 1.0 65%
10 binutils strings 3.4 1.7 50%

Figure 6: Memory Used by Popular Packages. Packages installed by Stork allow slices to share process memory.
The Standard column shows how much memory is consumed by each process when nothing is shared. With
Stork the first process will consume the same amount as the Standard column, but additional processes only
require the amount shown in the Stork column.

Memory Usage
Stork also allows processes running in different

slices to share memory because they share the under-
lying executables and libraries (Figure 6). The primary
application was run from each package and its mem-
ory usage was analyzed. It was not possible to get
memory sharing numbers directly from the Linux ker-
nel running on the PlanetLab nodes. Since the Planet-
Lab kernel shares free memory pages between VMs
and there are many VMs being used by different users
on each PlanetLab node, this increases the difficulty of
gathering accurate memory usage information.

To obtain approximate results the pmap com-
mand was used to dump the processes’ address spaces.
Using the page map data, it is possible to classify
memory regions as shared or private. The results are
only approximate, however, because the amount of
address space shared does not directly correspond to
the amount of memory shared as some pages in the
address space may not be resident in memory. More
accurate measurements require changes to the Linux
kernel that are not currently feasible.

Another difficulty in measuring memory use is
that it changes as the program runs. Daemon programs

were simply started and measured. Applications that
process input files (such as java and make) were started
with a minimal file that goes into an infinite loop. The
remaining applications printed their usage information
and were measured before they exited.

The resulting measurements show that Stork typ-
ically reduces the memory required by additional pro-
cesses by 50% to 60%. There are two notable excep-
tions: named and java. These programs allocate huge
data areas that are much larger than their text seg-
ments and libraries. Data segments are private, so this
shadows any benefits Stork provides in sharing text
and libraries.

Package Retrieval

Stork downloads packages to the nest efficiently,
in terms of the amount of network bandwidth required,
server load, and elapsed time. This was measured by
retrieving a 10 MB package simultaneously from 300
nodes (Figure 7), simulating what happens when a
new package is stored on the repository. Obviously
faulty nodes were not included in the experiments, and
a new randomly-generated 10 MB file was used for
each test. Each test was run three times and the results
averaged. It proved impossible to get all 300 nodes to
complete the tests successfully; in some cases some
nodes never even started the test. Faulty and unrespon-
sive nodes are not unusual on PlanetLab. This is dealt
with by simply reporting the number of nodes that
started and completed each test.

Repository load is important to system scalabil-
ity, represented as the total amount of network traffic
generated by the repository. This includes retransmis-
sions, protocol headers, and any other data. For Bit-
Torrent, this includes the traffic for both the tracker
and the initial seed as they were run on the same node;

90 21st Large Installation System Administration Conference (LISA ’07)

Cappos, et al. Stork: Package Management for Distributed VM Environments

running them on different nodes made negligible dif-
ference. At a minimum the repository must send 10
MB, since the clients are downloading a 10 MB file.
CoBlitz generated the least network traffic, sending
7.8 times the minimum. BitTorrent sent 3.3 times as
much data as CoBlitz and Coral sent 5.5 times as
much as CoBlitz. HTTP was by far the worst, sending
39.5 times more than CoBlitz. In fact, HTTP exceeded
the product of the number of clients and the file size
because of protocol headers and retransmissions.

Transfer Effective Client Bandwidth (Kbps) Nodes Server
Protocol 25% Median Mean 75% Completed MB Sent

HTTP 413.9 380.6 321.2 338.1 280/286 3080.3
Coral 651.3 468.9 253.6 234.1 259/281 424.7
CoBlitz 1703.5 737.2 381.1 234.0 255/292 77.9
BitTorrent 2011.8 1482.2 1066.9 1044.0 270/284 255.8

Figure 7: Package Download Performance. This table shows the results of downloading a 10 MB file to 300
nodes. Each result is the average of three tests. The client bandwidth is measured with respect to the amount of
file data received, and the mean, median, 25th percentile, and 75th percentile results given. The Nodes Com-
pleted column shows the number of nodes that started and finished the transfer. The Server MB Sent is the
amount of network traffic sent to the clients, including protocol headers and retransmissions.

For each test the amount of useful bandwidth
each client received (file data exclusive of network
protocol headers) is reported, including both the me-
dian and mean, as well as the 25th and 75th per-
centiles. BitTorrent’s mean bandwidth is 2.8 times that
of CoBlitz, 3.3 times that of HTTP, and 4.2 times that
of Coral. HTTP does surprisingly well, which is a
result of a relatively high-speed connection from the
repository to the PlanetLab nodes.

Figure 8 shows the cumulative distribution of
client completion times. More than 78% of the nodes
completed the transfer within 90 seconds using Bit-
Torrent, compared to only 40% of the CoBlitz and
23% of the Coral nodes. None of the HTTP nodes fin-
ished within 90 seconds.

The distribution of client completion times also
varied greatly among the protocols. The time of HTTP
varied little between the nodes: there is only an 18%
difference between the completion time of the 25th
and 75th percentiles. The BitTorrent clients in the 25th
percentile finished in 48% the time of clients in the
75th percentile, while Coral clients differed by 64%.
CoBlitz had the highest variance, so that the clients in
the 25th percentile finished in 14% of the time of the
clients in the 75% percentile, meaning that the slowest
nodes took 7.3 times as long to download the file as
the fastest.

These results reflect how the different protocols
download the file. All the nodes begin retrieving the
file at the same time. Clients in BitTorrent favor down-
loading rare portions of the file first, which leads to
most of the nodes downloading from each other, rather
than from the repository. The CoBlitz and Coral CDN
nodes download pieces of the file sequentially. This
causes the clients to progress lock-step through the file,
all waiting for the CDN node with the next piece of the

file. This places the current CDN node under a heavy
load while the other CDN nodes are idle.

Figure 8: Elapsed Time. This graph shows the cu-
mulative distribution of client completion times.
Only nodes that successfully completed are in-
cluded.

Based on these results Stork uses BitTorrent as
its first choice when performing package retrievals,
switching to other protocols if it fails. BitTorrent
decreased the transfer time by 70% over over HTTP
and reduces the amount of data that the repository
needs to send by 92%.

Related Work

Prior work to address the problem of software
management can be roughly classified into three cate-
gories: (a) traditional package management systems
which resolve package dependencies and retrieve pack-
ages from remote systems, (b) techniques to reduce the
cost of duplicate installs, and (c) distributed file systems
that are used for software distribution.

Traditional Package Management Systems

Popular package management systems [2, 10, 27,
34, 36] typically retrieve packages via HTTP or FTP,

21st Large Installation System Administration Conference (LISA ’07) 91

Stork: Package Management for Distributed VM Environments Cappos, et al.

resolve dependencies, and manage packages on the
local system. They do not manage packages across
multiple machines. This leads to inefficiencies in a
distributed VM environment because a service spans
multiple physical machines, and each physical ma-
chine has multiple VMs. The package management
system must span nodes and VMs, otherwise VMs
will individually download and install packages, con-
suming excessive network bandwidth and disk space.

Most package management systems have support
for security. In general, however, the repository is
trusted to contain valid packages. RPM and Debian
packages can be signed by the developer and the signa-
ture is verified before the package is installed. This
requires the user to have the keys of all developers. In
many cases package signatures are not checked by
default because of this difficulty. The trustedpackages
file mechanism in Stork effectively allows multiple sig-
natures per package so that users require fewer keys.

Reducing the Cost of Duplication
Most VMMs focus on providing isolation be-

tween VMs, not sharing. However different techniques
have been devised to mitigate the disk, memory, and
network costs installing duplicate packages.

Disk A good deal of research has gone into pre-
venting duplicate data from consuming additional disk
space. For example, many file systems use copy-on-
write techniques [6, 8, 14, 15, 16, 30] which allow data
to be shared but copied if modified. This allows differ-
ent ‘‘snapshots’’ of a file system to be taken where the
unchanged areas will be shared amongst the ‘‘snap-
shots’’. However, this does not combine identical files
that were written at different locations (as would happen
with multiple VMs downloading the same package).

Some filesystem tools [4] and VMMs [17, 18]
share files that have already been created on a system.
They unify common files or blocks to reduce the disk
space required. This unification happens after the
package has been installed; each VM must download
and install the package, only to have its copies of the
files subsequently replaced with links. Stork avoids
this overhead and complexity by linking the files in
the first place.

Another technique for reducing the amount of
storage space consumed by identical components de-
tects duplicate files and combines them as they are
written [25]. This is typically done by using a hash of
the file blocks to quickly detect duplicates. Stork
avoids the overhead of needing to check file blocks for
duplicates on insertion and avoids the need to down-
load the block multiple times in the first place.

Memory There are many proposals that try to
reduce the memory overhead of duplicate memory
pages. Disco [6] implements copy-on-write memory
sharing between VMs which allows not only a pro-
cess’ memory pages to be shared but also allows
duplicate buffer cache pages to be shared. The sharing

provided by Stork is much less effective than Disco,
but at a much lower cost.

Stork allows VMs to share the memory used by
shared applications and libraries. VMware ESX Server
[32] also allows VMs to share memory, but does so
based on page content. A background process scans
memory looking for multiple copies of the same page.
Any redundant copies are eliminated by replacing
them with a single copy-on-write page. This allows for
more potential sharing than Stork, as any identical
pages can be shared, but at the cost of having pro-
cesses create duplicate pages only to have them culled.

Network Bandwidth A common technique to
mitigate the network costs of duplicate data retrieval is
to use a proxy server [7, 26, 28, 35]. Proxy servers
minimize the load on the server providing the data and
also increase the performance of the clients. However,
the data still must be transfered multiple times over the
network, while the Stork nest provides the data to the
client VMs without incurring network traffic (much like
each system running its own proxy server for packages).
Stork uses techniques such as P2P file dissemination [9]
along with proxy based content retrieval [22, 12] to
minimize repository load.

Distributed File Systems
Stork uses content distribution mechanisms to

download packages to nodes. Alternatively, a distributed
file system such as NFS could be used. For example, the
relevant software package files could be copied onto a
file system that is shared via NFS. There are many
drawbacks to this technique including poor performance
and the difficulty in supporting different (and existing)
packages on separate machines.

Among the numerous distributed files systems
Shark [1] and SFS-RO [13] are two that have been
promoted as a way to distribute software. Clients can
either mount applications and libraries directly, or use
the file system to access packages that are installed
locally. The former has performance, reliability, and
conflict issues; the latter only uses the distributed file
system to download packages, which may not be supe-
rior to using an efficient content distribution mecha-
nism and does not provide centralized control and
management.

Conclusion

Stork provides both efficient inter-VM package
sharing and centralized inter-machine package man-
agement. When sharing packages between VMs it typ-
ically provides over an order of magnitude in disk sav-
ings, and about 50% of the memory costs. Addition-
ally, each node needs only download a package once
no matter how many VMs install it. This reduces the
package transfer time by 70% and reduces the reposi-
tory load by 92%.

Stork allows groups of VMs to be centrally
administered. The pacman tool and its configuration

92 21st Large Installation System Administration Conference (LISA ’07)

Cappos, et al. Stork: Package Management for Distributed VM Environments

files allow administrators to define groups of VMs and
specify which packages are to be installed on which
groups. Changes are pushed to the VMs in a timely
fashion, and packages are downloaded to the VMs
efficiently. Stork has been in use on PlanetLab for
over four years and has managed thousands of virtual
machines. The source code for Stork may be down-
loaded from http://www.cs.arizona.edu/stork

Acknowledgments

First and foremost, we would like to thank all of
the undergraduates who were not coauthors but assisted
with the development of Stork including Mario Gonza-
lez, Thomas Harris, Seth Hollyman, Petr Moravsky,
Peter Peterson, Justin Samuel, and Byung Suk Yang. We
would also like to thank all of the Stork users. A special
thanks goes out to the developers of the services we
use including Vivek Pai, KyoungSoo Park, Sean Rhea,
Ryan Huebsch, and Robert Adams for their efforts in
answering our countless questions. We would espe-
cially like to thank Steve Muir at PlanetLab Central
for his efforts on our behalf throughout the develop-
ment of Stork and Proper.

Biographies

Justin Cappos is a Ph. D. student in the Com-
puter Science Department at the University of Ari-
zona. He has been working on projects involving
large, real world distributed systems for the past four
years. His other research interests include resource
allocation, content aggregation, and tools for building
distributed systems. He can be reached electronically
at justin@cs.arizona.edu.

Scott Baker received a B.S., M.S., and Ph.D. in
Computer Science at the University of Arizona.He
now works as a software consultant, with a focus in
Linux systems programming. He can be reached at
bakers@cs.arizona.edu.

Jeremy Plichta is a senior at the University of Ari-
zona majoring in Computer Science, with a minor in
Mathematics. After graduating, he plans to pursue a
career in industry with the possibility of graduate study
at a later date. He designed and maintained the Stork
Repository as well as some aspects of the Stork GUI.
He can be reached electronically at jplichta@arizona.
edu.

Duy Nguyen is currently an undergraduate stu-
dent at the University of Arizona. He has been work-
ing on the Stork Project for a year. His other interests
include programming languages, networking, web de-
sign, animation, and instructional applications. He can
be reached electronically at dqn@email.arizona.edu.

Jason Hardies received a BA in linguistics at the
University of Arizona. While a student he worked on
the Stork project. After leaving the university in 2006,
he joined the healthcare software company Epic Sys-
tems, Corp. in Madison, WI where he is a software

developer. He can be reached electronically at jhardies@
epicsystems.com.

Matt Borgard is currently an undergraduate at the
University of Arizona, studying Computer Science
and Creative Writing. His interests include storage,
computational linguistics and interactive storytelling.
He can be reached electronically at mborgard@email.
arizona.edu.

Jeffry Johnston received a B.S. in Computer Sci-
ence at the University of Arizona in 2007. He is cur-
rently employed at IBM in Tucson, Arizona where he is
a software engineer in the z/OS Storage DFSMShsm
department. He can be reached electronically at stork@
kidsquid.com.

John H. Hartman is an Associate Professor in the
Department of Computer Science at the University of
Arizona, which he joined in 1995. He received his
Ph.D. in Computer Science from the University of
California at Berkeley in 1994. His research interests
include distributed file systems, networks, distributed
operating systems, and mobile computing. He can be
reached electronically at jhh@cs.arizona.edu .

Bibliography

[1] Annapureddy, S., M. J. Freedman, and D. Mazières,
‘‘ S h a r k : Scaling File Servers via Cooperative Cach-
ing,’’ Proceedings 2nd NSDI Boston, MA, May,
2005.

[2] Debian APT tool ported to RedHat Linux, http://
www.apt-get.org/ .

[3] Barham, P., B. Dragovic, K. Fraser, S. Hand, T.
Harris, A. Ho, R. Neugebauer, I. Pratt, and A.
Warfield, ‘‘Xen and the Art of Virtualization,’’
Proceedings 19th SOSP, Lake George, NY, Oct,
2003.

[4] Bolosky, W. J., S. Corbin, D. Goebel, and J. R.
Douceur, ‘‘Single Instance Storage in Windows
2000,’’ Proceedings 4th USENIX Windows Sys-
tems Symposium, pp. 13-24, Seattle, WA, Aug,
2000.

[5] Brett, P., R. Knauerhase, M. Bowman, R. Adams,
A. Nataraj, J. Sedayao, and M. Spindel, ‘‘A Shared
Global Event Propagation System to Enable Next
Generation Distributed Services,’’ Proceedings of
the 1st Workshop on Real, Large Distributed Sys-
tems, San Francisco, CA, Dec, 2004.

[6] Bugnion, E., S. Devine, K. Govil, and M. Rosen-
blum, ‘‘Disco: Running Commodity Operating Sys-
tems On Scalable Multiprocessors,’’ ACM Transac-
tions on Computer Systems, Vol. 15, Num. 4, pp.
412-447, Nov, 1997.

[7] Chankhunthod, A., P. B. Danzig, C. Neerdaels, M.
F. Schwartz, and K. J. Worrell, ‘‘A Hierarchical
Internet Object Cache,’’ USENIX Annual Technical
Conference, pp. 153-164, 1996.

[8] Chutani, S., O. T. Anderson, M. L. Kazar, B. W.
Leverett, W. A. Mason, and R. N. Sidebotham,

21st Large Installation System Administration Conference (LISA ’07) 93

Stork: Package Management for Distributed VM Environments Cappos, et al.

‘‘The Episode File System,’’ Proceedings of the
USENIX Winter 1992 Technical Conference, pp.
43-60, San Fransisco, CA, USA, 1992.

[9] Cohen, B., ‘‘Incentives Build Robustness in Bit-
Torrent,’’ Workshop on Economics of Peer-to-
Peer Systems, 2003.

[10] Debian – dpkg, http://packages.debian.org/stable/
base/dpkg .

[11] Eugster, P. T., P. Felber, R. Guerraoui, and A.-M.
Kermarrec, ‘‘The Many Faces of Publish/Sub-
scribe,’’ ACM Computing Surveys, Vol. 35, Num.
2, pp. 114-131, Jun, 2003.

[12] Freedman, M. J., E. Freudenthal, and D. Mazières,
‘‘ D e m o c r a t i z i n g Content Publication with Coral,’’
Proceedings 1st NSDI, San Francisco, CA, Mar.,
2004.

[13] Fu, K., M. F. Kaashoek, and D. Mazières, ‘‘The
Click Modular Router,’’ ACM Transactions on
Computer Systems, Vol. 20, Num. 1, pp. 1-24,
Feb, 2002.

[14] Ghemawat, S., H. Gobioff, and S.-T. Leung,
‘‘The Google File System,’’ Proceedings 19th
SOSP, Lake George, NY, Oct 2003.

[15] Hitz, D., J. Lau, and M. Malcolm, ‘‘File System
Design for an NFS File Server Appliance,’’ Pro-
ceedings of the USENIX Winter 1994 Technical
Conference, pp. 235-246, San Fransisco, CA,
USA, 1994.

[16] Howard, J. H., M. L. Kazar, S. G. Menees, D. A.
Nichols, M. Satyanarayanan, R. N. Sidebotham,
N., and M. J. West, ‘‘Scale and Performance in a
Distributed File System,’’ ACM Transactions on
Computing Systtems, Vol. 6, Num. 1, pp. 51-81,
1988.

[17] Kamp, P.-H., and R. N. M. Watson, ‘‘Jails: Confin-
ing the Omnipotent Root,’’ Proceedings 2nd Inter-
national SANE Conference, Maastricht, The Nether-
lands, May, 2000.

[18] Linux VServers Project, http://linux-vserver.org/ .
[19] Mazières, D., M. Kaminsky, M. F. Kaashoek, and

E. Witchel, ‘‘Separating Key Management From
File System Security,’’ Proceedings 17th SOSP,
pp. 124-139, Kiawah Island Resort, SC, Dec,
1999.

[20] Muir, S., L. Peterson, M. Fiuczynski, J. Cappos,
and J. Hartman, ‘‘Proper: Privileged Operations
in a Virtualised System Environment,’’ Proceed-
ings USENIX ’05, Anaheim, CA, Apr, 2005.

[21] Park, K., and V. S. Pai, ‘‘Deploying Large File
Transfer on an HTTP Content Distribution Net-
work,’’ Proceedings of the 1st Workshop on Real,
Large Distributed Systems, San Francisco, CA,
Dec, 2004.

[22] Park, K., and V. S. Pai, ‘‘Scale and Performance
in the CoBlitz Large-File Distribution Service,’’
Proceedings 3rd NSDI, San Jose, CA, May, 2005.

[23] Peterson, L., T. Anderson, D. Culler, and T. Ros-
coe, ‘‘A Blueprint for Introducing Disruptive

Te c h n o l o g y into the Internet,’’ Proceedings Hot-
Nets-I, Princeton, NJ, Oct, 2002.

[24] PlanetLab, http://www.planet-lab.org .
[25] Quinlan, S., and S. Dorward, ‘‘Venti: A New

Approach to Archival Storage,’’ First USENIX
Conference on File and Storage Technologies
(FAST), Monterey, CA, 2002.

[26] Rabinovich, M., J. Chase, and S. Gadde, ‘‘Not
All Hits Are Created Equal: Cooperative Proxy
Caching Over a Wide-Area Network,’’ Computer
Networking ISDN Systems, Vol. 30, pp. 2253-
2259, 1998.

[27] RPM Package Manager, http://www.rpm.org/ .
[28] squid: Optimising Web Delivery, http://www.

squid-cache.org/ .
[29] Stork Project, http://www.cs.arizona.edu/stork/ .
[30] Thekkath, C. A., T. Mann, and E. K. Lee,

‘‘Frangipani: A Scalable Distributed File Sys-
tem,’’ SOSP ’97: Proceedings of the Sixteenth
ACM Symposium on Operating Systems Princi-
ples, pp. 224-237, ACM Press, New York, NY,
USA, 1997.

[31] VMWare Workstation, http://www.vmware.com/ .
[32] Waldspurger, C. A., ‘‘Memory Resource Manage-

ment in VMware ESX Server,’’ Operating Sys-
tems Review, Vol. 36, pp. 181-194, 2002.

[33] Wang, L., K. Park, R. Pang, V. Pai., and L. Peter-
son, ‘‘Reliability and Security in the CoDeeN Con-
tent Distribution Network,’’ Proceedings USENIX
’02, San Francisco, CA, Aug, 2002.

[34] Windows Update, http://update.windows.com/ .
[35] WinProxy, http://www.winproxy.com/index.asp .
[36] Yum: Yellow Dog Updater Modified, http://linux.

duke.edu/projects/yum/ .

94 21st Large Installation System Administration Conference (LISA ’07)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

