
Teaching the Security Mindset With Reference Monitors∗

Justin Cappos
NYU Poly

Brooklyn, NY 11201, U.S.A.
jcappos@poly.edu

Richard Weiss
The Evergreen State College
Olympia, WA 98505 U.S.A.
weissr@evergreen.edu

ABSTRACT
One of the central skills in computer security is reasoning
about how programs fail. As a result, computer security
necessarily involves thinking about the corner cases that
arise when software executes. An unfortunate side effect of
this is that computer security assignments typically neces-
sitate deep understanding of a topic, such as how the stack
is laid out in memory or how web applications interact with
databases.

This work presents a series of assignments that require
very little background knowledge from students, yet provide
them with the ability to reason about failures in programs.
In this set of assignments, students implement two very sim-
ple programs in a high-level language (Python). Students
first implement a reference monitor that tries to uphold a
security property within a sandbox. For the second portion,
the students are provided each others’ reference monitors
and then write attack code to try to bypass the reference
monitors. By leveraging a Python-based sandbox, student
code is isolated cleanly, which simplifies development and
grading.

These assignments have been used in about a dozen classes
in a range of environments, including a research university,
online classes, and a four year liberal arts school. Student
and instructor feedback has been overwhelmingly positive.
Furthermore, survey results demonstrate that after a 2-3
week module, 76% of the students who did not understand
reference monitors and access control learned these key se-
curity concepts.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education; D.4.6 [Security and Protec-
tion]: Access controls; K.6.5 [Security and Protection]:
Unauthorized access (e.g., hacking, phreaking)

∗This work was partially supported by the NWDCSD
and NSF grants 1141341, 0834243, 1223588, 1205415, and
1241568.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’14, March 5–8, 2014, Atlanta, Georgia, USA.
Copyright 2014 ACM 978-1-4503-2605-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2538862.2538939

General Terms
Computer Security Education

Keywords
Security, Python, Access Control, Reference Monitor

1. INTRODUCTION
One of the central concepts in security is to understand

how systems can fail, and be made to fail, in different ways.
The ability to think about failures and how to trigger them
is often termed having a security mindset. It also extends to
questioning assumptions and think analytically about their
implications. This could be something simple such as,“What
can I assume about this web page that is asking for my pass-
word?” to“What is the set of invalid strings that an attacker
could send to this application that would make it fail?” The
analysis of the implications often leads to an exploration of
the subtleties of failure cases and requires detailed knowl-
edge of the underlying concept. For example, to understand
buffer overflows, a student must understand memory lay-
out and how the stack functions. To understand DNS cache
poisoning, one must understand how name resolution func-
tions on the Internet. To understand SQL injection and
XSS, one must understand the basics of web applications
and databases. To understand these specific applications
of the security mindset, one needs some advanced domain
knowledge. For this reason, security is typically only em-
phasized very late in the computer science curriculum which
causes some students to miss it. However, the security mind-
set can be understood independently of the application, and
it should be possible to give experiential training in lower
division classes.

In this work, we describe a set of programming assign-
ments that require very little background, but provide stu-
dents with an experience in understanding failure modes (i.e.
a security mindset) in the context of a reference monitor. A
reference monitor is a method or function that implements
an access control policy for a set of resources and is usu-
ally specified in terms of what capabilities are allowed. Our
goal is to effectively teach this topic in a way that requires
minimal background for the students.

In the first part of the assignment, students construct a
defensive program that functions as a reference monitor and
attempts to meet a specific security goal. This gives the
students the experience of thinking as a defender and rein-
forces the concepts of how to build a secure system. The
second part of the assignment involves the students attack-

ing each others’ defensive programs created in the first part
of the assignment. This allows students to see security from
the attackers standpoint and think about how to trigger fail-
ures. The third part of the assignment provides the students
with a working attack that bypassed their defense written by
another student. The students are then asked to categorize
the faults that led to the failure in their defensive program
and to provide a patch that fixes these problems.

These assignments have been used in about a dozen classes
in a range of environments, including both in class and on-
line classes at NYU Poly as well as classes at The Evergreen
State College, a four-year liberal arts school. The student
feedback has been overwhelmingly positive, with students
repeatedly remarking on the effectiveness of the assignments
during course evaluations. Furthermore, a pre- and post-
assessment of the learning objectives from this portion of the
class shows significant improvement in student understand-
ing. In the case of one content question that was directly
about the exercise, and required some higher-level under-
standing, 76% of the students who got the question wrong
on the pre-survey were able to answer it correctly on the
post-survey.

2. BACKGROUND
The assignment described in this work uses the sandbox

used in the Seattle testbed [2, 24, 12, 19]. Seattle’s sandbox
consists of a programming language virtual machine where
students write code in a subset of Python and it executes lo-
cally on their computer. Seattle’s sandbox is write-once, run
anywhere, so the assignment works for students that have
Linux, Mac, Windows, BSD, or other operating systems.

In addition to its use in this context, Seattle is a peer-
to-peer platform upon which students and researchers can
run their own code on end-user devices distributed across
the world [2]. One of the main goals of Seattle was to be
able to observe real Internet behavior by running software
on the everyday devices that are used by the community.
However, the security assignments described in this work do
not utilize the distributed nature of Seattle.

Seattle has seen broad educational use in 45 classes (pri-
marily on the topics of networking, distributed systems, and
security) at over a dozen universities [24, 2]. Students have
repeatedly lauded Seattle as easy to use and easy to learn.
There exists a wide array of instructional modules that lever-
age Seattle which are available through different sources [7,
14]. As of August 2013, Seattle is the top rated educational
resource on the ACM SIGCOMM Educational Resources
Site [1]. Assignments using Seattle are being included into
the next edition of the most widely used networking text-
book [10].

Interestingly, the Seattle sandbox provides a good envi-
ronment for the students to explore security because it iso-
lates what both the defensive and attack programs can do.
This is achieved with Seattle’s multilayer security design, as
is shown in Figure 1. User programs must access kernel op-
erations through reference monitors that are isolated using
the security layers technique [3]. Seattle itself has been de-
signed to handle the insertion of security functionality and
ensures that even if a student writes effective attack code,
they can do no harm to other students’ systems or the host
system [3]. The student’s security module sits on top of the
security monitors that are built into Seattle.

A reference monitor enforces an access control policy on

Figure 1: A reference monitor intercepts requests
provided by the user program and decides how to
process them. The encasement library provides
memory isolation between the reference monitor
and the user program. There is a clearly defined
boundary between the reference monitor and user
program, which are implemented in different files.
The vertical arrow indicates the only possible call-
path from user code passes through the reference
monitor before going into the sandbox TCB.

untrusted code. Seattle provides a mechanism for the user
to create new reference monitors that sit between untrusted
application code and methods in system libraries and the
kernel that are to be protected. As an example of how this
might be used, some files might have permissions set so that
the operating system would allow all users to modify them
arbitrarily. A reference monitor can programmatically de-
cide what to do in response to file operations, and so can
can do fine-grained operations such as block file writes that
would write known malware signatures.

3. THE ASSIGNMENT
The access control reference monitor exercise provides a

good opportunity for students to get a feeling of what it
means to have a security mindset and to own one’s code.
The assignment itself is general and can be customized when
used, perhaps to prevent cheating or allow the assignment
to be reused in multiple classes. For concreteness this sec-
tion describes one instance of the assignment (the “MZ”ver-
sion) before discussing other variations. A complete mod-
ule writeup for each part with detailed instructions (and
instructor-only solutions) is available online [17, 15]. There
are three main parts to the exercise.

Part One. In the first part, students write a defensive
program that enforces an access control policy [17]. For
example, the first time the assignment was given, students
implemented a reference monitor to prevent a malicious ap-
plication from writing the characters “MZ” to the first two
bytes of a file. (Historically, this is an indicator for an old
executable format.) The exercise is to do this by adding se-
curity rules to the functions available for reading from a file
and writing to a file. The exercise tests the student’s ability
to write secure code. The students are assessed on their suc-
cessful use of three design paradigms: accuracy, efficiency,
and security. An example of what the vulnerable code that

def writeat(self,data,offset):

if data.startswith("MZ") and (offset == 0):

raise ValueError("Cannot start file with MZ!")

else:

return self.file.writeat(data,offset)

Figure 2: An excerpt from the example (inadequate)
defensive code students are provided.

attempts to enforce this looks like is shown in Figure 2.

• Accuracy: The reference monitor should only stop cer-
tain actions from being blocked. All other actions
should be allowed. For example, If a user tries to write
“MX” as the first two bytes of a file, this should be al-
lowed. As a second example “ZM” should be allowed
as well. In fact, “MZ” can be written in the file as
well, so long as this is not at the first two characters.
Accuracy ensures all valid operations are permitted.

• Efficiency: The reference monitor should use a mini-
mum number of resources, so performance is not im-
pacted. This means the defensive code must not do
things like re-read the file before each write. Efficiency
ensures the reference monitor is not overly costly in
terms of unnecessary I/O.

• Security: The attacker should not be able to circum-
vent the reference monitor. Hence if the attacker can
first write “Z” as the second character and later writes
“M” as the first character, the action must be blocked.
Security ensures the reference monitor does not allow
an attacker to circumvent the goal of the reference
monitor.

Part Two. For the second part of the exercise [15], each
student’s code from the first part is made available to every
other student in the class. A student will create a series
of one or more test cases that attempt to cause security
problems or impact the accuracy of the system. To find
these flaws, we have observed students employing a vari-
ety of techniques. Essentially all students look at each oth-
ers code to find ways to compromise the reference monitor.
This provides students with some experience in bug-finding
through reading code. Many students also chose to write
routines to fuzz input to the reference monitors to further
uncover problems that they could exploit. A few students
also wrote tests that attempt to trigger time-of-check-to-
time-of-use (TOCTTOU) bugs by causing race conditions
in the code.

Part Three. In the third part of the assignment (which
has not been used at all of the schools), the students are
given the attack code that bypassed their reference monitor.
They are asked to fix the reference monitor so that the se-
curity it provides cannot be bypassed in the same way. The
student also must write a document that classifies the bugs
in their code according to type (such as TOCTTOU, error
handling logic, or similar issues). This helps to reinforce to
the student why these issues occurred and what they might
do to avoid them in the future.

Types of Errors Students Make. Writing effective de-
fensive code for this assignment is a deceptively hard task.
In prior classes, about 80% of the students wrote a refer-
ence monitor that other students could find a flaw in. (In

fact, most instructors who have attempted the assignment
also have errors in their reference monitor.) While in a few
cases, students simply do not adequately test their code and
have obvious programming errors, this is not the common
cause of issues. Students tend to write insecure code due to
overlooking a few common issues (listed from most to least
commonly exploited).

• The reference monitor needs to track the state of the
information on disk, but cannot re-read it for every ac-
cess (due to efficiency concerns). A common mistake
is when the attacker can cause the reference monitor’s
state to diverge from the underlying system’s state,
especially in error conditions. For example, if the pro-
gram attempts to write past the end of a file (or before
the beginning of a file), the reference monitor may in-
correctly update its state. As a result, the reference
monitor will improperly block or allow writes since the
disk contents differ. This can cause both security and
accuracy issues.

• Time-of-check-to-time-of-use (TOCTTOU) bugs and
other types of race conditions are a fairly common
oversight for students. Some students write test cases
that attempt to trigger a race condition to exploit these
problems. This can result in essentially any sort of at-
tack, even infinite loops in the reference monitor in
some cases.

• Some reference monitors inappropriately share state
for different files. For example, there may be a global
set of state that is used to store the first two bytes.
By opening multiple files, an attacker may be able to
overwrite this state and cause security and accuracy
issues.

• In rare cases, a student’s reference monitor may in-
appropriately retain state for a file. For example, an
attacker may create a file, write some data, then close
and delete the file. If the attacker recreates a file with
the same name, the state should be cleared.

One of the important features of this exercise is that stu-
dents can get experience in both offensive and defensive
roles. When defending a system, the more attacks one knows,
the better. Getting students to own their code is a signif-
icant challenge. In order for students to write secure code,
they must be able to see both sides. One unexpected bene-
fit of the assignment is that students seemed to enjoy seeing
each others’ solutions to assignments. Many students said
that being able to learn from (and exploit) these pieces of
code was much more rewarding than submitting exercises
and having them graded by the instructor or TA. From the
instructor’s standpoint, it has the additional benefit that
student feedback can be used in grading. The defensive parts
of the assignments can be graded based upon how well they
hold up to the offensive portion. (We provide scripts that
automate the grading process.) Simply by validating each
student’s attacks against the other students’ defenses, makes
an easy way to provide meaningful feedback and scoring.

3.1 Variations
The assignment can also be easily customized or modi-

fied to allow reuse. The ease of doing this is an important
feature because most faculty have limited time to develop

ASSIGNMENT:
In this assignment you will create a reference moni-

tor which stops the attacker from reading data securely

written in a file. You will create a function called

privatewrite which allows the user to write data into a

file which cannot be read back from the file. The data

can be overwritten but isn’t readable under any circum-

stance. You will do this by adding security rules to

the functions available for reading from and writing to

a file. Think of this as a method to write some data

securely into a file. The future of the system depends

on your ability to write secure code!

Figure 3: An excerpt from the assignment descrip-
tion for the privatewrite variation.

new curriculum. One such variation that we have tried is
the Private Write assignment. Instead of simply interposing
on an existing file system API call, as the ‘MZ’ assignment
does, the Private Write assignment adds a new call as is
specified in Figure 3. The complete module writeup with
detailed instructions for both the defense and attack code
are also available [18, 16].

As with the original assignment, we provided the students
an example reference monitor so they could see how to in-
tegrate and run their code. By examining the attack and
defense scores, this variation was of about the same diffi-
culty as the original assignment. This demonstrates that it
is easy to adapt the assignment to the preferences of the
individual instructor. As a result, the assignments can be
reused or customized to better fit different portions of the
curriculum.

4. METHODOLOGY FOR ASSESSMENT
This group of reference monitor exercises has been used

in about a dozen classes at multiple schools (NYU Poly
and The Evergreen State College). The assignment is very
straightforward to modify in minor ways to fit the class,
and this has been done by several instructors who used it.
The ease of modifying the exercise makes it easy for faculty
to adapt it to their classes and resist students posting and
copying answers.

When this assignment has been given in regular classes,
the students are usually given one week to complete each
part. In order to make the assignments easier to complete,
especially for students with no experience with Python, we
gave the students a template consisting of a simple refer-
ence monitor which inadequately checks the desired security
property. For example, this may check to see that the first
two characters in a single call to write are not “MZ”. A snip-
pet of this code is shown in Figure 2. Students are also given
an example of an attack program that tries to write “MZ” in
the first two characters. This provides students with a start-
ing point and demonstrates to them how to run the program
and see how an ineffective attack can be blocked.

Description of the courses we taught and how the
exercises were used: One of the faculty used this exer-
cise in an upper-division class on network security at The
Evergreen State College, a liberal arts college. Many of the
students did not know Python, and they were still able to
do the exercise. However, they made some mistakes due
to the fact that they were not thinking about concurrency

Q1 Q2 Q3 Q4
Pre-survey: number of correct
answers out of 57

29
(51%)

27
(47%)

21
(37%)

42
(74%)

Post-survey: number of correct
answers out of 38

32
(84%)

23
(61%)

20
(53%)

29
(76%)

For paired responses: number
of incorrect answers on pre-
survey

21 17 21 10

For paired responses: num-
ber of correct answers on post-
survey, given incorrect answer
on the pre-survey

16 11 12 5

Table 1: Survey results from classroom use of the
exercise.

and thread safety which are covered in other classes such as
operating systems.

This exercise was also given to a faculty attending the
CSAW Summer Research and Training for College Faculty,
a summer workshop on security [4]. These faculty were not
necessarily experts in security and they were only given one
evening to work on the assignment. Several of the faculty did
not know Python before starting the assignment. All of the
faculty completed both the defensive and offensive assign-
ments. While there were a few whose programs passed all of
the tests, the majority made mistakes. We think that this
shows that the exercise requires analysis skills and question-
ing assumptions (security mindset), and not just knowledge.

We were interested to know whether students fully en-
gaged in the exercises and learned the main concept. We
asked students a brief set of knowledge questions (listed in
Figure 4) before and after they were assigned the reference
monitor module. These questions were intended to obtain a
baseline of student understanding with respect to the con-
cepts that lie at the core of the module as well as related
concepts. Our survey asked questions on how a reference
monitor is used, how it relates to access control matrices and
how it relates to capability systems. It also asked a general
question about access control. The first question was a core
one, and that showed a direct relationship to the exercise.
The others potentially indicated higher cognitive levels at
which the student could make connections to related con-
cepts at the level of ’synthesis’ in Bloom’s taxonomy. With
laboratory exercises it is often possible for students to go
through the motions of doing the exercise without reflect-
ing deeply on it or even understanding what they are doing.
The four questions we asked were designed to measure un-
derstanding at a range of cognitive levels on a relative scale.
The first question was a knowledge question about how a
reference monitor is used. The other three questions were
about access control and required different levels of under-
standing. The levels of difficulty can be inferred from the
larger sample of students who took the post-survey and it
agreed with the a priori ranking of difficulty and cognitive
level. The four content questions were multiple choice, each
with four possible answers except the first, which had three.

5. RESULTS
We analyzed the survey results from the introductory se-

curity class at NYU Poly in the Fall of 2012. Our results
demonstrate that a significant number of students learned
the main concept of reference monitor and how it relates to
other concepts in access control. All of the students in the

Q1. Suppose that an application is running in an environment
with a reference monitor. The application gains access to the
operating system:

• Directly

• Through the reference monitor

• Either through the reference monitor or not at the applica-
tion programmer’s discretion

Q2. Which of the following is easy to do with an access matrix
system:

• Trust revocation of ”open” resources

• Listing all users with access to a resource

• Authentication of users

• Building a reference monitor

Q3. Which of the following is easy to do in a capability system:

• Trust revocation of ”open” resources

• Listing all users with access to a resource

• Authentication of users

• Building a reference monitor

Q4. Which of the following is crucial to every access control
system:

• Correct authentication of users

• Confidentiality

• Strong passwords

• Long cryptographic keys

Figure 4: Survey questions to measure learning in
the exercise.

class turned all three portions of the assignment. The aver-
age number of lines of code for each part of the assignment
was under 100. Although there were about 70 students in
the class, the number students who completed both pre- and
post-surveys using matching names was 34. The results are
summarized in Table 1.

The most significant result from the surveys was for the
first question (Q1) which was directly about the exercise.
For this question, of the 34 students with paired surveys,
21 students answered the question incorrectly on the pre-
survey. Of the 21, the number who answered it correctly
on the post-survey was 16. This demonstrates a significant
learning outcome. If none of those 21 students had learned
the concept and had guessed on the post-survey, we would
expect only 7 of them to have gotten the right answer. The
probability that 16 or more would have guessed the right
answer is less than 0.01. This result suggests that 76% of
the students who did not know the concept before, were
able to learn it by completing the exercise. Of the 13 who
answered it correctly on the pre-survey, one got it wrong on
the post-survey, suggesting that only one or two students
in that group were guessing. Note that the answer to the
question on the survey did not appear in the description of
the exercise. As we know from experience, it is possible for
students to do an exercise mechanically without grasping
the meaning, and that does not seem to be the case here.

Question 4 (Q4) was a general question about access con-
trol and was not addressed by the assignment. Of the 10
students who got it wrong on the pre-survey, 5 got it right on
the post-survey, which allows us to reject the null hypothesis
(p = .035) that no one learned the concept in the the time

frame of the assignments. Our explanation is that in the
process of attending lectures and reading for the assignment,
students also learned related material not directly covered.
This is important to track because a good assignment will
engage students in the subject and prime them for learning
related information. Questions 2 and 3 were related to the
assignment, and in this context required a higher level of
cognitive understanding than question 1 because they were
not specifically addressed in the assignments. For question
2, of the 17 students who got it wrong on the pre-survey,
11 got it correct on the post-, giving statistical significant
positive outcome with a p = .04 and an estimated learning
rate of 65%.

Question 3 is problematic for a couple of reasons. First,
depending on the way that the capability system is im-
plemeneted, there can be more than one correct answer. As
a result, we consider two answers as being potentially cor-
rect. This greatly reduces the statistical guarantees that stu-
dents are not guessing and that the improvements in scores
are not due to chance. Thus, although the percentage of stu-
dents who got it right increased whether it was scored with
one or two correct answers, the results were not statistically
significant in either case.

6. RELATED WORK
Security Injections [20] presents a compelling set of ex-

ercises for CS0, CS1 and CS2 that address the problem of
adding security-related exercises to an existing curriculum
at an introductory to intermediate level. However, their ex-
amples (such as buffer overflows and integer overflow) do
not give students the opportunity to engage in both defen-
sive and offensive roles. They focus on safe coding prac-
tices without giving them an opportunity to think actively
about how to attack vulnerable code. The SEED project [6]
presents a set of more advanced exercises and projects, but
they also do not involve both defensive and offensive roles.

There are a number of hands-on exercises in the form of
games. The competitive exercise firesim [23] does give stu-
dents an opportunity to assume both roles in a competitive
exercise about firewalls, although the attack role is limited
to a small set of options. CyberSIEGE is an interactive
video game with a number of high-level scenarios that em-
phasize defense and risk management [21]. Players decide
how to allocate resources to defend a network. It includes
scenarios about component configuration (e.g., ACLs; filters;
VPNs; etc.), policies/training, patch management, network
topology, use of cryptography, use of background checks, and
physical security. In spirit it seems to address the security
mindset, although it does not model vulnerability analysis
at a high level of detail and does not put players in the role
of attacker. EDURange [8] is an (as of yet unreleased) en-
vironment for developing competitive games with both of-
fensive and defensive roles. However, EDURange requires
deeper technical knowledge of networking, port scanning,
and similar tasks than the assignments described here. The
Control-Alt-Hack [5] card game teaches security awareness,
but does not involve analysis or the security mindset.

There are at least two platforms that provide an envi-
ronment for running cybersecurity exercises. They are DE-
TER [11] and RAVE [13]. They provide a virtual private
network which is flexible isolated from the Internet, so they
can be used for offensive and defensive exercises. These are
more suitable for advanced tasks like network exploitation

and penetration testing, while our assignments require much
less background and expertise.

The Google Gruyere [9] and OWASPWebgoat [22] projects
provide students with an opportunity to play the role of at-
tacker of vulnerable web applications. Gruyere also includes
tutorial material which helps students with a wide range
of backgrounds. Neither one provides an opportunity to
harden an application against attacks.

7. CONCLUSIONS AND FUTURE WORK
In order to be meaningful, practical, and engaging for

students, we believe that the computer security curriculum
must include hands-on exercises that develop both defensive
and offensive skills. This is integrally related to the security
mindset, which is about not trusting input and interfaces,
examining failure modes and questioning assumptions. This
topic is particularly important in the knowledge domain of
access control, which is one of the fundamental concepts in
computer security and arises with firewalls, file protections
and information processing in general. We believe that the
assignments we used challenged students to reassess failures
and think through assumptions in this key domain.

We applied pre- and post-surveys to assess whether stu-
dents learned the fundamental concept of a reference moni-
tor in the context of access control. The results showed that
there was a significant improvement at the knowledge level
and at higher levels, as well. While we did not show cau-
sation, we did show correlation over a short period of time.
We plan to collect additional survey data from other classes.

In the future, we would like to test more directly whether
students can learn the security mindset from doing exercises
that require them to take on both attacker and defender
roles. We believe that this can be done with exercises similar
to the one that we described in this paper. Although we do
not have any data for CS1 or CS2, we believe that there is an
opportunity to teach and assess the security mindset and the
concepts of access control using the defender and attacker
roles even in lower division classes. We intend to explore
these assignments in lower division classes to determine their
effectiveness early in the curriculum.

8. REFERENCES
[1] ACM SIGCOMM Educational Resources.

http://edusigcomm.info.ucl.ac.be/.

[2] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and
T. Anderson. Seattle: a platform for educational cloud
computing. SIGCSE Bull., 41(1):111–115, 2009.

[3] J. Cappos, A. Dadgar, J. Rasley, J. Samuel,
I. Beschastnikh, C. Barsan, A. Krishnamurthy, and
T. Anderson. Retaining Sandbox Containment Despite
Bugs in Privileged Memory-Safe Code. In The 17th
ACM Conference on Computer and Communications
Security (CCS ’10). ACM, 2010.

[4] Csaw summer research and training for college faculty.
http://www.poly.edu/events/2013/07/08/

csaw-summer-research-and-training-college-faculty.

[5] T. Denning, T. Kohno, and A. Shostack.
Control-alt-hack: a card game for computer security
outreach and education (abstract only). In Proceeding
of the 44th ACM technical symposium on Computer
science education, SIGCSE ’13, pages 729–729, New
York, NY, USA, 2013. ACM.

[6] W. Du and R. Wang. Seed: A suite of instructional
laboratories for computer security education. Journal
on Educational Resources in Computing (JERIC),
8(1):3, 2008.

[7] Educational Portal –Seattle – Trac. https:
//seattle.poly.edu/wiki/EducationalPortal.

[8] EDURange Description.
http://blogs.evergreen.edu/edurange.

[9] Google Gruyere Home.
http://google-gruyere.appspot.com/.

[10] J. F. Kurose and K. W. Ross. Computer Networking:
A Top-Down Approach Featuring the Internet.
Pearson/Addison-Wesley, 2005.

[11] J. Mirkovic, T. Benzel, T. Faber, R. Braden,
J. Wroclawski, and S. Schwab. The deter project:
Advancing the science of cyber security
experimentation and test. In Technologies for
Homeland Security (HST), 2010 IEEE International
Conference on, pages 1–7, 2010.

[12] Monzur Muhammad and Justin Cappos. Towards a
Representive Testbed: Harnessing Volunteers for
Networks Research. In The First GENI Research and
Educational Workshop, GENI’12, 2012.

[13] K. Nance, B. Taylor, R. Dodge, and B. Hay. Creating
shareable security modules. In Information Assurance
and Security Education and Training, pages 156–163.
Springer, 2013.

[14] Main Page – NW-DCSD. http://ai.vancouver.wsu.
edu/~nwdcsd/wiki/index.php/Main_Page.

[15] Attacking a reference monitor that implements access
control. https://seattle.poly.edu/wiki/
EducationalAssignments/SecurityLayerPartTwo.

[16] Attacking private write.
https://seattle.poly.edu/wiki/

EducationalAssignments/PrivateWritePartOne.

[17] Building a reference monitor that implements access
control. https://seattle.poly.edu/wiki/
EducationalAssignments/SecurityLayerPartOne.

[18] Building a reference monitor that implements private
write. https://seattle.poly.edu/wiki/
EducationalAssignments/PrivateWritePartOne.

[19] Seattle. https://seattle.poly.edu/.

[20] B. Taylor and S. Kaza. Security injections: modules to
help students remember, understand, and apply secure
coding techniques. In Proceedings of the 16th annual
joint conference on Innovation and technology in
computer science education, pages 3–7. ACM, 2011.

[21] M. Thompson and C. Irvine. Active learning with the
cyberciege video game. In Proceedings of the 4th
conference on Cyber security experimentation and test,
pages 10–10. USENIX Association, 2011.

[22] OWASP Webgoat Project.
http://www.owasp.org/index.php/Category:

OWASP_WebGoat_Project.

[23] K. Williams. Firesim Project.
http://williams.comp.ncat.edu/firesim.

[24] Yanyan Zhuang and Albert Rafetseder and Justin
Cappos. Experience with Seattle: A Community
Platform for Research and Education. In The Second
GENI Research and Educational Workshop, GREE’13,
2013.

