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Abstract—For many people, smartphones serve as a technical
interface to the modern world. These smart devices have embed-
ded on-board sensors, such as accelerometers, gyroscopes, GPS
sensors, and cameras, which can be used to develop new mobile
applications. However, the sensors also pose privacy risks to users.
This work describes BlurSense, a tool that provides secure and
customizable access to all of the sensors on smartphones, tablets,
and similar end user devices. The current access control to the
smartphone resources, such as sensor data, is static and coarse-
grained. BlurSense is a dynamic, fine-grained, flexible access
control mechanism, acting as a line of defense that allows users
to define and add privacy filters. As a result, the user can expose
filtered sensor data to untrusted apps, and researchers can collect
data in a way that safeguards users’ privacy.
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I. INTRODUCTION

Smartphones and tablets are becoming the dominant way
that people interact with the physical world. This trend is
showing no sign of stopping. Smartphones overtook PC sales
in 2011, and even tablets will outsell desktop PCs by 2013 [1].
As of October 2012, there were more than one billion smart-
phones in use [2]. By the end of 2013, the number of mobile
devices (like smartphones and tablets) is projected to surpass
the number of people on the planet [3]. Given such ubiquity
across demographic and geographic spectrum, smartphones
can become important tools for scientific research in addition
to their role in personal communication.

Smartphones and tablets in the modern age have powerful
capabilities in computing, communication, and sensing [4].
Like desktop and laptop machines, they can perform complex
computing tasks according to user commands. These smart
devices can also communicate with each other through wireless
communications. Unlike regular computers, they have a rich
set of onboard sensors, such as accelerometers, gyroscopes,
GPS, and cameras, which enable the development of innovative
mobile applications [5]. Although the sensing capabilities
enhance the convenience of user interfaces and application
usefulness, they also raise serious privacy concerns [6]. For
instance, through accessing sensor data, malicious applications
could retrieve sensitive information about the mobile phone
users, such as location, passwords, and credit card numbers [7],
[8], [9], [10]. They even might be able to send these sensitive
information to remote attackers [11], [12]. There has been
alarming news about privacy breaches of personal data on
smart devices: 26% of Android apps in Google Play can access
user’s personal data [13]; an iOS app auto-posts false piracy
accusations on users’ Twitter accounts [14]; apps can steal

sensitive information like passwords using the smartphone’s
motion sensors to determine tapped keys [7]; and a huge
botnet that is collecting sensor data was discovered on more
than a million end user smartphones [15]. The Federal Trade
Commission (FTC) recently recommended that mobile plat-
forms should provide in-time disclosures to users of accessing
sensitive content on smart devices [16].

The current access control to the smartphone resources,
such as sensor data, is static and coarse-grained. However,
such defense is pre-determined by the manufacturer. Take the
Android platform as an example, the access permissions are
either granted or denied completely during the installation of
applications based on a request XML manifest file. As a result,
applications may ask for more permissions than are actually
required for operation. Having been granted the requested
permissions, applications have access to those resources per-
manently. Some systems have been proposed to address this
issue; however, they require modifications to the Android
platform [17], [18]. This increases the cost of maintenance, is
less flexible and cannot be used in legacy systems. In addition,
the user would need to trust that the new operating system is
not malicious and is not more vulnerable than the standard one.
With BlurSense there is less risk; the worst that can happen is
that the app will have the same access to the sensor data that
is permitted by the manifest file. To protect smartphone users’
privacy, we propose a second line of defense: a dynamic, fine-
grained, flexible access control mechanism, which incorporates
privacy filters in user space [19], [20]. We want to let users
choose defenses freely in a marketplace so that different
vendors can build them.

Specifically, we will implement a framework of reference
monitors, to enforce mandatory access control to sensor data
in real time. A reference monitor is a method or function that
implements an access control policy for a set of resources and
is usually specified in terms of what capabilities are allowed.
The access control that we are concerned with in this paper is
for sensor data with respect to applications in user space. If
such an application needs to access any of the sensor data, our
second line of defensive (reference monitors) will come into
play, mediating every access to sensor data. As a result, a user
should be able to combine solutions from different vendors.
If a vendor’s product is ineffective or the vendor is malicious,
the user can still be protected.

According to the semantics of the access requests and the
current context, when a remote procedure call is made to the
Android OS to request sensor data, it will be handled by a
reference monitor. Based on a sensitivity of the application,



the data returned may be filtered, dropped or passed through.
Note that the reference monitor cannot pass on data that is
blocked by the manifest file because it is layered on top of
whatever privacy and security mechanisms that are in place at
the OS level. If the request is for highly sensitive sensor data,
then the request might be simply rejected. Otherwise, if the
request is for medium-level sensitive sensor data, the request
might get through, but the returned data has reduced resolution.
If the request is for low-sensitive sensor data, then the return
results need to be processed, e.g., by filtering or obfuscation.
BlurSense can be used with Sensorium [21], which provides
a rich and extensible collection of sensor data from Android
devices.

II. SYSTEM ARCHITECTURE AND THREAT MODEL

In this section, we first briefly describe Sensorium, the
basis of BlurSense. Then we discuss the new extensions to
Sensorium for enabling BlurSense through defining a threat
model.

A. Building Sensorium

For BlurSense to work, it must have access to the sensor
data. However, different devices and platforms, such as An-
droid and iOS, use very different interfaces for their sensors.
One of the major goals of our testbed is to create a uniform
interface to support a wide range of sensor categories, broader
device and network diversity, while the client software still
behave in a portable manner.

1) Seattle Porting onto Mobile Devices: Seattle is the
testbed platform we have developed over the past four
years [22]. It supports a wide range of devices including
desktop, laptop, servers, etc. We recently ported Seattle onto
mobile platforms.

Compared to desktop and laptop environments, develop-
ment on mobile platforms has more resource limitations, such
as limited computational power and battery levels. However,
researchers were able to do early stage ports of Seattle to
Android [23] (and jailbroken iPad / iPhone / iPod) with a few
weeks of developer effort. Users can now download a native
Android installer (APK) from the Google Play store [24]. Our
Seattle testbed on Android supports Android versions from
2.1 to 4.0.4 (API levels 7 to 15), covering device versions
with the highest market distribution [25]. Despite never being
advertised or mentioned publicly, our Seattle app in Google
Play has more than 50 installs.

2) Supporting Sensors on Mobile Devices: Due to its
isolation of the VM, Seattle apps cannot normally access
sensor and other data on a user’s mobile device, such as
GPS, WiFi SSID and signal strength, motion sensors (e.g.,
accelerometer, compass, gyroscope, barometer), etc. However,
this data if anonymized would be very useful to researchers.
Sensorium provides an API for reading sensor data from a
Seattle VM and providing it to apps for research. Sensorium
is a generic sensor reading framework built on top of Seattle
on Android. It funnels data from actual sensor drivers, imple-
ments fine-grained privacy control for the user, and provides
generic outbound interfaces such as XML-RPC. However, the
APIs provided by native smartphone sensors vary significantly
across platforms. Our philosophy is to provide a simple API

that would allow a variety of sensor applications to operate in
a unified manner.

First, we implemented system hooks called sensor modules
to interact with a variety of sensors through system program-
ming interfaces. Currently, implemented sensor modules and
the available contextual information are classified into three
categories: device specific (percentage of battery power level,
CPU and memory utility), location related (latitude, longitude,
altitude, accuracy, and speed if available), and network related
(mobile network type and operator, nearby WiFi access point
and Bluetooth devices). While sensor modules are the system
hooks with read access to valuable sensor resources, they
cannot manipulate sensor data. Additionally, the sensor API
also provides a base registry service with a common interface
for use by a sensor implementation. For both local and remote
processes to access sensor data, an XML-RPC library [26]
is incorporated to provide data in an unified format. In case
newer sensors appear on future mobile devices, developers can
add newly implemented sensors into this framework rather
easily. The registry service listens for connection on a set of
predefined ports via XML-RPC. Thus, both local and remote
process can connect to these ports and register for sensor
updates.

Our preliminary work in this area has resulted in working
code [21], tutorials [27], and a blog for problem discussion [5].
Several different groups have already used our early-stage
proof-of-concept to solve problems across a variety of do-
mains, demonstrating the potential of sharing sensor data.

B. BlurSense Threat Model

While sensors on smartphones have many useful appli-
cations, they also pose a risk to users. A study showed
that unscrupulous hackers typically find personal information
stored on devices inviting [28]. To further motivate our work,
we consider three cases in our threat model. The first category
under consideration is called greedy legitimate applications.
In this category, the developers of the applications ask for
more permissions in the manifest file than are needed, e.g.
to increase revenue. For example, some applications run hid-
den code, connecting to remote advertisement servers, which
analyze smartphone users’ behavior.

The second category is called compromised legitimate
applications. In this category, the legitimate applications have
certain vulnerabilities, such as buffer overflow, so these ap-
plications are under the full control of remote attackers. The
attackers might take the advantage of liberal access policies
for the application to collect sensitive information about the
users, such as contacts, credit card numbers, and passwords,
to jeopardize users privacy.

The third category is called malicious applications. These
applications are designed by attackers with malicious purposes.
They behave like benign applications. However, they covertly
collect users private information, like trojans, and send these
information to the remote attackers.

In the following section, we introduce our proposed scheme
that is able to detect and defend against all these three types
of threats above.



III. BLURSENSE DESIGN

A. BlurSense Overview

1) Overview of the Solution: Today’s smartphone OS typ-
ically exposes resources based on a static policy. Such per-
missions are often much more than necessary. Several related
work has been proposed to refine or reduce permissions on
mobile platforms [18], [29], [17], [30] via modifying the
device platform. BlurSense allows untrusted parties to add
privacy filters from user space. Multiple security vendors
can efficiently and effectively collaborate to strengthen user
privacy.

Different from the existing privacy controls, BlurSense
provides a programmable privacy protection framework. Users
not only gain full transparency of what information is captured
on their devices, but also have full control over how much
information they would share with the rest of the world —
a secure personal data ecosystem. After installing BlurSense,
a user can install software from a third party (like a secu-
rity vendor) that performs custom sensor filtering actions in
response to application requests. For example, an application
could be prevented from using motion sensors when running
in the background, or precise GPS data could be abstracted
to a neighborhood or zip code. BlurSense provides effective
controls for smartphones, much like Flash and JavaScript
filtering tools protect laptops and desktops (e.g., NoScript [31],
AdBlock [32], FlashBlock [33]).

2) What BlurSense Provides: Seattle provides a sensor
interposition mechanism and a sandboxing mechanism that
make it easy to implement privacy filters. A user can let a third
party have access to their sensor data from within a security
and performance isolated container [20]. By leveraging this
security, the user provides minimal trust in the third party,
but allows them an easy way to code their filters. This
functionality also automatically handles multiple privacy filters
from different parties through the sandbox policy composition
functionality [20].

Researchers who use BlurSense will build a mechanism
to trap the requests from generic applications and pass them
into BlurSense (a proof-of-concept for Android has already
been built). They will build and manage an “App Store” for
BlurSense to allow users to locate privacy filters they wish
to apply. These may range from sharing sensor data with
researchers by reducing the precision of sensor values, salting
and hashing sensor values for anonymizing collected data,
or completely denying access to individual (or all) sensors.
For a particular sensor, a filter might perform an action such
as blurring the resolution of photos and video taken by the
camera, removing access point information from WiFi scans,
or omitting the motion sensor data completely. Security and
privacy groups can easily build and disseminate their own
privacy filters they recommend to users by adding them to
BlurSense app store. Therefore, BlurSense is able to handle
the three categories of threats in Section II-B.

B. Design Framework

As shown in Figure 1, we design a user GUI interface, so
that users can configure the policies used by our framework
of reference monitors. For example, the users can define

Fig. 1: System architecture.

different blur thresholds. The users can also assign some
initial sensitivity scores for different sensors and operations.
Under the control of policy management, our framework takes
those permissions which are allowed by the Android reference
monitor [34], [35]. If these permissions access to sensor data,
then the framework will accept them as inputs. Based on
the defined policies from the user interface application, the
framework takes different actions, blocking the requests or
returning original/blurred data.

C. Implementation of Framework

Fig. 2: A preliminary implementation.

Figure 2 shows an example of implementing a GPS sensor.
There are three different components: a Java native app on
Android, the reference monitor and the sensor. In this case,
the sensor provides GPS coordinates of a device. The Java
native app requests sensor data as an XML-RPC client. The
request is then interposed by the reference monitor, which is
both an XML-RPC server and client. As a server, it listens
for incoming XML-RPC requests from the native app, while
it also requests sensor data from Sensorium. As raw sensor
data is returned by Sensorium, the reference monitor blurs the
data according to its different blurring policy defined for each
threat model, as in Section II-B. As a result, BlurSense is able



TABLE I: Performance overhead of BlurSense

Latitude Longitude Altitude
Median (second) 0.2704 0.2575 0.5017

Std (second) 0.1259 0.0718 0.0

to handle the three categories of threats by applying different
blurring policies.

D. Performance Overhead

Table I shows the performance overhead of BlurSense
when a native app requests GPS sensor data, as in Figure 2.
Because the altitude of the user was not changed, the value for
altitude is the result from one measurement with 0 standard
deviation. The values for latitude and longitude are collected
from 22 measurements. As seen from the table, the overhead of
BlurSense is lower than 0.3 second for latitude and longitude,
and their variation is quite low. The value for altitude here
is not statistically meaningful. Overall, the overhead is not
perceptible.

IV. CONCLUSION AND FUTURE WORK

Smartphones have become more and more popular and
indispensable for users nowadays. Sensors in smartphones
facilitate the development of innovative mobile applications,
however, they also raise people’s concerns in exposing users’
privacy. The goal of BlurSense project is to provide interfaces
in user space so that privacy filters could be customized and
developed to protect accesses to sensor resources. In this way,
smartphone users’ privacy could be protected in a dynamic,
fine-grained, and flexible way. This paper describes the detailed
design of the framework and a preliminary implementation. In
the future, we will work on completing the implementation and
obtaining data of performance evaluation on side effects and
performance penalties such as latency and power consump-
tions.
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