
MicroCash: Practical Concurrent Processing of
Micropayments

Ghada Almashaqbeh1?, Allison Bishop2,3??, and Justin Cappos4

1 CacheCash Development Company, NY, USA ghada@cs.columbia.edu
2 Columbia University, NY, USA allison@cs.columbia.edu

3 Proof Trading, NY, USA
4 New York University, NY, USA jcappos@nyu.edu

Abstract. Micropayments have a large number of potential applica-
tions. However, processing these small payments individually can be ex-
pensive, with transaction fees often exceeding the payment value itself.
By aggregating the small transactions into a few larger ones, and us-
ing cryptocurrencies, today’s decentralized probabilistic micropayment
schemes can reduce these fees. Unfortunately, existing solutions force mi-
cropayments to be issued sequentially, thus to support fast issuance rates
a customer needs a large number of escrows, which bloats the blockchain.
Moreover, these schemes incur a large computation and bandwidth over-
head, limiting their applicability in large-scale systems.
In this paper, we propose MicroCash, the first decentralized probabilis-
tic framework that supports concurrent micropayments. MicroCash in-
troduces a novel escrow setup that enables a customer to concurrently
issue payment tickets at a fast rate using a single escrow. MicroCash is
also cost effective because it allows for ticket exchange using only one
round of communication, and it aggregates the micropayments using a
non-interactive lottery protocol that requires only secure hashing and
supports fixed winning rates. Our experiments show that MicroCash can
process thousands of tickets per second, which is around 1.7-4.2x times
the rate of a state-of-the-art sequential micropayment system. Moreover,
MicroCash supports any ticket issue rate over any period using only one
escrow, while the sequential scheme would need more than 1000 escrows
per second to permit high rates. This enables our system to further re-
duce transaction fees and data on the blockchain by ∼ 50%.

1 Introduction

Micropayments, or payments in pennies or factions of pennies, have a large a
number of potential applications as diverse as ad-free web surfing, online gaming,
and peer-assisted service networks [19]. This paradigm allows participants to
exchange monetary incentives at a small scale, e.g., pay per minute in online
games. Such a fine-grained payment process has several advantages, including

? Most work done while at Columbia supported by NSF CCF-1423306.
?? Supported by NSF CCF-1423306 and NSF CNS-1552932.

a great deal of flexibility for customers who may stop a service at any time. In
addition, it reduces the financial risks between mutually-distrusted participants,
where there is no guarantee that a client will pay after being served, or that a
server will deliver service when paid in advance.

However, processing these small payments individually can incur high trans-
action fees that exceed the payment value itself. For example, the average base
cost of a debit or credit card transaction in the US is around 21 to 24 cents, and
23 to 42 cents [5,6], respectively. In cryptocurrencies such a fee could be even
higher, e.g., above $1 in Bitcoin [3]. Beside this financial drawback, handling mi-
cropayments individually can impose a huge workload on the system, and may
make the logs needed for accountability purposes unwieldy. Thus, there is a need
for a payment aggregation mechanism that records fewer transactions while still
compensating properly for the small payments received to date.

Probabilistic micropayment schemes have emerged as a solution that fits the
criteria outlined above [23,21,18,22]. In these models, the total payment value is
locked in an escrow and micropayments are issued as lottery tickets. Each ticket
has a probability p of winning a lottery, and when it wins, produces a transac-
tion of β currency units. This means that, on average, only one transaction is
processed out of a batch of 1/p tickets. Unfortunately, these early proposals rely
on a trusted party to audit the lottery and manage payments. Such a centralized
approach may increase the deployment cost and limit the use of the payment
service to systems with fully authenticated participants [14].

As cryptocurrencies evolved, a number of initiatives attempted to convert
these schemes to distributed ones [19,14]. This was done by replacing the trusted
party with the miners, and utilizing the blockchain to provide public verifiabil-
ity of system operation. Yet, these approaches have several drawbacks that may
hinder their usage in large-scale systems. First, they force a customer to is-
sue micropayments sequentially using the same escrow. This is because in these
schemes an escrow is only funded to pay only one winning lottery ticket. Hence,
a new ticket cannot be issued until the merchant reports the lottery outcome and
confirms that the previous one did not win. To issue tickets at a fast rate under
this restriction, the customer needs to create a large number of escrows, which
increases the amount of data on the blockchain and transaction fees. Second,
these schemes rely on computationally-heavy cryptographic primitives [19,14],
and several rounds of communication to exchange payments [14]. Such perfor-
mance issues reduce the potential benefits of micropayments.

To address these issues, this paper introduces MicroCash, the first decentral-
ized probabilistic framework that supports concurrent micropayments. Micro-
Cash features a novel escrow setup that allows a customer to issue micropay-
ments in parallel and at a fast rate using a single escrow that can pay many
winning tickets. This is achieved by having the customer specify the total num-
ber of tickets it may issue, and provide an escrow balance that covers all winning
tickets under its payment setup.

MicroCash is also cost effective because it introduces a lightweight non-
interactive lottery protocol. This protocol requires only secure hashing and allows

2

a payment exchange using only one round of communication without demanding
the merchant to report anything to the customer. Furthermore, this protocol is
the first to eliminate the possibility that all lottery tickets may win or lose the
lottery. Although the probability of these events is very small, the fear of paying
much more than expected may discourage customers from using the system [18].
Moreover, accounting for the worst case when almost all tickets win requires a
large escrow balance, which increases the collateral cost. Our protocol alleviates
this concern by selecting an exact number of winning tickets each round (where
a round is the time needed to mine a block on the blockchain). In particular,
all tickets issued in the same round are tied to a lottery draw value in a future
block on the blockchain. This value is used to determine the fixed-size set of
winning tickets through an iterative hashing process. Lastly, the security of the
system is enforced using both cryptographic and financial techniques. The latter
requires a customer to create a penalty escrow that is revoked upon cheating,
with a lower bound derived using a game theoretic modeling of the system.

To evaluate the efficiency of MicroCash, we test its performance against MI-
CROPAY [19], a state-of-the-art sequential micropayment scheme. Our results
show that a modest merchant machine in MicroCash is able to process 2,240 -
10,500 ticket/sec, which is around 1.7-4.2x times the rate in MICROPAY, with
60% reduction in the aggregated payment size. Furthermore, a modest customer
machine in MicroCash is able to concurrently issue more than 33,000 ticket/sec
using one escrow over any period, while MICROPAY requires the creation of
more than 1000 escrows per second to support a comparable issue rate. This al-
lows MicroCash to reduce transaction fees and amount of data on the blockchain
in a video delivery and online gaming applications by ∼ 50%.

2 Related Work

Probabilistic Micropayments. The idea of probabilistic micropayments dates
back to the seminal works of Wheeler [23] and Rivest [21,22]. In these schemes,
a customer and a merchant run the lottery (on each ticket independently) by
using a simple coin tossing protocol, with a chance of more, or less, winning
tickets than expected. All of these schemes rely on a centralized bank to track
and authorize payments. This imposes additional overhead on the users who
have to establish business relationships with this bank. It also limits the use of
the service to only fully authenticated users. Although they allow for concurrent
micropayments [22], this centralization issue is viewed as one of the main reasons
for the limited adoption of such solutions [14].

Cryptocurrency-based probabilistic micropayments can potentially overcome
both the cost and efficiency problems inherent in earlier schemes. To the best
of our knowledge, only two such schemes have been proposed to date in the
literature, MICROPAY [19] and DAM [14].

MICROPAY translates what Rivest [21] proposed into an implementation on
top of a cryptocurrency system. Instead of using an authorized bank account,
any customer creates an escrow on the blockchain to issue lottery tickets. MI-
CROPAY implements a similar interactive coin tossing protocol for the lottery,

3

and adds an alternative non-interactive version that reduces the communica-
tion complexity (a merchant still has to report the lottery result back to the
customer). However, the latter is computationally-heavy since it requires public
key cryptography-based operations and a non-interactive zero knowledge (NIZK)
proof system. Moreover, MICROPAY only supports sequential micropayments
as mentioned earlier. DAM shares similar constraints, but unlike the public MI-
CROPAY it preserves user privacy by implementing anonymous micropayments.

We believe that the added blockchain transactions due to sequential pay-
ments, coupled with the high computation cost, point to the need for optimized
approaches that support concurrent micropayments at a lower overhead. This
need is the motivation behind building MicroCash.

Payment Channels and Networks. Payment channels were originally de-
veloped to handle micropayments in Bitcoin [2], where they rely on a similar
concept of processing small payments locally. Later on, this paradigm was uti-
lized to improve the scalability of cryptocurrencies [17,15,20], where off-chain
processing is utilized to reduce on-chain traffic, and hence, increase the transac-
tion throughput of the system.

In general, payment channels and networks require an escrow to be created
between each pair of parties along the payment path. This may result in a higher
collateral cost than probabilistic micropayments, since in the latter the same
escrow can be used to pay several parties directly. These costs may indirectly
push the network towards centralization [7] since only wealthy parties can afford
multiple escrows to create payment paths. Thus, most users will rely on these
parties, or hubs, to relay the off-chain transactions. In addition, each hub on
the path charges a fee to relay payments. With micropayments, such a setup
would be infeasible because these fees could be much larger than the payments
themselves. Probabilistic approaches, on the other hand, eliminate any fees when
exchanging lottery tickets. As a result, distributed probabilistic micropayments
provide a better solution for handling small payments in cryptocurrency systems.

3 Threat Model

Processing off-chain transactions in distributed probabilistic micropayments cre-
ates the potential for various types of attacks. In this section, we outline a threat
model capturing these attacks, which guided the design of MicroCash. In devel-
oping this model, we make the following assumptions:

– No trust is placed in any (insider or outsider) party.
– Participants are rational, meaning that they choose to follow the protocol,

or deviate from it, based on what will maximize their utility gain.
– The underlying cryptocurrency scheme is secure in the sense that the major-

ity of the mining power is honest. This means that the confirmed state of the
blockchain contains only valid transactions, and that an attacker who tries
to mutate or fork the blockchain will fail with overwhelming probability.

– Hash functions are modeled as random oracles, and the hash values of the
blocks on the blockchain are modeled as a uniform distribution.

4

– Efficient adversaries cannot break the basic cryptographic building blocks
(SHA256, digital signatures, etc.) with non-negligible probability.

– Communication between customers and merchants takes place over a channel
that provides integrity, confidentiality, and authenticity, such as TLS/SSL.

We used the ABC framework [10] to build a comprehensive threat model
for distributed probabilistic micropayment schemes5. During this process, we
identified the assets to be protected in such systems, which include the escrows,
the lottery tickets, and the lottery protocol. Then, by analyzing the security
requirements of these assets, and examining more than 120 threat cases, we
produced the following list of broad threat categories endemic to distributed
probabilistic micropayments:

– Escrow overdraft: A customer creates a payment escrow insufficient for
honoring the winning lottery tickets, or creates a penalty deposit that does
not cover the cheating punishment imposed by the miners. Such a threat
could stem from creating small balance escrows, or from front running at-
tacks in which a customer withdraws the escrows before paying.

– Unused-escrow withholding: An attacker prevents or delays a customer
from withdrawing its unused escrows. For example, merchants may delay
claiming their winning lottery tickets to keep the payment escrow on hold.

– Lottery manipulation: An attacker attempts to influence the outcome of
the lottery draw, and hence, bias the payment process.

– Denial of service (DoS): This is a large threat category that threatens
any distributed system. This work focuses on attacks related to the payment
process, like preventing a customer from creating escrows.

– Duplicate ticket issuance: A customer uses the same sequence number
to issue several lottery tickets to different merchants. As this means creating
more tickets than the escrow can cover, the customer obtains more service
than it can pay for.

– Invalid payments: A malicious customer issues lottery tickets that do not
comply with its payment setup or with the system specifications. Because
these tickets will be rejected by the miners if they win the lottery, the cus-
tomer can avoid paying merchants.

Note that dealing with malicious merchants who collect lottery tickets and
do not deliver a service is outside the scope of MicroCash. The same is true for
dealing with malicious customers who may obtain the service without paying. In
this work, we are concerned with the payment scheme design, rather than how
to exchange service for a payment, which is part of the application design.

In addition, MicroCash does not address payment anonymity (as in [14]).
Addressing this issue securely, while preserving the low overhead of MicroCash,
is a direction for our future work.

5 A detailed documentation of this process is available online [8] and is based on the
generic description of probabilistic micropayments as described in the introduction.

5

4 MicroCash Design

Having outlined the security threats to probabilistic micropayments, and the
limitations of existing solutions, this section presents the design of MicroCash, a
concurrent micropayment system that addresses these issues. We start with an
overview of the system, followed by a more detailed technical description.

1
Escrow creation

transaction

Miners

Check customer

payment setup

2

Process all transactions,
monitor escrows, maintain

the blockchain

Blockchain

MerchantsCustomer Lottery tickets3

4

Claim winning

lottery tickets

5
Observe

lottery draw

Fig. 1: Flow of operations in MicroCash.

A high level illustration of MicroCash, that also captures the remainder of this
section’s organization, is found in Figure 1. As shown, during the payment setup
(Step 1, Section 4.1), each customer issues a transaction creating two escrows:
payment and penalty. The customer uses the former to pay merchants in the
form of lottery tickets, while the miners use the latter to financially punish this
customer if it cheats. Merchants can check the escrow setup before transacting
with the customer when the escrow transaction is confirmed on the blockchain
(Step 2). In exchange for the delivered service, the customer issues lottery tickets
according to a schedule that limits the number of tickets over a set period (Step
3, Section 4.2). To claim payments, a merchant holds a ticket until its lottery
draw time, and determines if this ticket won based on a value derived from
the block mined at that time (Step 4, Section 4.3). If it is a winning ticket,
the merchant can claim currency from the customer’s escrow during the ticket
redemption period (Step 5, Section 4.4). This interaction continues until the
end of the escrow lifetime. At that time, and after all issued tickets expire, the
customer can spend any remaining funds.

4.1 Escrow Setup

MicroCash introduces a novel escrow setup that allows multiple winning tickets
to be redeemed. This enables both concurrent ticket issuance and reduces the
amount of escrow-related data. This setup also provides techniques to deter-
mine the escrow balance needed to cover all concurrent tickets, and to track the
issuance of these tickets in a distributed way.

Escrow creation. As an off-chain payment scheme, MicroCash must ensure
that customers can and will pay. This includes honoring winning tickets, and,
if caught cheating, complying with a stipulated financial punishment. To satisfy
these requirements, each customer must create payment and penalty escrows
with sufficient funds to cover both eventualities.

6

Given that each payment escrow must be tied to a penalty escrow, a customer
sets up both using one creation transaction. This transaction provides funds to
be locked under each escrow balance, which we refer to as Bescrow (payment)
and Bpenalty (penalty). It also configures a set of parameters that influence how
these balances are computed, and how they are to be spent. These parameters,
whose values are specified by the customer possibly after negotiating with the
merchants, include the following:

– The lottery winning probability p.
– The currency value of a winning lottery ticket β.
– The ticket issue rate tktrate, which is the maximum number of tickets a

customer is allowed to hand out per round. This is used to calculate which
ticket sequence numbers are valid within each ticket issuing round.

– A lottery draw round length, denoted as drawlen, such that drawlen ∈ {1, . . . , c}
for some small system parameter c. The customer has to configure drawlen,
p, and tktrate in a way that makes p tktratedrawlen of an integer value (this
is the number of winning tickets in a lottery draw).

– The set of beneficiary merchants that can be paid using the escrow, where
the size of this set is denoted as m.

Computing Bescrow and Bpenalty based on the above parameters proceeds as
follows. To permit concurrent micropayments, Bescrow must be large enough to
pay all winning tickets tied to an escrow. Given that each winning ticket has
a value of β currency units, and that there are p tktratedrawlen winning tickets
per drawlen rounds, Bescrow can be simply computed as follows (where lesc is the
escrow lifetime in rounds, and there are lesc/drawlen lottery draws)6:

Bescrow = β p tktratelesc (1)

For Bpenalty, we compute a lower bound for this deposit by using an economic
analysis that quantifies the additional utility gain, or profit, a customer obtains
by cheating. The profit is the monetary value of the service exchanged for invalid
or duplicated tickets to merchants before cheating is detected, i.e., before any of
these tickets wins the lottery and is claimed through the miners (assuming that
merchants do not exchange any information about the received tickets). Thus,
to make cheating unprofitable, and hence, unappealing to rational customers,
Bpenalty is set to be at least equal to this additional utility as given by the
following equation7:

Bpenalty > (m− 1)p β tktratedrawlen

(
1 − p

1 − ρ−1
+ drawlen

(
(1 − p)(ddraw − 1) + dredeem

))
(2)

6 Compared to previous schemes [19,14], this is the same expected payment amount
needed to cover the same number of winning tickets. However, since these works are
sequential, they distribute this amount among multiple escrows instead of one.

7 Compared to DAM [14], MicroCash’s penalty escrow will be larger. This is because
the cheating detection period in MicroCash is longer (several rounds until the lottery
is run and a winning ticket is claimed). In DAM, the lottery is run over a ticket
immediately when it is received, and a claim, if any, can be issued at the same
time. Thus, assuming identical payment setup, Bpenalty in MicroCash is approximately
TMicroCash/TDAM times the one in DAM, where T is the cheating detection period.

7

where ddraw is the lottery draw period in rounds, dredeem is the ticket redemption
period in rounds (more about these parameters in Section 4.3), and ρ =

(
a
b

)
such

that a = tktratedrawlen and b = (1− p)a. The full details of deriving this bound
are found in Section 5 in the full version of the paper [11].

Upon receiving the escrow creation transaction, the miners verify the cor-
rectness of a payment setup as follows. First, they check that the customer owns
the input funds. Then, the miners use Bescrow to compute the escrow lifetime as
lesc = Bescrow

β p tktrate
. After that, they check that both lesc and p tktratedrawlen are of

integer values, drawlen is within the allowed range, and that lesc is multiples of
drawlen. Lastly, the miners verify that Bpenalty satisfies the bound given above.
If all these checks pass, the miners add the escrow transaction to the blockchain.
Otherwise, they reject the escrow by dropping its transaction.

Escrow management. In MicroCash, the escrow funds can be spent only for a
restricted set of transactions. These include claiming winning tickets, presenting
proofs-of-cheating, and enabling a customer to spend its unused escrow funds.

To track the locked funds, miners maintain a state for each escrow in the
system. This state includes the following:
– The ID of the escrow, which is a random value generated by the miner who

adds the escrow creation transaction to the blockchain.
– The balances of both the payment and penalty escrows.
– The public key of the owner customer, which is used to verify all signed

tickets that are issued using this escrow.
– The values of p, β, lesc, tktrate, drawlen, and the set of beneficiary merchants

(both the public key of each merchant and a corresponding index).
– An escrow refund time, denoted as trefund, at which the customer can spend

any remaining funds. Miners set this time to be equal to the expiry time of
the tickets issued in the last round of an escrow lifetime.

Ticket issuance using an escrow must follow a schedule based upon the tickets’
sequence numbers. That is, if an escrow supports a rate of tktrate tickets per
round, then in the first round tickets with sequence numbers 0 to tktrate-1 may
be issued. In the second round tickets with sequence numbers tktrate to 2tktrate-1
can be issued, and so on until the last round of an escrow lifetime. Merchants
will accept tickets in the current round with sequence numbers that follow this
assignment schedule. As customers and merchants may have inconsistent views
of the blockchain, and hence, may not agree on what is the current round, i.e.,
height of the blockchain, merchants will also accept tickets from the prior and
next round, as long as these tickets use the correct sequence number range.

An example of a ticket issuing schedule is found in Figure 2. As shown, the
escrow creation transaction is published at round 10 and confirmed at round 16.
This escrow has lesc = 3 rounds, and allows a ticket issue rate of 1000 tickets
per round. Thus, the customer has 3 ticket issuing rounds, starting at round 17,
with the sequence number ranges shown in the figure.

The miners update the escrow state based on the escrow related transac-
tions (mentioned earlier) they process. For example, redeeming a winning ticket

8

Blockchain Block
10

Block
16

... Block
17

Block
18

Block
19

1st issue round
issue time = 17

seqno = {0, ..., 999}

escTr Confirmed
Escrow Creation

Transaction (escTr)

2nd issue round
issue time = 18

seqno = {1000, ..., 1999}
3rd issue round
issue time = 19

seqno = {2000, ..., 2999}

Fig. 2: An example of a ticket issuing schedule.

reduces Bescrow by β coins, and receiving a valid proof-of-cheating against the
customer causes the miners to revoke the funds in Bpenalty. All these transactions
are logged on the blockchain, which permits anyone to validate the state.

The miners discard an escrow state once all tickets tied to this escrow expire.
This happens at time trefund, or when an escrow is broken after receiving a valid
proof-of-cheating (discussed in Section 4.5). At that time, the customer may
spend any remaining funds in its escrows.

4.2 Paying with Lottery Tickets

After the escrow is confirmed on the blockchain, a customer can start paying for
service by giving merchants lottery tickets. A lottery ticket tktL is a structure
containing several fields as follows:

tktL = indexM ||idesc||seqno||σC (3)

where indexM is the recipient merchant index as listed in the escrow state, idesc
is the escrow ID, seqno is the ticket sequence number, and σC is the customer’s
signature covering all the previous fields. The seqno field, along with idesc, iden-
tifies a ticket, which also provides means for ticket tracking in the system. Note
there is no need to include the escrow configuration or the parties’ public keys
in the ticket itself, these can be looked up on the blockchain using idesc.

When issuing a ticket, the customer fills in the above fields and signs the
ticket using its secret key tied to the public key used when creating the escrow.
The ticket seqno can be any sequence number within the range assigned to the
current ticket issue round. The customer can continue issuing lottery tickets,
without waiting for the lottery results of previously issued ones, until it finishes
all sequence numbers in this range. After that, it must wait the next round to
generate more tickets.

Upon receiving a ticket, a merchant verifies it as follows:

– Check that the escrow is not broken.
– Check that its index indexM , that appears in the ticket, is identical to the

one listed in the escrow state.
– Check the freshness of seqno (i.e., that no earlier ticket, associated to the

same escrow, carries the same seqno).
– Verify that seqno is within the valid range based on the ticket issuing sched-

ule. (As mentioned before, to handle inconsistencies in the blockchain view,
tickets from the previous or next issuance round can be accepted.)

– Verify σC over the ticket using the customer’s public key.

9

If any of the above checks, except the fourth one, fails, the merchant drops
the ticket. On the other hand, if the ticket has an out-of-range sequence number
(i.e., larger than the maximum sequence number allowed by the escrow), the
recipient merchant can issue a proof-of-cheating that will cost the customer its
penalty deposit. Otherwise, if all the above checks pass, the merchant accepts
the ticket and keeps it until its lottery draw time.

4.3 The Lottery Protocol

MicroCash introduces a lightweight lottery protocol that relies solely on secure
hashing. This protocol does not require any interaction between the customer
and the merchant. Instead, it utilizes only the state of the blockchain, where the
lottery draw outcome is determined by a value derived from the block mined at
the lottery draw time.

To specify the lottery draw time, MicroCash defines two system parameters,
ddraw and drawlen. ddraw represents the least number of rounds a ticket has to
wait after its issue round (which we call tissue) until it enters the lottery. drawlen

determines the number of consecutive ticket issuing rounds that all their lottery
tickets enter the same lottery draw. Hence, if drawlen = 1, then the draw time
tdraw of a ticket is computed as tdraw = tissue + ddraw. On the other hand, if
drawlen > 1, then tdraw of a ticket is tdraw of the last ticket issuing round in the
contiguous set of rounds8.

A clarifying example of determining the lottery draw time is found in Fig-
ure 3. As shown, starting with round 28, which the first ticket issuing round,
each set of contiguous drawlen rounds enter the lottery together. For example,
all tickets issued in rounds 28, 29, and 30 enter the lottery at round 40, which
is 10 rounds after the last ticket issue round in this set.

Whether a ticket wins or loses depends on a lottery draw value tied to the
block mined at time tdraw. This value is computed using a simple verifiable delay
function (VDF) [13] that is evaluated over this block. This evaluation takes a
period of time, hence the name delay function, where this period is a system
parameter. Consequently, when a miner mines the block at index tdraw, it cannot
tell immediately which ticket will win or lose. This miner has to compute the
VDF over this block to know the lottery draw outcome.

We instantiate this VDF using iterative hashing, where the number of itera-
tions is set to a value that delays producing the output by the period specified
in the system. In addition, we let the miners compute this function as part of
the mining process. That is, when a miner mines a new block, it evaluates the
VDF over the previous block. Therefore, the VDF value of the block at index
tdraw appears on the blockchain when the block at index tdraw + 1 is mined.

Accordingly, in our protocol a merchant holds a ticket tktL until its lottery
draw time tdraw. Then, after observing the VDF value of the block mined at
that time, the miners, and any party, can compute the set of winning sequence
numbers for that round as follows. First, the hash of the VDF value along with

8 Since drawlen affects tdraw of a ticket, MicroCash specifies a small interval for its
possible values to prevent a customer from excessively delaying paying merchants.

10

Block 41

tktL is a
winning ticket

Blockchain Block 30 Block 40... ...Block 28 Block 29

Winning Set
of Tickets

...

Fig. 3: Lottery draw example (drawlen = 3, p = 1
300

, tktrate = 103, and ddraw = 10).

the escrow ID is computed, which we call h1, and then h1 is mapped to a sequence
number within the assigned range of the ticket issuing rounds tied to tdraw. To
obtain the second winning sequence number, the hash of h1 is computed to
obtain h2, and then h2 is mapped to a sequence number in the given range. If a
collision occurs, i.e., a previously seen number is produced, it is discarded and
the process proceeds with hashing h2 to obtain h3, and so on. This continues
until a set of distinct p tktratedrawlen winning sequence numbers is drawn9.

The previous process is clarified by the example depicted in Figure 3. As
shown, tktL was issued in round 28, the first ticket issuing round, and hence,
it entered the lottery at round 40. The VDF value of the block with index 40
appears inside block 41. By using this value, a set of winning sequence numbers
has been chosen, based on which the ticket in the figure is a winning one because
its sequence number is within this set.

Note that the lottery draw involves only values that are part of the escrow
state. In other words, it relies on parameters that the issuing customer cannot
manipulate, which do not include the merchant recipient address. This means
that a ticket’s chance of winning the lottery is not affected by who owns it. As
such, if a customer issues tickets with duplicated sequence numbers to multiple
merchants, all these tickets will win or lose together. If the tickets win, detecting
cheating is trivial because merchants will publish their winning tickets to the
blockchain to redeem the tickets.

4.4 Claiming Winning Tickets
After the lottery draw, a merchant can collect currency from the customer’s
escrow by redeeming its winning tickets (if any). This is done by issuing a redeem
transaction that has the winning ticket as input, and has β coins directed to the
merchant’s address as output.

To allow the miners to resolve tickets and release escrow funds back to the
customer in a reasonable timeframe, MicroCash specifies a redeem period for each
ticket. This is done by defining a system parameter called dredeem that determines
the number of rounds during which a ticket can be redeemed. A ticket expires at
time texpire = tdraw + dredeem. Thus, dredeem must be set to a value that allows
merchants to redeem their winning tickets.

9 We design a version of this lottery protocol with independent ticket winning events
in Appendix A in the full version [11]. This can be used in case it is infeasible in
some applications to configure p tktratedrawlen to be an integer.

11

After receiving a redeem transaction, the miners process it as follows:

– Check that the transaction complies with the system specifications.
– Verify the redeemed ticket as outlined in Section 4.2.
– Verify that the ticket is a winning one by checking that its sequence number

is among the winning set drawn at time tdraw of this ticket.
– Check that the ticket has not expired.
– Verify the merchant’s signature over the redeem transaction using the public

key corresponding to indexM found in the escrow state.
– Check that no other ticket with the same sequence number and tied to the

same escrow has already been redeemed. If it is, this is a proof of duplicate
ticket issuance and is used as a proof-of-cheating against the customer.

If all these checks pass, miners approve the redeem transaction and update
the escrow state accordingly. Otherwise, they drop an invalid transaction and,
if a proof-of-cheating is produced, revoke the customer’s penalty deposit.

4.5 Processing Proof-of-cheating

A proof-of-cheating is a transaction any party who witnesses a cheating incident
can present to the miners. In MicroCash, such an incident could be issuing tickets
with out-of-range sequence numbers or issuing duplicated tickets. A signed ticket
with an out-of-range sequence number or signed tickets with duplicated sequence
numbers are publicly verifiable proofs against the issuing customer.

If cheating is verified, miners revoke the customer’s penalty escrow tied to its
payment escrow referenced in the ticket as follows. In case of ticket duplication,
the miners first pay all duplicated winning tickets from the payment escrow, and
then from the penalty deposit. Next, they publish an escrow break transaction
containing the proof-of-cheating on the blockchain. This transaction burns the
revoked penalty deposit rather than providing them to another party to eliminate
the chance that this party may collude with the customer to receive those funds.
Respecting the lower bound of Bpenalty, as specified before, ensures that all the
above cheating behaviors are less profitable than acting in an honest way. Hence,
it makes such behaviors unappealing to rational customers.

5 Security and Game Theory Analysis

In this section, we analyze the resilience of MicroCash to the threats outlined
in Section 3. To defend against these threats, our scheme utilizes cryptographic
and financial approaches. Due to space constraints, this section presents a brief
version of this analysis, but a more complete and detailed one can be found in
Section 6 in the full version of the paper [11].

MicroCash addresses the escrow overdraft threat by using its escrow setup.
The miners will reject any escrow with payment or penalty balances that do
not satisfy the bounds defined earlier. Furthermore, no customer can perform
a front running attack by withdrawing escrows before paying. This is because
escrow fund release is triggered only by the receipt of a valid winning lottery
ticket (for a payment escrow) or a valid proof-of-cheating (for a penalty escrow).
In addition, a customer who tries to perform an indirect withdrawal by issuing

12

winning tickets to itself after observing the lottery draw outcome will also fail.
As the ticket issue schedule specifies both issue and lottery draw time for each
round, it will be too late to select only winning sequence numbers after tdraw.
By that time, merchants have already received their tickets, and any unissued
winning ticket that a customer may try to claim is covered by the escrow balance.

The unused-escrow withholding threat is also handled by MicroCash’s escrow
setup. When all tickets tied to an escrow expire, i.e., at time trefund, the miners
will allow the customer to spend the residual balance. This prevents locking
unused escrow funds indefinitely on the blockchain.

The lottery manipulation threat is addressed by MicroCash’s lottery draw
mechanism. The draw outcome depends only on values that a customer cannot
manipulate. These include a ticket sequence number, which must be within a
predetermined range, the escrow ID that appears in the escrow state, and the
VDF value of the block mined at time tdraw. The probability of predicting the
latter is negligible (in the random oracle model and under the assumption that
block hashes on the blockchain are modeled as a uniform distribution). Hence,
a customer cannot know which ticket will win or lose in advance. Also, given
that the VDF takes time to be computed, a miner who may perform selective
mining (possibly in collusion with the customer) by evaluating the VDF first,
and then announcing a favorable block, will have a low chance of publishing this
block on the blockchain. This is because other miners will announce their newly
mined blocks immediately, which will have higher probability of being adopted.
As such, any lottery ticket has a fair chances of winning the lottery.

For DoS, which is a large threat category to any system, we limit our focus
to cases related to the design of MicroCash. These include preventing customers
from creating escrows, preventing merchants from claiming their winning tickets,
or selectively relaying blocks based on their content. The case of miners disre-
garding specific transactions/blocks may take place when an attacker controls
a substantial portion of the mining power, or when the attacker controls the
network links and tries to isolate participants. Under the assumption that the
majority of the mining power is honest, and by having each participant connect
to a large number of miners, the impact of this threat can be reduced. To protect
against selective relaying, techniques that allow propagating messages without
disclosing their content can be employed, e.g., BloXroute [4]. Such mechanisms
are independent of the design of MicroCash, and so it is up to the parties them-
selves to adopt suitable solutions.

MicroCash uses a detect-and-punish approach to financially mitigate the du-
plicate and invalid ticket issuance threats. Any party that detects any of these
events can produce a proof-of-cheating against the issuing customer containing
the duplicated or invalid tickets as a proof. Once such an incident is verified,
miners burn the customer’s penalty escrow as a punishment.

We compute the value of Bpenalty by using a game theoretic analysis in which
we model the setup of MicroCash as a repeated game over the escrow lifetime10.

10 Although Chiesa et al. [14] present an economic analysis for the DAM penalty escrow,
the derived bound cannot be used with MicroCash. This is due to the differences in

13

Then we quantify the the monetary value of the additional service a customer
can obtain in exchange for the duplicated, or invalid, tickets during the cheating
detection period. That is, cheating is detected when any of the duplicated tickets
wins the lottery and is claimed through the miners, which happens in ddraw +
dexpire rounds after the ticket issue time. Thus, we set Bpenalty to be at least
equal to service monetary value obtained during this period. Here, we only state
our result while the full modeling and proof can be found in Section 5 in the full
version [11].

Theorem 1. For the game setup defined in Section 5 in the full version [11],
issuing invalid or duplicated lottery tickets is less profitable in expectation than
acting in an honest way if (where ρ =

(
tktrate

(1−p)tktrate

)
):

Bpenalty > (m−1)p β tktratedrawlen

(
1 − p

1 − 1/ρ
+ drawlen

(
(1−p)(ddraw−1) +dredeem

))

6 Performance Evaluation

To understand the performance benefit of concurrent probabilistic micropay-
ments, in this section we evaluate the computation, bandwidth, and payment
setup costs of MicroCash. We implemented benchmarks for the functions used
for generating tickets, verifying these tickets, and performing a lottery draw11.
We used SHA256 for hashing, and for digital signatures, we tested the most
widely used schemes: ECDSA over secp256k1, ECDSA over P-256, and EdDSA
over Ed25519 [12]. To put our results in context, we compare our scheme with MI-
CROPAY [19], particularly its fully decentralized version MICROPAY1 with its
non-interactive lottery protocol. In implementing this protocol, we used the ver-
ifiable random function (VRF) construction introduced by Goldberg et al. [16].

For each of the tested schemes, we computed the rate at which customers,
merchants, and miners can process lottery tickets. Also, we calculated the band-
width overhead by reporting on the size of tickets when exchanged between the
various parties. To evaluate the effect of micropayment concurrency, we com-
puted the number of escrows a customer would need to support the ticket issue
rate in each of the tested schemes. Lastly, we studied two real life applications,
online content delivery and online gaming, to derive workload numbers and used
them to quantify the overhead of processing micropayments in such applications.

Our experiments were implemented in C on an Intel Core i7-4600U CPU @
2.1 GHz, with 4 MB cache and 8 GB RAM. Each of the payment processing func-
tions was called 106 times. Due to space constraints, this section provides only
a brief discussion, while a complete report can be found in the full version [11].

the system setup and the lottery timing, which affects the cheating detection period
and the duplication decisions a customer can make.

11 It should be noted that due to requiring a VDF evaluation and the new transaction
types, MicroCash is not compatible with Bitcoin-like systems. For smart contract-
based systems, if a periodic unbiased source of randomness exists to replace the
VDF, then MicroCash can be implemented as a smart contract that uses this source
for the lottery.

14

Table 1: Ticket processing rate (ticket / sec).

MICROPAY MicroCash

ECDSA
(secp256k1)

ECDSA
(P-256)

EdDSA
(Ed25519)

ECDSA
(secp256k1)

ECDSA
(P-256)

EdDSA
(Ed25519)

Customer 1,859 32,471 26,238 1,868 33,006 26,749

Merchant 1,328 2,399 2,561 2,249 10,505 8,473

Miner 1,340 2,448 2,617 2,241 10,345 8,368

Lottery ticket processing rate. Table 1 shows the ticket processing rates.
Customers in both schemes generate tickets at comparable rates because the
operations performed are almost identical in MicroCash and MICROPAY. Given
that the heaviest operation in this process is signing a ticket, the generation
rates improve by using an efficient digital signature scheme, where performance
is boosted by around 17x and 14x when ECDSA (secp256k1) is replaced with
ECDSA (P-256) and EdDSA (Ed25519), respectively.

The trend is different for merchants and miners. These parties in MicroCash
are 1.7x, 4.2x, and 3.2x faster than in MICROPAY for the three digital signature
schemes. This is because of the operations that miners and merchants need to
perform when running and verifying the lottery draw outcome in each system.
In MicroCash, this process involves only lightweight hash operations, while the
lottery in MICROPAY requires evaluating a computationally-heavy VRF.

Furthermore, the table shows that merchants and miners in MicroCash benefit
more from the efficiency of the digital signature scheme. This is because the
heaviest operation these parties perform in MicroCash is verifying a customer’s
signature. However, in MICROPAY the bottleneck is evaluating a VRF and
producing a correctness proof of the output the merchant side, and verifying this
proof on the miner side. As shown in the table, MICROPAY obtains only around
1.9x improvement when replacing ECDSA (secp256k1) with any of the other
two schemes. In contrast, MicroCash achieves around 4.7x and 3.8x improvement
when replacing ECDSA (secp256k1) with ECDSA (P-256) or EdDSA (Ed25519),
respectively.

Lottery ticket bandwidth overhead. In terms of bandwidth, MicroCash
incurs less overhead than MICROPAY because its lottery tickets are smaller. A
ticket sent from a customer to a merchant is 110 bytes in MicroCash, while it
is 274 bytes in MICROPAY. A winning ticket sent from merchants to miners
is also 110 bytes in MicroCash, while it is 355 bytes for MICROPAY because
this ticket must be accompanied with a NIZK proof. This means that MicroCash
incurs only 40% of the bandwidth overhead of MICROPAY between customers
and merchants, and only 31% of the overhead between merchants and miners.

To put these numbers in context, we report on the transaction sizes in Bitcoin.
The average size is around 500 bytes, where a transaction with one or two inputs
is about 250 bytes [9]. Adding a winning ticket as one of these inputs produces
a claim transaction with a size of 360 bytes in MicroCash, which is less than the
average Bitcoin transaction size. On the other hand, in MICROPAY the size of
a claim transaction will be 605 bytes, exceeding the average size.

15

Size of escrows on the blockchain. One major difference between concur-
rent and sequential micropayment schemes is that a customer in the latter needs
a new escrow after each winning ticket, and to issue tickets in parallel at a fast
rate, this customer has to create a large number of escrows. This dramatically
increases the overhead since each of these escrows requires an individual creation
transaction, paying a transaction fee, and logging on the blockchain.

For example, to support the ticket issue rates reported in Table 1, a MICRO-
PAY customer would need a number of escrows that depends on the network
latency and a merchant’s ticket processing rate. Using the average US RTT of 31
ms [1], in the best case an escrow in MICROPAY can be used to issue 32 tickets
per second (if none of these ticket win or only the last one wins). Therefore, a
customer in MICROPAY would need 60, 1019, or 653 escrows per second to sup-
port the generation rates for signature schemes ECDSA (secp256k1), ECDSA
(P-256), or EdDSA (Ed25519), respectively, as found in Table 1. On the other
hand, a customer in MicroCash would need only one escrow with the proper
balance to pay at any given ticket rate. As such, MicroCash dramatically reduces
the amount of data logged on the blockchain.

Micropayments in real world applications. To ground our results in real
world numbers, we examined two applications; online gaming and peer-assisted
content delivery networks (CDNs). We computed the overhead of processing
micropayments with parameter values derived from the service price and the
application workload. This is done for three cases: Bitcoin with no micropayment
scheme, Bitcoin with MICROPAY, and Bitcoin with MicroCash.

Our results confirm that MicroCash is cost efficient enough to be used in online
gaming and content distribution. Since it is a concurrent scheme that allows
issuing payments in parallel using a single escrow, MicroCash decreases the total
data added to the blockchain by around 50% as compared to MICROPAY. The
full details of this evaluation can be found in Section 7.3 in the full version [11].

7 Conclusions
In this paper, we introduce MicroCash, the first decentralized probabilistic frame-
work that supports concurrent micropayments. The design of MicroCash features
an escrow setup and ticket tracking mechanism that permit a customer to rapidly
issue tickets in parallel using only one escrow. Moreover, MicroCash is cost ef-
fective, as it implements a non-interactive lottery protocol for micropayment
aggregation that requires only secure hashing. When compared to the sequential
scheme MICROPAY, MicroCash has substantially higher payment processing
rates and much lower bandwidth and on-chain traffic. This demonstrates the
viability of employing our scheme in large-scale micropayment applications.

References

1. At&t Network Averages. https://ipnetwork.bgtmo.ip.att.net/pws/
averages.html.

2. Bitcoinj. https://bitcoinj.github.io/working-with-micropayments.

16

https://ipnetwork.bgtmo.ip.att.net/pws/averages.html
https://ipnetwork.bgtmo.ip.att.net/pws/averages.html
https://bitcoinj.github.io/working-with-micropayments

3. BitInfoCharts, Bitcoin avg. transaction fee. https://bitinfocharts.com/
comparison/bitcoin-transactionfees.html.

4. BloXroute: A Scalable Trustless Blockchain Distribution Network. https://

bloxroute.com/wp-content/uploads/2018/03/bloXroute-whitepaper.pdf.
5. Board of Governers of the Federal Reserve System, press release June 2011. https:

//www.federalreserve.gov/newsevents/pressreleases/bcreg20110629a.htm.
6. Board of Governers of the Federal Reserve System, Regulation II. https://

www.federalreserve.gov/paymentsystems/regii-about.htm.
7. ”lightning network will be highly centralized”. https://cointelegraph.com/news/

lightning-network-will-be-highly-centralized-gavin-andresen.
8. Supplemental Material. https://www.dropbox.com/s/799j92dnyz2bskk/

microcashThreatModel.pdf?dl=0.
9. TradeBlock: Analysis of Bitcoin Transaction Size Trends. https:

//tradeblock.com/blog/analysis-of-bitcoin-transaction-size-trends.
10. Almashaqbeh, G., Bishop, A., and Cappos, J. Abc: A threat modeling frame-

work for cryptocurrencies. In IEEE INFOCOM Workshop on Cryptocurrencies
and Blockchains for Distributed Systems (CryBlock) (2019).

11. Almashaqbeh, G., Bishop, A., and Cappos, J. Microcash: Practical concurrent
processing of micropayments. arXiv preprint arXiv:1911.08520 (2019). https:

//arxiv.org/abs/1911.08520.
12. Bernstein, D. J., Duif, N., Lange, T., Schwabe, P., and Yang, B.-Y. High-

speed high-security signatures. Journal of Cryptographic Engineering 2, 2 (2012).
13. Boneh, D., Bonneau, J., Bünz, B., and Fisch, B. Verifiable delay functions.

In Annual International Cryptology Conference (2018), Springer.
14. Chiesa, A., Green, M., Liu, J., Miao, P., Miers, I., and Mishra, P. Decen-

tralized anonymous micropayments. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques (2017), Springer, pp. 609–
642.

15. Decker, C., and Wattenhofer, R. A fast and scalable payment network with
bitcoin duplex micropayment channels. In Symposium on Self-Stabilizing Systems
(2015), Springer, pp. 3–18.

16. Goldberg, S., Naor, M., Papadopoulos, D., and Reyzin, L. Nsec5 from el-
liptic curves: Provably preventing dnssec zone enumeration with shorter responses.
IACR Cryptology ePrint Archive 2016 (2016), 83.

17. Heran, M., and Spilman, J. Bitcoin contracts. https://en.bitcoin.it/wiki/
Contract, 2012.

18. Micali, S., and Rivest, R. L. Micropayments revisited. In Cryptographers’
Track at the RSA Conference (2002), Springer, pp. 149–163.

19. Pass, R., and Shelat, A. Micropayments for decentralized currencies. In CCS
(2015), ACM, pp. 207–218.

20. Poon, J., and Dryja, T. The bitcoin lightning network: Scalable off-chain instant
payments. Technical Report (draft) (2015).

21. Rivest, R. L. Electronic lottery tickets as micropayments. In International Con-
ference on Financial Cryptography (1997), Springer, pp. 307–314.

22. Rivest, R. L. Peppercoin micropayments. In International Conference on Finan-
cial Cryptography (2004), Springer, pp. 2–8.

23. Wheeler, D. Transactions using bets. In International Workshop on Security
Protocols (1996), Springer, pp. 89–92.

17

https://bitinfocharts.com/comparison/bitcoin-transactionfees.html
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html
https://bloxroute.com/wp-content/uploads/2018/03/bloXroute-whitepaper.pdf
https://bloxroute.com/wp-content/uploads/2018/03/bloXroute-whitepaper.pdf
https://www.federalreserve.gov/newsevents/pressreleases/bcreg20110629a.htm
https://www.federalreserve.gov/newsevents/pressreleases/bcreg20110629a.htm
https://www.federalreserve.gov/paymentsystems/regii-about.htm
https://www.federalreserve.gov/paymentsystems/regii-about.htm
https://cointelegraph.com/news/lightning-network-will-be-highly-centralized-gavin-andresen
https://cointelegraph.com/news/lightning-network-will-be-highly-centralized-gavin-andresen
https://www.dropbox.com/s/799j92dnyz2bskk/microcashThreatModel.pdf?dl=0
https://www.dropbox.com/s/799j92dnyz2bskk/microcashThreatModel.pdf?dl=0
https://tradeblock.com/blog/analysis-of-bitcoin-transaction-size-trends
https://tradeblock.com/blog/analysis-of-bitcoin-transaction-size-trends
https://arxiv.org/abs/1911.08520
https://arxiv.org/abs/1911.08520
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Contract

	MicroCash: Practical Concurrent Processing of Micropayments

