
CAPnet: A Defense Against Cache Accounting
Attacks on Content Distribution Networks

Ghada Almashaqbeh
Columbia University

ghada@cs.columbia.edu

Kevin Kelley
CacheCash Development

Company
kelleyk@kelleyk.net

Allison Bishop
Proof Trading and

Columbia University
allison@cs.columbia.edu

Justin Cappos
New York University

jcappos@nyu.edu

Abstract—Peer-assisted content distribution networks (CDNs)
have emerged to improve performance and reduce deployment
costs of traditional, infrastructure-based content delivery net-
works. This is done by employing peer-to-peer data transfers to
supplement the resources of the network infrastructure. However,
these hybrid systems are vulnerable to accounting attacks in
which the peers, or caches, collude with clients in order to
report that content was transferred when it was not. This is
a particular issue in systems that incentivize cache participation,
because malicious caches may collect rewards from the content
publishers operating the CDN without doing any useful work.

In this paper, we introduce CAPnet, the first technique that
lets untrusted caches join a peer-assisted CDN while providing a
bound on the effectiveness of accounting attacks. At its heart is
a lightweight cache accountability puzzle that clients must solve
before caches are given credit. This puzzle requires colocating
the data a client has requested, so its solution confirms that
the content has actually been retrieved. We analyze the security
and overhead of our scheme in realistic scenarios. The results
show that a modest client machine using a single core can solve
puzzles at a rate sufficient to simultaneously watch dozens of
1080p videos. The technique is designed to be even more scalable
on the server side. In our experiments, one core of a single
low-end machine is able to generate puzzles for 4.26 Tbps of
bandwidth — enabling 870,000 clients to concurrently view the
same 1080p video. This demonstrates that our scheme can ensure
cache accountability without degrading system productivity.

I. INTRODUCTION

Online content distribution has grown dramatically over the
last decade. Video streaming, in particular accounts for more
than 60% of today’s Internet traffic and it is expected to
exceed 80% by 2022 [1]. To meet this huge demand, content
publishers typically employ solutions that distribute the load
among geographically dispersed caches. Among these solu-
tions, infrastructure-based content delivery networks (CDNs)
have proven effective [2], [3]. But as load continues to grow,
pressure to improve performance and reduce cost has led to
experimentation with more sophisticated topologies [4], [5].

Peer-assisted CDNs have evolved to reduce these costs and
also to allow access to lower latency peers. In this model,
centralized services are supplemented with the resources of
end users, or peers [6], [7]. By allowing anyone to join,
and exchanging service for a payment, this paradigm cre-
ates robust, performant, and flexible systems. In addition,
peer-assisted solutions can extend the network coverage of
infrastructure-based CDNs, scale more easily with demand,

and when managed carefully, offer a good quality of service
for end users [6]. Several commercial CDN providers have
built products that employ this approach, such as Swarmify
[8], Velocix [9], and Akamai NetSession [10].

However, peer-assisted work models are vulnerable to cache
accounting attacks [11], [12], in which a cache and client
collude to defraud the content publisher by claiming to have
transferred data (and claiming payment) when no actual work
has been done. This is a particular problem in content distri-
bution applications that do not require subscription fees from
clients, such as ad-funded video streaming [13], or services
that allow a client to play content on multiple devices under
one subscription [14]. Some defenses against these attacks
have been proposed [12], [15], but they do not work in
typical peer-to-peer scenarios, where untrusted, anonymous
nodes serve as caches.

In this paper, we introduce CAPnet, the first technique that
lets untrusted caches, such as peers with unknown compu-
tational and latency characteristics, join a peer-assisted CDN
while providing a bound on the effectiveness of accounting at-
tacks. Our key innovation is a lightweight cache accountability
puzzle that clients must solve before caches are given credit.
The puzzle solution serves as a content retrieval confirmation
to assure publishers that the claimed data transfer has taken
place, while also imposing limitations that make cheating a
less profitable option.

For each service request in CAPnet, the publisher generates
a puzzle that a client must solve by processing the data
chunks retrieved from caches (each of which is encrypted
with a request-specific key). Solving this puzzle requires the
client to sequentially touch small pieces of these chunks in
an unpredictable order. Because of this unpredictability, the
communication overhead of generating the solution without
having the data colocated is significant. Combined with the
use of a completion mask, a secret that is used to conceal an
encrypted data chunk until it has been completely transferred,
this processing pattern forces colluding parties to expend
bandwidth similar to retrieving the content, and thus removing
any motivation to cheat.

Equally important for its use in practical applications,
CAPnet does not sacrifice efficiency for enhanced security.
Its tools are built on computationally-light operations (sym-
metric encryption and hashing). CAPnet is also designed to

2019 IEEE Conference on Communications and Network Security (CNS)

978-1-5386-7117-7/19/$31.00 ©2019 IEEE 250

be scalable; while a client needs to process a large portion
of the retrieved content when solving a puzzle, a publisher
needs only to process a small, server-configurable number of
pieces to generate a challenge. Because of this asymmetry,
our scheme can meet the deployment demands of large-scale
content distribution applications.

To demonstrate that CAPnet is effective at mitigating cache
accounting attacks, we configure the system parameters based
on an analysis of the bandwidth cost incurred by mali-
cious puzzle-solving strategies. Our analysis shows that the
publisher can ensure that a malicious actor must expend a
substantial amount of bandwidth, even given unrealistically
strong assumptions about the malicious actors capabilities.
To evaluate CAPnet’s efficiency, we experimentally evaluate
the computational overhead of our scheme under various
configurations. The benchmark results show that a modest
client machine can solve puzzles at a rate sufficient to confirm
the retrieval of around 170 Mbps, which is enough to watch
more than 30 1080p quality videos simultaneously. Even a
single core low-end publisher machine can generate enough
puzzles to support 870,000 simultaneous views of the same
video.

II. RELATED WORK

To orient readers to current state-of-the-art defenses for
cache accounting attacks, this section reviews prior work
done in this area. We also present information about a related
topic — proofs of data storage — and discuss why this proof
paradigm is not applicable to cache accounting attacks.

Cache accountability in peer-assisted CDNs. One technique
used in peer-assisted CDNs is to rely on the peers themselves
to report statistics about content delivery. For example, clients
in Akamai Netsession [10] share reports about their upload
and download activity, and this information is used to manage
network resources. Even some systems that exchange service
for monetary rewards, e.g., [16], rely on these types of reports
to track the service contributions of peers in order to pay them
accordingly. However, in such an open environment that allows
anyone to join, peers may fabricate these accounting reports.
This has been confirmed through empirical studies [11], [12].

Consequently, specialized cache accountability defenses
work to address this issue by making clients commit to these
activity logs. This is done by requiring participants to maintain
tamper-evident logs, and cryptographically sign all messages
sent to the network. The participants periodically exchange
these logs with a verifier. The verifier in turn checks the
consistency of the reported information and performs anomaly
detection to identify cheating based on a protocol reference
implementation. The repeat and compare scheme [17] utilizes
this technique to address the problem of corrupted content
distribution. PeerReview [18] employs a similar approach to
detect Byzantine faults. And RCA (Reliable Client Account-
ing) [12] exploits such logs to address the same collusion
problem we describe in this paper. However, this approach
cannot prevent colluding parties from fabricating consistent

and valid-looking log reporting content transfers that did not
take place. Thus, cheating clients and caches can still collude
to collect rewards for work they did not perform.

A prior bandwidth puzzle-based defense, proposed by
Reiter et al. [15], works by issuing challenge puzzles to all
caches and clients (which must have known computational
abilities and communication latency) that possess the content.
These parties have to solve the issued puzzles over the
retrieved content in a short period of time to receive payment.
This scheme has several downsides when compared to our
approach. First, every time a new party retrieves the content,
puzzles must be solved by all peers that have a copy of this
content, even those uninvolved in the transfer. Second, the
security of the scheme is based on knowing a bound for
the attacker’s hashing power, which is used to quantify the
number of challenge puzzles that must be presented within a
time window. Third, the latency of peers must also be known
for the scheme to resist cheating. This latency constraint
may cause peers to lose their rewards in the event of lost or
delayed messages. In addition, an attacker that can fool others
into believing they have high latency can cheat because she
has more time to solve puzzles (including those that were
supposed to be issued to other caches).

Relation with data possession proofs. Several works in the
literature have tackled a related problem — how to prove that a
server to which a client has outsourced files is actually storing
those files, e.g., ensuring correct data storage in the cloud [22].
Solutions to this problem include proofs-of-retrievability [19],
proofs of data possession [20], and proofs-of-storage [21].
Such proof systems, at first glance, could be viewed as
potential defenses against cache accounting attacks. That is,
a publisher can ask a client to prove the storage of a local
copy of the retrieved content. However, this does not confirm
that caches have served the content. These colluding caches
can generate valid proofs of storage for any client because they
store the full raw content. Similarly, a client that retrieves some
content only once can produce valid proofs, for itself or others,
for all future requests that ask for the same content. While
useful, these proof systems are not applicable for fighting
cache accounting attacks.

III. CAPNET DESIGN

Unlike previous work, CAPnet defends against cache ac-
counting attacks by both mandating proof of delivery, and
making honest choices more profitable than cheating. In this
section, we describe how the design of CAPnet manages this
defense. We start by defining the work environment for content
distribution systems our scheme targets, then go on to offer
a high level view of the primary operations before finally
walking through the specific technical details of three of those
operations.

A. Work Environment Model

In the incentivized, peer-assisted content distribution sys-
tems that CAPnet targets, there are three participant types:

2019 IEEE Conference on Communications and Network Security (CNS)

251

Publisher

Client

Generate puzzle
and select n
caches

Decrypt each data chunk
(using completion mask).

Verify Solution

Caches

2

7

10

C1 Double encrypt
1st chunk5

Cn
Double encrypt
nth chunk

5

Solve puzzle, and decrypt
each data chunk (using
session key).

8

...

Content request

1

Request bundle

3

Puzzle solution

9

Retrieve 1st chunk

6

Request 1s
t chunk

4

Retriev
e nt

h chunk

6

Request n
th chunk

4

...

...

Fig. 1: CAPnet integration in content distribution (n is the
number of caches selected for a service request).

publishers, caches, and clients. A publisher owns content, e.g.,
videos or software packages, that clients want to retrieve. A
publisher hires caches to distribute this content in exchange
for rewards, such as monetary incentives, which are tied to
the amount of service these caches provide. When a cache
joins a publisher’s network, it gains access to the content
to be served, which we assume is divided into equally-sized
data chunks, though this is not fundamental to the technique.
A client request can fetch an entire object, e.g., a movie,
or a range of chunks (equivalently, bytes) within it. During
the content distribution process, a publisher, or possibly any
managing entity in a peer-assisted CDN, acts as a dispatcher
and assigns caches to fulfill client requests. Therefore, clients
must contact the publisher first to obtain the list of caches that
will serve the requested content. Since a client only interacts
with a single publisher for a piece of content, and publishers
do not interact, we simplify presentation by describing CAPnet
as though there is only one publisher in the system.

B. Overview

CAPnet consists of a set of actions integrated into the
content delivery process. Collectively, these actions demon-
strate that the requested content was actually retrieved by a
client, even in the face of malicious, colluding caches. This is
done by enabling the publisher to set a bound on the amount
of bandwidth the attacker must expend, with respect to the
original content amount, which we call the δ-bound. So, for
100MB of content, a 0.75-bound attacker in our scheme is
expected to expend 75MB to provide a valid content retrieval
confirmation.

As shown in Figure 1, to request content in the CAPnet
model, a client retrieves a request bundle from the publisher
that enables the retrieval of n data chunks (steps 1, 2, and 3)1.
This bundle stipulates which caches to contact, and includes
the client’s IP and a request number. In addition, the bundle
contains a puzzle, that when solved, enables the client to prove
that the requested chunks (or at least an amount of data within
the δ-bound) were indeed retrieved.

The client contacts caches, possibly in parallel, and provides
the request bundle that instructs each cache what specific data

1If the content has more than n chunks a client will send several requests.

chunk to serve (step 4). Each cache will encrypt its data
chunk with a unique per-request key, and additionally encrypts
the produced ciphertext using a fresh per-request completion
mask (step 5). The double encrypted chunk, appended with
the completion mask, is then delivered to the client (step 6).
Once all chunks are received, the client decrypts each chunk
using the completion mask as the decryption key (step 7),
and solves the puzzle using the single-layer encrypted chunks
(step 8). With the puzzle solution the client can decrypt the
data chunks to obtain the raw content (step 8), and confirm
to the publisher that these chunks were retrieved (steps 9 and
10).

When a cache begins serving content for a publisher, they
establish a shared secret called a master key. Along with the
request number, both parties use this key to non-interactively
generate a fresh per-request session key that is used to encrypt
the data chunk the cache will serve. Since this key is unique,
each request returns a different encrypted chunk, even if the
raw content is requested repeatedly. Also, since the session
key is a secret known only to the publisher and that cache, a
malicious cache does not know the encrypted content that an
honest cache would serve.

In addition, CAPnet ensures that a client retrieves the entire
encrypted chunk before it can start solving the puzzle. To do
this, for each request a cache selects a random completion
mask, i.e., a random key, that is used to encrypt the chunk
ciphertext. In other words, the cache adds a second layer of
encryption using the completion mask as the encryption key.
The cache appends the completion mask to the transmitted,
double encrypted chunk. Thus, the client has to download the
entire chunk before being able to unmask any part of it.

A puzzle is computed by processing small (e.g., 16 byte
long) pieces of the (single-layer) encrypted chunks. Starting at
a randomly selected piece in the first chunk, one computes the
secure hash of this piece and maps this hash to a piece index
in the second data chunk. This mapping effectively randomly
jumps to a piece in the second chunk. The secure hash is now
computed over the previous hash and the second piece and
is used to select another piece in the third chunk, and so on.
Once the data chunk from each cache is visited, this completes
a round. The next round is begun by mapping the last hash
of the prior round to a piece index in the first chunk. This
continues for the number of rounds chosen by the publisher
to achieve the desired δ-bound.

The publisher and the client compute the puzzle in slightly
different ways. The publisher randomly chooses a “starting
piece” in the first chunk and computes one puzzle to produce
a challenge for the client. This challenge does not contain any
information about the starting piece. Hence, the client will
attempt to solve the challenge by computing candidate, or trial,
puzzles initiated at various starting pieces in the first chunk
until the solution is found. This forces the client to process a
δ portion of the content before finding the solution.

Increasing δ strengthens the security guarantees of CAPnet
by causing malicious parties to retrieve more content, but
also increases the computation cost for publishers and honest

2019 IEEE Conference on Communications and Network Security (CNS)

252

Data Chunk 1 Data Chunk 2

piece 1

piece 2

piece 3

piece 4

L2 = H(E(piece 1))

L4 = H(L3 || E
(piece 3))

L3 = H(L2 || E(piece 2))

L5

Fig. 2: An example of puzzle challenge generation with two
chunks and two rounds. The puzzle challenge is H(L5) and
its solution is L5.

clients as larger number of rounds are needed. Caches, on the
other hand, have uniform computational cost independent of
the δ-bound.

C. Design Details

We now describe the CAPnet actions in more detail, includ-
ing puzzle generation, solving, and verification.

1) Puzzle Generation: The publisher generates a challenge
puzzle based on the data chunks a client wants to retrieve. Fig-
ure 2 depicts this action through a clarifying example involving
two data chunks. In this figure, L stands for location, H stands
for hashing, E stands for encryption, || is a concatenation
operation, and the arrows indicate the sequence of pieces
selected when computing a puzzle.

As shown, a puzzle starts at the first data chunk and
proceeds by processing a number of small data pieces selected
at random. Given that a puzzle round processes encrypted
pieces, the publisher encrypts the piece selected at each step.
It then hashes the encrypted piece along with prior hash or
location value. The output hash is mapped to a piece index
within the next chunk (or the first chunk is this is the beginning
of a new round).

This computation pattern imposes three aspects. First, each
location value encapsulates all encrypted pieces processed
so far, which enforces sequential computation of the puzzle.
Second, processing encrypted pieces prevents any correlation
between puzzles generated for different requests, even if they
are for the same raw content. Third, touching all data chunks
in a round robin order makes all chunks contribute equally
in solving a puzzle. This ensures that a puzzle solution is
computed over all chunks, confirming their retrieval.

Once the puzzle computation is completed, which happens
when the designated number of rounds is reached, the pub-
lisher uses the hash of the last location, i.e., H(L5) in the
figure, as the challenge, and it asks the client to return the
preimage of this hash, i.e., L5. This is done without revealing
piece1. Instead, the client tries all data pieces in the first chunk.
Hiding the starting piece causes the client to touch a large
percentage of the pieces in each chunk while enabling the
publisher to touch very few. This minimizes the computational

Algorithm 1 Puzzle challenge generator.
1: Input: Data chunks D1, . . . , Dn

2: Output: Challenge
3: /* Initialization */
4: for j = 1 to n do
5: Generate kj and ctrj,initial

6: end for
7: /* Puzzle generation */
8: Select index(piece1) randomly from D1

9: Set j = 1, L1 = 0, r = n ·Rpuzzle

10: for i = 1 to r do
11: Fetch piecei from Dj based on index(piecei)
12: /* Compute ctri and encrypt piecei */
13: ctri = index(piecei) + ctrj,initial

14: ci = AES-CTR(kj , ctri, piecei)
15: /* Compute location and index of piecei+1 */
16: Li+1 = SHA256(Li||ci)
17: index(piecei+1) = Li+1 mod piecestotal
18: j = (j mod n) + 1
19: end for
20: Set Challenge = SHA256(Lr+1)
21: return Challenge

load for publishers, allowing them to process a large number
of client requests concurrently.

The technical details of this process are captured by Algo-
rithm 1. In this algorithm, Dj is the jth data chunk, piecei is
the ith data piece in a data chunk, Rpuzzle is the number of
puzzle rounds, and piecestotal is the total number of pieces in
any data chunk. The data pieces inside a chunk are referenced
using their indices, where the first piece has an index 0, the
second has an index 1, and so on. We use index(·) to denote
the index of a given piece.

Algorithm 1 shows two phases: an initialization phase,
and a challenge preparation phase. The initialization phase
is needed to allow caches and the publisher to agree on the
encryption setup. We use AES in the counter mode (AES-
CTR) for encryption because it allows a publisher to encrypt
any individual data piece without encrypting the whole data
chunk. To generate identical encrypted data, the publisher and
each cache Cj must generate the same session key kj and the
initial value of the AES-CTR counter ctrj,initial.

Generating the AES-CTR counter and session key is done
using a one time setup without any per-request interaction
between the publisher and cache. As mentioned before, a cache
Cj shares a master key with the publisher that they both use to
derive any future session key kj . This is done by means of a
pseudorandom function (PRF) keyed with this master key, and
evaluated over the request number and the client IP to output
kj . The same PRF idea, but keyed with the session key, is
used to generate ctrj,initial. Accordingly, in the initialization
phase, the publisher generates all keys and counters for all
data chunks that will be used by the caches involved in the
service session.

The puzzle generation phase proceeds as described previ-
ously. After selecting a piece index at random from the first
data chunk, the publisher proceeds by computing the location
of the next piece (line 16), and mapping this location to a

2019 IEEE Conference on Communications and Network Security (CNS)

253

piece index (line 17). The new location computation requires
encrypting the prior piece, which in turn requires computing
the correct AES-CTR counter value (line 13). By doing so,
the publisher produces the same ciphertext of the selected
piece that a cache will produce. The aforementioned process
is repeated for the required number of iterations, as found in
lines 10-19. Lastly, the algorithm outputs the hash of the last
location as the puzzle challenge.

After the puzzle is generated, the publisher informs the
client about the puzzle challenge it has to solve as part of the
request bundle mentioned earlier. To allow the client to decrypt
the retrieved data chunks, the publisher can either provide the
keys in response to the puzzle solution reported by the client,
or simply encrypt all session keys using the puzzle solution
and share the ciphertext as part of the request bundle. Either
way, once the client solves the challenge puzzle it can recover
these keys and decrypt the received data.

2) Puzzle Solving: The client receives the puzzle challenge,
along with the cache contact information, within the request
bundle sent by the publisher. With this bundle, the client
can start the content retrieval process, where it connects
with the listed caches and requests the specified data chunks.
Caches will deliver double-layer encrypted chunks, with the
completion mask appended to each chunk. The client uses the
completion mask as the decryption key to remove the second
encryption layer of the chunk. By repeating this process for
all chunks, the client obtains the single-layer encrypted data
chunks.

The client can now perform the second action in the
CAPnet process — solving the challenge puzzle. It uses a
similar algorithm to the one used by the publisher with three
differences. First, since the client retrieves encrypted data
chunks from the caches, it does not encrypt the data pieces
before applying the hash, thus skipping lines 4-6 and 13-14
in Algorithm 1. Second, since the client does not know the
starting piece, it computes a puzzle for every piece in the
first data chunk until the correct solution is found. In other
words, it repeats lines 9-11 for each candidate starting piece.
And third, once the client solves the puzzle, the output is the
puzzle solution, which is the last location in the correct puzzle.

3) Puzzle Verification: The last action in the CAPnet
process is verifying the correctness of the reported puzzle
solution. While it would be possible to keep a record of the
puzzle challenges and their solutions for each client, we devise
a computationally-lightweight technique that does not require
maintaining any per-client state.

In this technique, the publisher generates a unique secret
token for each content request. This is done by evaluating
a secret PRF over the concatenation of the request number
and the client IP. The publisher then encrypts the secret token
using the puzzle solution, and sends the encrypted token to
the client as part of the request bundle. Once the client solves
the puzzle, it can decrypt the token and send it back to the
publisher along with the request number. The publisher can
simply evaluate the secret PRF over the request number and
the client IP, and thus, verifies whether the output equals to the

TABLE I: Notations.
Symbol Meaning

n Total number of caches in a service session.
Cm Set of malicious caches in a service session.
m Number of malicious caches in a service session, where

m ≤ n.
hsize Hash output size, where hsize = 32 bytes.
chunksize Data chunk size, we use chunksize = 1MB.

piecesize Data piece size, where piecesize ≤ hsize
m

and we use
piecesize = 16 bytes.

piecestotal Total number of pieces in a data chunk, where
piecestotal =

chunksize
piecesize

.

Rpuzzle Number of puzzle rounds.
Y A random variable that represents the number of pieces

a malicious puzzle solver retrieves.
E[Y] The expectation of Y .
δ The ratio between the bandwidth amount a malicious

puzzle solver would spend and the amount that an honest
solver would use. This is computed as δ = E[Y]

n·piecestotal
.

token value reported by the client.This enables the publisher
to quickly check puzzle solutions are correct.

IV. SECURITY ANALYSIS

In this section, we analyze the effectiveness of CAPnet in
fighting cache accounting attacks. We begin by outlining the
setup of this analysis, after which we discuss how the security
of CAPnet changes as the design parameters change.

A. Setup

The analysis setup offers a blueprint for how we modeled
our adversaries, and explains the security properties that
CAPnet is designed to achieve. The set of notations that this
analysis uses is shown in Table I.

Adversary Model. We consider a client colluding with a set of
m ≥ 1 caches. (If a client does not collude with any cache,
it must retrieve all the data chunks to solve the puzzle just
like an honest client.) This collusion can be modeled as an
interaction between two parties: the client and a collective
entity Cm. Any cache Cj in Cm can pool all encrypted data
chunks from the rest of the malicious caches at a very low
cost. That is, given that each cache has a full copy of the
raw content, Cj needs only the session keys of these caches
to produce their encrypted data chunks locally. When we say
that a client retrieves data pieces from Cm, we mean that this
client is interacting with the cache that pooled the data chunks.

In order to have a strong bound on attacker capabilities,
we consider an attacker with full knowledge about the piece
distribution across all the trial puzzles a client will compute.
That is, the attacker knows the selection frequency of data
pieces, i.e., how many times a piece has been processed by
all puzzles, in all chunks rather than just in the puzzles for
which this attacker has enough prior pieces. The attacker may
use this information to retrieve the most frequent pieces when
solving the challenge puzzle.

2019 IEEE Conference on Communications and Network Security (CNS)

254

Despite the hash function being modeled as a random oracle
with a uniform and random output, this piece frequency still
matters. Suppose that we have a chunk composed of 4 pieces
that are randomly chosen to be in 4 trial puzzles. Over 90%
of the time one of these pieces is chosen at least twice (only
about 9% of random draws of 4 items choose one from each).
On average more than 1 piece is likely not to be chosen
for any trial puzzle. An intelligent attacker would choose the
piece used in the most trial puzzles since it gives the greatest
chance to solve the challenge. So, accounting for the fact that
the actual frequencies are not uniform, even with a random
function, more accurately models the attacker’s capabilities.
Furthermore, providing the attacker perfect information about
these actual frequencies implies that the security bound we
infer will be conservative.

The client and Cm want to solve the puzzle while expending
as little bandwidth as possible. In quantifying this cost, we
compute the download bandwidth consumption for the col-
luding group.

Our adversary model is subject to the following assump-
tions:
A1. Secure cryptographic primitives. Adversaries cannot

efficiently break the basic cryptographic building blocks
(SHA256, AES, and PRFs) with non-negligible probabil-
ity, and hash functions are modeled as random oracles.

A2. Clients do not already possess the content. At the
beginning of a service session, a client does not have a
copy of the content it will request. This can be achieved
by having publishers track which clients have retrieved
which content. However, even if this assumption is vi-
olated, the client still must retrieve data chunks from
honest caches in order to solve a puzzle, leading to the
retrieval of at least δ = n−m

n of the requested chunks.
A3. Free adversarial metadata communication. It is diffi-

cult to know the minimal size of information adversaries
would need to communicate when coordinating the puz-
zle solving process. Therefore, we will just assume that
such costs are free from a bandwidth standpoint and only
count data piece transmission. While it ignores some cost,
this makes the overhead numbers conservative in that real
attackers will incur more cost than what we predict.

An intelligent client and Cm collaborate to solve the puzzle
while transferring the least amount of data possible. In this
collaboration, the client receives encrypted chunks only from
honest caches, while Cm produce all encrypted chunks of
malicious caches by pooling their session keys as explained
previously. We consider that Cm have pooled the data to
simplify our analysis. The strategy then will have a solver,
either the client or Cm, that attempts to solve the puzzle using
the chunks it has in addition to information it requests from
the second party, whichever of the client or Cm is not the
solver. The second party acts as a piece provider which sends
pieces or hashes (i.e., piece locations computed in a puzzle
round) to the solver. For reasons we will see shortly, pieces
make more sense for the attacker to transmit.

As our analysis will show, the client and Cm can decide

in advance which party will play which role based on which
option incurs the least bandwidth cost. This decision depends
on the number of malicious caches m. If this number is less
than half, i.e., m < n

2 , it is more efficient for the client to act
as the solver. If it is greater than half, it is more efficient for
the client to let Cm solve the challenge puzzle. If the number
of caches is exactly half, it is equally efficient regardless of
who is the solver.

Security Goal. The goal is to ensure that a malicious puzzle
solver cannot solve the challenge puzzle in CAPnet unless
it retrieves, on average, at least δ portion of the content.
This means that the colluding group is expected to expend
a total of δnchunksize bandwidth units. So for δ = 0.95, the
attacker has an expected value of 95% of the bandwidth cost
even if all metadata overhead are ignored. System designers
may set the value of δ based on the security-efficiency trade-
off they want to achieve. A larger δ value provides stronger
security guarantees, but also increases the computational cost
of generating and solving puzzles.

It is not practical to have δ = 1 unless the publisher touches
every piece of the requested chunks. Since each chunk must be
encrypted with a fresh key, this cost is prohibitive. In fact, if
the publisher is willing to touch (and encrypt) every piece, it is
simpler to compute the hash of the encrypted chunks, and use
this hash as the content retrieval confirmation that a client has
to compute. However, this would greatly reduce performance.
Assuming that the publisher does not touch every piece, then
δ < 1 for the following reason. Suppose that the attacker
retrieves every piece of the content except one. If this piece
was not touched by the publisher, the attacker can prove that
the content was retrieved with δ < 1. Since we only account
for the piece transfer costs, at least some of the time (when
the attacker does not retrieve untouched pieces) δ < 1, which
makes the expected value of all cases to be less than 1.

B. Analysis of Puzzle Solving Strategies

In what follows, we analyze the bandwidth cost of the
malicious puzzle solving strategies described earlier, and show
how to configure CAPnet’s design parameters to achieve the
desired δ-bound. These parameters include the data piece size
piecesize and the number of puzzle rounds Rpuzzle.

As mentioned previously, an attacker who wishes to solve
the puzzle without retrieving all the data chunks will ei-
ther exchange hashes or retrieve data pieces. By setting the
piecesize ≤ hsize

m one can ensure that the cost of transmitting
a hash is no less than transmitting pieces. That is, even in the
event when the piece provider has m consecutive encrypted
chunks, meaning that given one hash value the provider can
process m pieces in a puzzle round, transmitting a hash is more
expensive than transmitting these m pieces. In fact since the
pieces may be used in multiple puzzle trials, it is better for the
solver to retrieve them. For this reason, we focus on strategies
that involve piece dissemination instead.

When retrieving data pieces to solve the challenge puzzle,
the best strategy for the solver is to utilize its knowledge of the

2019 IEEE Conference on Communications and Network Security (CNS)

255

piece distribution across all trial puzzles. Initially, the solver
must possess some piece of each encrypted data chunk to have
a chance to solve the puzzle, since each round touches all
encrypted data chunks. In order to get pieces from the honest
caches, the client must download all the masked and encrypted
chunks held by these caches. For malicious caches, the client
can retrieve the individual pieces it desires. In selecting which
pieces to retrieve, the best approach is to ask for the piece
that gives the greatest chance of solving the puzzle. The solver
can ask the piece provider to send the piece with the highest
frequency among the remaining pieces, and then determine if
it enables solving the challenge puzzle. This process continues
until the solution is found. Assuming that retrieving the most
popular missing piece is optimal, this is the optimal strategy
for the malicious solver.

Recall that either the client or a cache (Cm) may play the
role of the puzzle solver. If a cache is the puzzle solver, the
client must still be the one to download the chunks from honest
caches since the source IP of the request is checked. Hence,
the client retrieval from honest caches is a fixed cost. Once
this happens, it is more efficient for the party with the most
content (either the client or Cm) to act as the solver and get
as few pieces as possible from the other party. This means
that when m < n

2 , the client will have a larger number of
chunks than Cm, thus, the client will be the puzzle solver. On
the other hand, when m > n

2 , Cm will be the puzzle solver
asking the client to send pieces from the chunks it received
from honest caches. When m = n

2 , either party can be the
puzzle solver.

Analyzing the bandwidth cost of the above strategy allows
us to configure the number of puzzle rounds to obtain a
specific δ-bound. In order to do so, we compute the expected
number of pieces E[Y] the colluding group will retrieve as a
function of Rpuzzle and the number of malicious caches m.
Then, we compute δ = E[Y]

n·piecestotal
, after which we select

Rpuzzle that satisfies the desired δ-bound. To compute E[Y],
we conduct simulations in which we mimic the above strategy
and track the number of retrieved pieces. As an example, we
consider the following setup, which we believe is similar to
what is used in practical content distribution applications. We
set chunksize = 1 MB, and piecesize = 16 bytes, leading
to piecestotal = 216 pieces. We have Rpuzzle ∈ {1, . . . , 10},
n = 6, and m ∈ {1, . . . , 6}. The simulations are repeated 103

times, where E[Y], and consequently δ, is computed as the
average across all runs. We also report the standard deviation
of our measurements. The computed δ values are found in
Table II.

As shown, as the number of rounds increases, δ increases.
This is expected because a larger number of puzzle rounds
means that the challenge puzzle requires a larger number
of pieces to be solved. Consequently, the puzzle solver is
expected to retrieve more content in order to find these pieces.
On the other hand, δ decreases as the number of malicious
caches increases for a fixed Rpuzzle value. Again, this is
expected because more malicious caches makes the collusion
more effective.

TABLE II: The δ-bound for various m and Rpuzzle values,
n = 6 caches (R is Rpuzzle). For m < 3 the client is a more
efficient puzzle solver, for m > 3 Cm is a more efficient
puzzle solver, m = 3 is equivalent for each.

Client as solver Either Cache as solver

R
m 0 1 2 3 4 5 6

1 1 0.87±0.03 0.78±0.06 0.71±0.08 0.45±0.06 0.21±0.03 0
2 1 0.91±0.04 0.86±0.06 0.82±0.08 0.52±0.06 0.24±0.04 0
3 1 0.93±0.04 0.9±0.05 0.87±0.07 0.57 ±0.05 0.26±0.04 0
4 1 0.94±0.03 0.92±0.05 0.91±0.06 0.59±0.05 0.28±0.03 0
5 1 0.95±0.03 0.94±0.04 0.93±0.04 0.6±0.05 0.29±0.03 0
6 1 0.96±0.03 0.95±0.04 0.94±0.04 0.61±0.04 0.29±0.03 0
7 1 0.96±0.02 0.95±0.02 0.95±0.04 0.62±0.04 0.3±0.03 0
8 1 0.97±0.02 0.96±0.03 0.95±0.03 0.63±0.03 0.3±0.02 0
9 1 0.97±0.02 0.97±0.03 0.96±0.03 0.63±0.03 0.3±0.02 0
10 1 0.97±0.02 0.97±0.03 0.97±0.03 0.64±0.03 0.31±0.02 0

Note that scenarios where Cm is the solver have signifi-
cantly lower δ values. This is because Cm already possesses
the majority of the content that has been pooled at no cost
(since we assume that metadata retrieval, such as keys, is
free, pooling session keys costs no bandwidth). To solve the
challenge puzzle, Cm only needs to retrieve the missing pieces
from the client who has the data chunks from the honest
caches.

Notice that as one would expect, once the piece provider
and solver have their pieces it does not matter which party
was a client or a cache originally. To see this, examine δ in
Table II. Notice that the points with m = 2 and m = 4
have a difference of 0.33 (within the margin of error). This is
because the attacker either retrieves 2

6 or 4
6 of the content, a

difference of 0.33. However, in either case, a party with 4
6 of

the content acts as a solver while the party with 2
6 provides

pieces. Similar symmetries are found with m = 1 and m = 5
(a difference of 0.66) and m = 0 and m = 6 (a difference
of 1). This illustrates that once a piece provider and solver
have their content, the cost of solving the puzzle is uniform
regardless of which party is the client and which is a cache.

V. EVALUATION

In order to understand how CAPnet’s security impacts
efficiency, this section evaluates performance in the context of
content distribution applications. As we have already shown
that CAPnet imposes a minimal bandwidth cost to exchange a
puzzle challenge and its solution, what is left to measure is its
computational overhead. Towards this end, we conduct empir-
ical experiments to answer the following specific questions:

• How fast can a publisher generate challenge puzzles?
• How quickly can a client solve these puzzles?
• How does the configuration of the design parameters

affect these results?
• What do these numbers mean for a practical deployment?

A. Methodology

To establish our benchmarks, we measured the rate, in puz-
zles per second, at which a publisher can generate challenge
puzzles, and the rate at which a client can solve these puzzles.

2019 IEEE Conference on Communications and Network Security (CNS)

256

We computed this rate for the publisher when considering the
case of popular content that large numbers of clients routinely
request in close time intervals. For the client, we computed the
puzzle solving rate based on the average case, meaning that
a client tries half the starting pieces in the first data chunk to
find the solution.

For the publisher, our experiments were conducted on a
modest server with an AMD Ryzen 3 2200G processor and 16
GiB of memory. For the client, we employed a machine with
an Intel Core i7-4600U processor and 8 GiB of memory. Each
puzzle generator and solver has been called at least 5,000,000
and 5,000 times, respectively. Unless otherwise mentioned, all
graphs use Rpuzzle = 5, chunksize = 1 MB, hsize = 32
bytes, and piecesize = 16 bytes. In addition, instead of
reporting the puzzle rate for puzzle generator and solver, we
compute the bitrate at which content can be requested using
these puzzles. Despite both the client and publisher operations
being embarrassingly parallelizable, we run each on a single
core to show the per-core performance.

B. Results

Publisher’s bitrate vs δ. We begin by measuring the puzzle
generation rate while varying the number of puzzle rounds
Rpuzzle and number of caches n with one malicious cache
(Figure 3a). As shown in the figure, we compute the δ-bound
value that corresponds to each Rpuzzle value. This produced
a curve from 1 round (upper left point on each curve) to 10
rounds (lower right point). The bitrate decreases as δ increases
because with larger Rpuzzle the publisher processes a larger
number of pieces when preparing the challenge, which reduces
the puzzle generation rate. On the other hand, an increased
number of caches n increases the throughput because more
data is served per challenge puzzle. This factor also affects the
δ-bound of CAPnet. As shown in the figure, for larger n the
range δ gets larger for all Rpuzzle values. That is, the impact
of having a malicious cache decreases when n gets larger. This
captures what happens in real life, where it will be harder for
caches to collude effectively when there is a large number of
caches per session. Based on the figure, setting Rpuzzle ≥ 5 in
practice provides a reasonable δ-bound for n ≥ 4 (δ ≥ 0.93),
with diminishing returns thereafter.

Client’s bitrate vs δ. Figure 3d shows the bitrate vs δ-bound
for the puzzle solver. As shown, for a fixed Rpuzzle value, the
client’s effective bandwidth is relatively uniform independent
of the number of caches n. However, the Rpuzzle value, for
a fixed n, has substantial impact on the effective bandwidth
of a client. Given that the reported speed in the figure dwarfs
the 5 Mbps Netflix 1080p quality video rate [23], even using
Rpuzzle = 5 (the 5th point on each curve starting from the
left), our modest client machine is able to watch dozens of
1080p videos concurrently. If higher performance is desired,
then reducing Rpuzzle, i.e., reducing δ, provides drastically
better performance, up to 900Mbps, if needed.

How does chunksize impact client and publisher bi-
trates? We measured the puzzle generation and solving rates
for various data chunk sizes and n values (results are shown

in Figures 3b and 3e). The chunksize has a large effect
on the performance of publishers, but minimal effect on
client’s performance. There are several reasons for this dif-
ference. The publisher has almost a fixed puzzle generation
rate regardless of the chunk size, because it processes the
same number of pieces for fixed Rpuzzle, piecesize, and n
values. Consequently, a larger chunksize makes the amount of
content served per challenge puzzle larger. Alternatively, for a
client the puzzle solving rate decreases with larger chunksize
because the client has to try a larger number of trial puzzles.
When computing the bitrate for some n value, the low puzzle
rates are multiplied by large chunksize and vice versa. For
this reason the client bandwidth is somewhat similar for all
chunksize values.

How does piecesize impact client and publisher bitrates?
To understand how to set the piece size, we studied its effect
on publisher (Figure 3c) and client (Figure 3f) performance.
The publisher can generate enough puzzles to serve over 3
Tbps, regardless of the piece size. However, a piece size of
16 bytes is slightly more efficient because AES-CTR works
on 16 byte blocks for encryption. In addition, a smaller piece
size means that the publisher processes a smaller amount of
content for a fixed number of pieces. The client, on the other
hand, tends to benefit from larger piece sizes because they
reduce the number of starting pieces, and hence, trial puzzles,
a client has to compute. Given that a client with piecesize = 16
byte already has a high throughput, and given that publishers
are usually heavy-loaded entities, we recommend the use of
piecesize = 16 bytes to boost publisher performance.

Contextualizing our results. To ground our results in real
world numbers, we examined the customer demand from the
popular content provider Netflix.com. Netflix serves 1080p
video at a bitrate of approximately 5 Mbps [23]. As shown in
Figure 3b, and taking n = 4 caches, a publisher in our setup,
using a single core machine, can generate puzzles for 136,000
requests per second, which translates to 544,000 data chunks
per second. To understand this load, we look at a popular
show, “House of Cards”, where 5.4 million of its 83 million
subscribers (as of 2015) watched at least one episode within
a month of its release [24]. Since the report does not indicate
how many of those views were concurrent, it is not possible to
infer the exact peak load. However, our single core publisher
supports concurrent viewing from 870,000 clients which is
enough to support a simultaneous viewing peak from 1/6 of
the total views at any point during the first month.

As for the client, the previous results showed that for
Rpuzzle = 5, on average our low-end client is able to solve
enough puzzles to retrieve at least 170 Mbps using a single
core (Figure 3e). This is more than 34 times the rate required
to retrieve the same popular 1080p video [23].

In summary, the previous results demonstrate that CAPnet
is computationally-lightweight. Its security in fighting cache
accounting attacks is substantial (δ > 0.95 with generous
attacker assumptions), even at bandwidth values that support
a publisher serving thousands of clients or a client simultane-
ously watching dozens of 1080p videos.

2019 IEEE Conference on Communications and Network Security (CNS)

257

(a) Generator speed (Tbps), δ effect. (b) Generator speed (Tbps), chunksize effect (c) Generator speed (Tbps), piecesize effect

(d) Solver speed (Mbps), δ effect. (e) Solver speed (Mbps), chunksize effect (f) Solver speed (Mbps), piecesize effect

Fig. 3: Service speed for various configurations (n is the number of caches in a service session).

VI. CONCLUSIONS

In this paper, we introduce CAPnet, a low-overhead solution
to defend against cache accounting attacks in peer-assisted
CDNs. CAPnet is the first system that forces malicious caches,
even when colluding with clients, to expend substantial band-
width to demonstrate that content was retrieved. This is done
by introducing a cache accountability puzzle that provides
strong protections even given unrealistically strong assump-
tions about the attacker’s capabilities. For example, with a 5
round puzzle, if 3 malicious caches out of 6 total caches wish
to perform a cache accounting attack, the colluding parties
would retrieve on average more than 0.95 of the requested
content (δ > 0.95). We analyze the security of CAPnet, and
show experimentally that it incurs a low computation cost,
enabling a modest client to retrieve 170Mbps from a modest
publisher serving several Tbps. This demonstrates the viability
of employing our scheme in large scale content distribution
applications.

REFERENCES
[1] Cisco Visual Networking Index: Forecast and Methodology, 2016-2021,

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/mobile-white-paper-c11-520862.html.

[2] Akamai, https://www.akamai.com/.
[3] CloudFront, https://aws.amazon.com/cloudfront/.
[4] R. Buyya, M. Pathan, and A. Vakali, Content delivery networks.

Springer Science & Business Media, 2008, vol. 9.
[5] Y. Jin, Y. Wen, and K. Guan, “Toward cost-efficient content placement in

media cloud: modeling and analysis,” IEEE Transactions on Multimedia,
vol. 18, no. 5, 2016.

[6] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Druschel,
B. Maggs, B. Wishon, and M. Ponec, “Peer-assisted content distribution
in akamai netsession,” in IMC’13, 2013.

[7] N. Anjum, D. Karamshuk, M. Shikh-Bahaei, and N. Sastry, “Survey on
peer-assisted content delivery networks,” Computer Networks, vol. 116,
2017.

[8] Swarmify, https://www.swarmify.com/.
[9] Velocix, https://www.networks.nokia.com/products/

velocix-media-delivery-platform.
[10] Akamai NetSession, https://www.akamai.com/us/en/products/

media-delivery/netsession-interface-overview.jsp.
[11] Q. Lian, Z. Zhang, M. Yang, B. Y. Zhao, Y. Dai, and X. Li, “An empirical

study of collusion behavior in the maze p2p file-sharing system,” in
ICDCS’07, 2007.

[12] P. Aditya, M. Zhao, Y. Lin, A. Haeberlen, P. Druschel, B. Maggs, and
B. Wishon, “Reliable client accounting for p2p-infrastructure hybrids,”
in NSDI’12, 2012.

[13] Youtube, https://www.youtube.com/.
[14] Netflix, https://www.netflix.com/.
[15] M. K. Reiter, V. Sekar, C. Spensky, and Z. Zhang, “Making peer-assisted

content distribution robust to collusion using bandwidth puzzles,” in
ICISS’09, 2009.

[16] S. K. Nair, E. Zentveld, B. Crispo, and A. S. Tanenbaum, “Floodgate:
A micropayment incentivized p2p content delivery network,” in IEEE
ICCCN’08, 2008.

[17] N. Michalakis, R. Soulé, and R. Grimm, “Ensuring content integrity for
untrusted peer-to-peer content distribution networks,” in NSDI’07, 2007.

[18] A. Haeberlen, P. Kouznetsov, and P. Druschel, “Peerreview: Practical
accountability for distributed systems,” ACM SIGOPS operating systems
review, vol. 41, no. 6, 2007.

[19] D. Cash, A. Küpçü, and D. Wichs, “Dynamic proofs of retrievability
via oblivious ram,” Journal of Cryptology, vol. 30, no. 1, 2017.

[20] C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” ACM Transactions on Information and System
Security, vol. 17, no. 4, 2015.

[21] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs of
space,” in Crypto’15, 2015.

[22] C. Wang, K. Ren, W. Lou, and J. Li, “Toward publicly auditable secure
cloud data storage services,” IEEE network, vol. 24, no. 4, 2010.

[23] Netflix Internet Connection Speed Recommendations, https://help.netflix.
com/en/node/306.

[24] House of Cards Viewers Stats, http://fortune.com/2016/03/05/
house-of-cards-viewership/.

2019 IEEE Conference on Communications and Network Security (CNS)

258

