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Abstract—A common problem for developers is applications
exhibiting new bugs after deployment. Many of these bugs can
be traced to unexpected network, operating system, and file
system differences that cause program executions that were
successful in a development environment to fail once deployed.
Preventing these bugs is difficult because it is impractical to
test an application in every environment. Enter Simulating En-
vironmental Anomalies (SEA), a technique that utilizes evidence
of one application’s failure in a given environment to generate
tests that can be applied to other applications, to see whether
they suffer from analogous faults. In SEA, models of unusual
properties extracted from interactions between an application,
A, and its environment guide simulations of another application,
B, running in the anomalous environment. This reveals faults
B may experience in this environment without the expense of
deployment. By accumulating these anomalies, applications can
be tested against an increasing set of problematic conditions. We
implemented a tool called CrashSimulator, which uses SEA, and
evaluated it against Linux applications selected from coreutils
and the Debian popularity contest. Our tests found a total of
63 bugs in 31 applications with effects including hangs, crashes,
data loss, and remote denial of service conditions.

I. INTRODUCTION

No Battle Plan Survives Contact With the Enemy — Helmuth
von Moltke

No matter how well an application is tested before its
release, new bugs always seem to emerge after deployment.
Oracle estimates that 40% of deployed applications contain
critical defects – a situation that is compounded by the fact
that deployment increases the cost to fix these flaws by 100
fold [1]. One reason for this outcome is that these applications
will operate within a diverse set of deployment environments,
and variations between these environments tend to reveal
previously undiscovered flaws. These flaws emerge from such
factors as operating system APIs changing across versions
[2], [3], [4], or small variations in file systems exhibiting
subtle but critical differences [5], [6], [7]. Even if the network
and adapter are identical, network behavior can still diverge
from what is expected [8], [9], [10], and these environmental
differences greatly exacerbate the chance that an application
will function incorrectly when deployed.

These unforeseen bugs complicate the work of 43% of
application developers who, according to a recent survey
conducted by ClusterHQ [11], spend between 10% and 25%

of their time debugging errors that only appear in production.
Numerous efforts have been made to reduce this burden.
One approach is to hide environmental differences behind
standard interfaces. Unfortunately, even specialized “Write-
Once, Run Anywhere” environments that attempt to hide
these differences, such as the Java Runtime Environment,
are not perfect, leading them to be rechristened “Write-Once,
Debug Everywhere” [12]. A more direct approach would be
to identify and fix deficiencies before deployment, but history
has shown that, even if enormous effort is put forward, it
may be insufficient to uncover these bugs. Microsoft employs
thousands of engineers with nearly a 1:1 ratio of testers to
developers [13]. Yet, a recent Windows Update released in
response to the Spectre Intel CPU vulnerability resulted in
machines with certain hardware configurations being rendered
unbootable [14].

What is needed is a methodical way to record, preserve,
and test against specific features of any environment proven
to have caused incorrect behavior in applications. We achieve
this by cataloging these features, which we call anomalies,
and offering a systematic and reproducible strategy for future
application tests, without requiring per application effort.

In this paper, we document the development and implemen-
tation of a new approach to finding and preserving anomalies
that we call Simulating Environmental Anomalies (SEA). This
technique is founded upon the key insight that problematic
environmental properties can often be detected in the function
calls, system calls, or other interactions an application makes
within an environment. When employing SEA, an application
under test is exposed to the anomalies unique to a given envi-
ronment in such a way that its responses will indicate potential
for failures upon deployment. In this way, developers are given
an easy and inexpensive way to learn from the mistakes of
others, and thus save money and programming hours that
otherwise would be spent to find and fix environmental bugs.

We found SEA capable of finding bugs, both known and un-
known, in Linux applications ranked highly on Debian’s pop-
ularity contest by implementing it in a proof of concept tool
called CrashSimulator1 and evaluating its performance [15].

1Our approach is loosely inspired by flight simulators, which test pilot
aptitude under a variety of rare, adverse scenarios (water landings, engine
failures, etc.) before the pilots are certified to work in practice.
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These applications were chosen because they are commonly
used, well tested, and stable, giving CrashSimulator a chance
to find new environmental bugs where it should be the hardest.
Findings from these evaluations included bugs attributed to
unanticipated file system configurations, file types, and net-
work delays, and resulted in a variety of failures, including
hangs, crashes, and filesystem damage. In total, the SEA
technique was able to identify 65 bugs with much less time
and effort than would be required to set up real environments
and execute the same applications within them – illustrating
SEA’s usefulness for developers in a real-world setting.

The main contributions in this work can be summarized as
follows:

• It provides evidence that previously unanticipated flaws
can be created by the interaction between an application
and its environment.

• It introduces Simulating Environmental Anomalies (SEA)
as an easy-to-use method for simulating environments
so an application’s behavior in those environments can
be assessed before deployment— without the time and
resource costs of testing in each environment.

• It allows developers to build a corpus of extracted anoma-
lies and thus increase their capability to test applications
against problematic environmental aspects without per
application effort.

• It demonstrates a new tool, CrashSimulator, which im-
plements SEA in order to find previously-undiscovered
environmental bugs in widely deployed and highly tested
code.

• It introduces a new technique called process set cloning
that can generate copies of a running application, so that
users can test debugging hypotheses without damaging
the original.

• It proves the effectiveness of CrashSimulator by showing
it can find real bugs in real applications when used by de-
velopers both involved and not involved with the project,
including developers with limited Linux experience.

II. WHAT IS AN ENVIRONMENT?

It is important to have a clear understanding of what
constitutes an application’s environment in order to see how
it can contribute to the presence of bugs. An application’s
environment consists of all of the components an application
depends upon that its developers do not control. In practice,
this is everything other than the code and data packaged within
the application itself. Typically testers focus on explicit inputs
to the application and overlook the implicit inputs coming
from these uncontrolled components.

Anything external to the application can be configured in
unexpected ways. For example, library search rules can result
in default system libraries being loaded instead of the versions
deployed alongside the application. These external resources
can be thought of as providing implicit inputs to the program
that affect its flow of execution. An investigation of bug reports
has shown that environmental bugs in the following categories
have been found in major applications.

• Operating Systems. Differences in the way operating
systems implement system calls can influence the behav-
ior of applications. For example, on Linux it is possible
to remove an open file, yet this is not allowed on
Windows systems [16]. An application written without
this difference in mind could fail if it relies on one
implementation or the other.

• File Systems. The exact file system used will also
have a substantial impact on the behavior of a system,
independent of the operating system. The popular Ext4
file system on Linux is case sensitive, so that “a” and
“A” are different files, while in OS X’s HFS+ file system
those file names would refer to the same file. File systems
can have varying limits or behaviors for other items
as well, including file name length (popularized due to
the 8.3 limitations of the FAT file system), maximum
file length, number of directory entries, or depth of
directories supported, all of which can lead to errors when
programs do not account for these variations [5], [6]. The
layout and contents of a filesystem can also impact an
application’s execution. Unexpected file types can result
in application failures, and multi-disk layouts impose
additional requirements on common operations, such as
moving a file from one location to another. We explore
the latter two situations in our evaluation (Sec. IV-A).

• Network. Both local and remote network nodes can have
specific characteristics that could influence the behavior
of an application. For example, POSIX operating systems
support the notion of limiting the kernel buffer set aside
for a socket. However, many other popular operating
systems (Windows, Linux, and Mac) implement this
quite differently. If a UDP datagram larger than the
specified buffer size is received by a Linux system, it
will be dropped. Windows, however, will receive these
datagrams, but it will influence data retrieval. Any system
calls that retrieve data from the buffer in which datagrams
are stored will only return a number of bytes less than or
equal to the buffer size, requiring multiple calls to retrieve
all the data. [17].

• Processor. The processor used can also influence the
behavior of an application. This is frequently evidenced
through the different floating point behaviors a processor
may exhibit [18]. In addition, bugs are fairly common in
processors and will cause variances, as will differences
in interpreting how to execute complex instructions [19].

In this work, we chose to focus on operating system, file
system, and network environmental issues. These issues are
readily visible in data returned by the system calls an applica-
tion makes. We took advantage of this in our implementation
of SEA as CrashSimulator by intercepting and manipulating
system call results. As we will discuss, this allowed us to
strike a good balance between a higher level approach, such
as hooking library functions, and a lower level approach like
directly altering memory values. In our evaluation we take a
deeper look at anomalies from these three categories in order
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Figure 1: Using SEA allows developers to capture features that make an
environment problematic and use them to prevent future applications from
falling victim to the bugs of the past.

to assess the technique’s effectiveness. We do not consider
processor-based environmental differences as bugs related to
those are being handled by other work [20].

III. THE SEA TECHNIQUE

The Simulating Environmental Anomalies (SEA) technique
offers a methodical way to capture, store, and utilize the
insights gleaned from previous failures in a given environment.
In this section, we offer a high-level look at how SEA works,
as illustrated in Figure 1. This is followed by a more in-depth
look at its primary operations, and the details of our concrete
implementation, CrashSimulator.

A. SEA in a Half-shell

In brief, here is how the technique works. An application,
A, is run in a particular environment and fails. In debugging
the failure, we identify and “trap” the particular environmental
feature (sec. III-B1), that caused the failure, which we call X .
We verify that when X is present, the results of interactions
with the environment are different, sometimes in a barely
perceptible manner, and other times in a radically contrary
manner. We call this difference ∆X . ∆X can be extracted,
preserved, and later used in testing other applications thanks
to a pair of components referred to as a mutator and a checker.
The mutator, mutX(), is able to apply ∆X to the appropriate
places in an application’s interactions in order to simulate
the presence of X . The checker, checkX() describes how an
application should respond once X has been encountered. To
test if another application, B, also has a problem with X ,
mutX(B) is used to apply ∆X to its interactions (sec. III-B2).
checkX(B) is then used to determine whether B has re-
sponded correctly to X(sec. III-B3). If the checker accepts B’s
behavior after X is simulated, we report it has been handled
correctly. If the checker doesn’t accept, we report that it has
not responded correctly. Once created, these pieces act as the

persistent medium in which the details of a given anomaly are
stored.

Representing an anomaly in terms of mutators and checkers
allows it to be easily reused to test other applications without
per application effort. While an application’s test suite is
typically tightly coupled to the programming language and
frameworks with which it was written, SEA’s approach is
agnostic to these features. This means anomalies that were
useful in testing one application can be programmatically
applied toward testing another. In this way, SEA is able to
augment application-specific test suites by both decreasing
the number of tests that must be manually constructed to
cover environmental concerns and by offering the possibility of
catching failures that had not been considered. These anoma-
lies can be accumulated from many applications resulting in
the ability to test new applications against an ever increasing
set of problematic conditions.

B. Primary Operations

To take a closer look at how SEA functions, we divide the
technique into its three primary operations. These are: iden-
tifying and trapping anomalies, mutating system call results,
and checking application responses.

1) Identifying and Encoding Anomalies: Building a cor-
pus of anomalies is an ongoing process that improves the
technique’s effectiveness by extending the set of problematic
features it can simulate. Anomalies can be sourced in a number
of ways, such as examining the failures of other applications
in a target deployment environment, or by using other tools
that can identify potentially problematic behavior in other
domains [17], [21]. Another option is taking this information
from public bug trackers, which is ideal if you wish to
determine whether or not an application is vulnerable to a
widely publicized bug.

The chosen anomalies are examined to determine how
they change the results of system calls an application makes
as compared to a normal execution. Once teased out, these
differences delineate a set of modifications that must be made
to an execution in order to simulate the chosen anomaly or
anomalies. These details are used to construct both a mutator
and a checker. The mutator encodes a description of when
in execution an anomaly can be simulated, as well as details
of how to conduct that simulation. The checker (or set of
checkers) stores a characterization of how the application
should respond. Describing anomalies in this fashion allows
them to be recorded systematically and cataloged for future
use.

As an example, consider an anomalous environment where
access to a required file is denied because of the environment’s
file security configuration. With this anomaly, attempts to
access the file, such as the read() system call, will fail
with an error stating that access to the file is denied. The
mutator derived from this issue would be constructed to
identify similar accesses as opportunities to insert the anomaly
by making these accesses return “access denied”. As described
in III-B3, an associated checker would be built to examine
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the application’s behavior after a simulation and assess its
correctness. Preserving the details of anomalies like this in
the form of mutators and checkers allow them to be easily
used to test responses of future applications.

Constructing new checkers and mutators is a creative pro-
cess not unlike writing a unit test. The writer must understand
both the cause of misbehavior in a deployment environment
and how it is visible in the results of the system calls an
application makes. Once they have this understanding, the
actual construction boils down to building state machines that
recognize the required patterns of system calls. As a result,
effort required by this process depends on the complexity of
the anomaly being simulated and the proficiency of the writer
with the above concepts.

2) Mutating System Call Results: Simulating an environ-
mental anomaly requires specific interventions at the correct
moments during an execution. These situations are identified
with the help of the chosen anomaly’s mutator. For our
work, this means providing the mutator with the system calls
an application makes so it can identify sequences indicative
of such opportunities. At the appropriate time, the applica-
tion’s system calls are intercepted and the mutator’s anomaly
description is used to make the modifications necessary to
simulate the anomaly. In the simplest case, simulating an
anomaly only requires the modification of a single value (e.g.
read() returning -1 rather than the number of bytes read).
We even found use for a “null mutator” that performs no
mutation, but gives other tools an opportunity to examine an
execution. In more complex cases, large numbers of diverse
system calls will need to be interdicted and altered in order to
provide a correct simulation. The above file access scenario,
for example, requires the modification of a single system call.
Simulating something more complex, like an unreliable system
clock, requires that all efforts to access the clock be modified
to reflect the chosen aberration.

3) Checking an Application’s Response: SEA relies on
checkers to provide a flexible approach to assess the way an
application behaves after it has encountered an anomaly. A
checker models the behavior an application should undertake
in response to a simulated anomaly. It looks for this behavior
by examining an application’s system calls before, during, and
after simulation. The checker then reports whether the appli-
cation has handled the anomaly correctly based on whether it
observed the behavior for which it was built to look.

As an example, consider the “default checker” from Crash-
Simulator. It draws a conclusion based on whether or not the
application has made an effort to respond to the anomaly.
This determination is made based on the assumption that such
a response will yield different program paths, and therefore
different system calls. If the application does not alter its
behavior, it has not correctly handled the anomaly. Alterna-
tively, if the application does deviate, it is likely an action has
occurred to handle the simulated condition. This simple yes or
no approach is often sufficient to classify application behavior.

We explore this, and other checkers in our Evaluation
section (Section VI) IV. Section IV-A1 demonstrates how

to find bugs using the null mutator, while Section IV-A2
illustrates how a more complex mutator can simulate specific
scenarios to see if unexpected problems emerge.

C. CrashSimulator: A Concrete SEA Implementation

In order to correctly implement SEA, CrashSimulator must
provide a framework by which the checkers and mutators
constructed by its users can be used to test an application
using the anomalies they represent. Building this capability
required making a few key design decisions. The first, as
mentioned in Section 2, was choosing to operate at the system
call level, rather than manipulating calls to library functions,
memory accesses, or other points where we could influence an
application’s interactions. This allowed CrashSimulator to test
applications written in any language that can execute Linux
system calls – an important advantage as our goal is a tool
that can test many applications without per application effort.
Working with system calls is also a good fit for simulating
the file system, network, and operating system anomalies in
which we were interested. An application normally queries
these entities using system calls so we simply had to return
modified responses in order to simulate an anomaly. Finally,
robust tooling in the Linux kernel made the interception
and modification of system call results and side effects a
fairly simple process, and the well-defined semantics of Linux
system calls streamlined implementation.

In order to take advantage of our ability to simulate anoma-
lies using system calls, we needed to ensure that an application
would reliably make the same set of system calls, and reach
the same simulation opportunities, with every execution. To
this end, we employed a modified rr debugger [22] to record
and replay applications. Our first modification permitted a
strace-style system call recording to be output alongside
rr’s normal recording format, creating a complete log of an
applications system call activity. We chose to make this mod-
ification because, while rr’s recording contains the system
call information we need, it is stored in an opaque format that
changes frequently between versions. Storing a copy of this
information as a strace recording bypasses this shortcoming
and offers the advantage of being human readable.

Our second modification parallelized our testing by allow-
ing rr to generate copies of a running application when
it reaches our target simulation opportunities. We refer to
this new technique as process set cloning and illustrate it
in Figure 2. The rr debugger manages, and can copy, the
full set of processes underlying an application so that users
can test debugging hypotheses without damaging the original.
We extended this capability by liberating process set copies
from rr. This means that given application Y consisting of
processes a, b, and c (written as Y (a, b, c)), we can generate
cloned sets Y1(a1, b1, c1), Y2(a2, b2, c2) ... Yn(an, bb, cn). Y1,
Y2 ... Yn can then be used to test different scenarios. These
clones can be run in parallel because they do not actually
execute system calls or modify the operating system state.
Instead, they are simulated as described below. Additionally,
they allow the original Y to continue its execution unhindered.
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Figure 2: Diagram illustrating CrashSimulator’s architecture. During the
course of a single rr execution, clone process sets are generated at specific
rr events. A CrashSimulator process supervisor attaches to these process sets
and uses a strace-style system call listing to feed subsequent system call
activity and inject unusual environmental conditions.

Once generated, the cloned process sets are used for testing
by the CrashSimulator process supervisor. This supervisor is
responsible for attaching to a process set via ptrace and
servicing any system calls it makes. The data required to
service these calls comes from the strace log generated
by rr. Just before it takes over service of system calls, the
process supervisor invokes the intended anomaly’s mutator on
the log in order to alter it to include the responses necessary
to simulate an anomaly. Once these alterations are in place,
the supervisor is able to impose an anomaly on the application
by returning the now-modified responses from the log.

During this process, a corresponding checker monitors the
application’s behavior, allowing it to report on the correctness
of the response. For example, testing could proceed in the
following way. At a given simulation opportunity, when exe-
cuting application Y , cloned sets Y1 and Y2 are generated and
used to test two scenarios where a file access could fail:

1) For Y1, access to the file is denied due to a permissions
issue

2) For Y2, access fails because of an I/O error
The simulations for both Y1 and Y2 are handled asyn-
chronously and the results are recorded. This approach allows
many tests to be run independently of one another, which
lends a high degree of speed and parallelism to the testing
process. At the same time, the original Y execution continues
unhindered to the next simulation opportunity where this
process repeats. Keeping the original execution intact, as
opposed to destroying it by introducing an error state, avoids
the penalty of having to restart a new execution for each test.

The prototype was built on rr version 5.2.0 running on
a 32-bit Linux kernel distributed with Ubuntu 16.04 LTS.
The modifications to rr described above were carried out in
C++, and the CrashSimulator supervisor was implemented
in 6260 lines of Python 2.7 code with a 2125 line C ex-
tension that allows it to interact with processes using the
Ptrace API. This version of CrashSimulator is available at:

https://github.com/pkmoore/rrapper.

IV. EVALUATION

CrashSimulator was designed as a way to reduce the con-
siderable effort required of developers to test an application
against the environments it will encounter once deployed.
Therefore, we needed to demonstrate its effectiveness in “the
wild.” To this end, we carried out two rounds of evaluation
for CrashSimulator. We started by exposing a series of real-
world applications to a library of collected anomalies in a
laboratory environment. These tests, conducted by the research
team, were followed by a user study in which undergraduate
and graduate computer science students got a chance to use
CrashSimulator to identify new environmental bugs in tests on
applications of their choosing. We used the results from both
these efforts to answer the following questions:

1) Is CrashSimulator able to identify bugs in real world
applications? (Subsection IV-A)

2) What sorts of errors does CrashSimulator make? (Sub-
section IV-B)

3) Can CrashSimulator execute tests efficiently? (Subsec-
tion IV-C)

A. Is CrashSimulator able to identify bugs in real world
applications?

The most crucial question to ask about the SEA technique
and the tool we implemented is: can we use them to identify
bugs caused by different types of problematic environmental
features? To perform this evaluation we needed both a set of
applications to test and a set of anomalies against which to
test them. In order to show that CrashSimulator can find bugs
in even the most widely deployed and well tested applications,
we chose our test candidates from among those deemed
“popular” by Debian’s Popularity Contest [15], or those used
by many Linux distributions, such as the ones provided by the
GNU coreutils project.

To prove the breadth of CrashSimulator’s capabilities we
needed to test applications using a diverse set of exemplar
anomalies. We already established that unusual filesystem and
network situations can cause an application to fail. So we iden-
tified a number of candidate anomalies by examining public
bug trackers, the source code of major portable applications,
and the capabilities of bug finder tools like NetCheck [17] and
CheckAPI [21]. From these candidates we chose to three test
scenarios: a simple filesystem anomaly that relies on the null
mutator; a more complex filesystem anomaly that simulates
the presence of unusual file types; and a network anomaly that
requires checking and mutating many values across a variety
of system calls. Our experiences testing applications with these
anomalies are detailed below.

1) The simplest case - A Filesystem Bug Found With the
Null Mutator: In our first test we decided to evaluate the
tool in its simplest possible configuration – employing the
“null mutator.” This mutator takes no action and simulates
no anomalous conditions. It simply allows checkers to evaluate
an application’s behavior as it carries out a potentially-buggy
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Application Source
Replaced

Preserve
Xattrs

Preserve
Timestamps

Copying
Devices

mv Correct Correct Correct Correct
mmv Correct Sec. Flaw Time Loss Correct
install Correct Sec. Flaw Time Loss Fill Disk
perl File::Copy Correct Sec. Flaw Time Loss Fill Disk
shutils Corrupt Sec. Flaw Correct Correct
rust Correct Sec. Flaw Time Loss Fill Disk
boost::copyfile Corrupt Sec. Flaw Time Loss Fill Disk

Table I: Applications and libraries analyzed to determine whether or not
they are able to correctly move a file from one device to another. Incorrect
entries are either missing the needed check to ensure correct behavior or
their implementation of the behavior was ineffective.

operation. We decided to look at how applications move
files around on the filesystem. Though, in many cases, this
operation can be handled atomically by the operating system
through the rename() system call, in situations where the
source file and destination file are on different storage devices,
the application must perform the operation in a more complex
way. This is a process that even well-tested applications
frequently get wrong [23], [24], [25].

Method. CrashSimulator was configured to test each of
the applications listed in Table I to see which might fail to
correctly move a file from one disk to another. The tests were
completed using just the Null Mutator and a set of checkers
that model the correct steps involved in moving a file from one
storage device to another. After examining several libraries and
applications, we found that mv seemed to handle cases that
other tools failed to consider. Therefore, we used its behavior
as a template to create a set of checkers that evaluate whether
or not the application correctly performs the following steps.

• Confirm Source Not Replaced During Copy. An applica-
tion should make an effort to ensure that the file being
copied is not replaced between the time it is initially
examined and when it is opened for copying. If these
checks are not performed, it means the application will
proceed with its operations, making file corruption [24]
possible.

• Preserve Extended File Attributes. When copying a file,
an application should retrieve extended file attributes
from the source file and, later, apply them to the des-
tination file. Failure to do so can lead to security prob-
lems [26].

• Preserve Timestamps. It is important to ensure that time
related metadata – such as creation, modification, and
access times – are preserved when copying a file, as
incorrect timestamps can impede applications like make,
archival programs, and similar software [27], [28].

• Copy Devices Correctly. Files of this variety must be
moved by creating a new device of the same type at the
destination, instead of exhaustively reading and writing
its contents. In our experience, applications that fail to
perform this check can end up completely filling disks,
exhausting available memory, or blocking forever, which
can cause the system to become unresponsive.

Findings. CrashSimulator was able to identify whether an
array of popular programs, including the standard libraries
for the programming languages Python, Perl, and Rust, can

correctly perform complex operations in anomalous situations.
As can be seen from the results in Table I, each of the
applications tested failed to perform one or more of the steps
required to successfully complete a cross-device move. This is
an unfortunate situation because a failure to perform any one
of these steps can result in negative outcomes for the system
as a whole. There was one case where our checkers made
a false positive report which prompted efforts to improve it.
This is discussed further in Section IV-B. Taken as a whole,
our results demonstrate that even well-tested applications can
miss one or more of the steps in a complicated operation.

2) A More Complex Case - The Unexpected File Types
Mutator: If a more complex mutator is to be employed, then
CrashSimulator will simulate anomalies as an application is
executed. This simulation introduces problematic scenarios so
an application’s response can be evaluated. For an effective test
of the tool’s capabilities to find bugs created in this process, we
needed to pick an anomaly that would arise during a common
situation, such as when a Linux application retrieves and
processes data from a file. Linux supports several special file
types, including directories, symbolic links, character devices,
block devices, sockets, and First-In-First-Out (FIFO) pipes.
These special files use the same system calls as regular files
(such as read() and write()), but they behave in very
different ways. For example, /dev/urandom is a character
device that produces an infinite amount of pseudo-random data
when read. If /dev/urandom is provided to an application
that relies on exhaustively reading the full contents of a file
before processing, it will fill memory or disk space, and could
crash the system [29]. Correct execution in these situations
requires that applications examine the files, so they do not
interact inappropriately with a given file type.

Method. Identifying these bugs involves changing an ap-
plication’s execution to induce its response to an unexpected
file type. For example, the sed application, which modifies
the contents of a text file according to a provided command
string, could instead be provided a symbolic link, a directory,
or a character device. CrashSimulator tests these alternatives
by identifying the calls to stat(), fstat(), or lstat()
that an application makes to examine the file, and changing
the results to simulate one of the special file types. If the
application responds to this injected information, then the
special file might be handled correctly. On the other hand,
if there is no alteration in the behavior of the application, the
condition is not being handled correctly.

For each application, CrashSimulator was configured to
simulate all of the non-standard file types. The values inserted
into results of the application’s stat()-like system calls are
listed in Table II. A value of “–” indicates that this is the file
type the application was expecting, as it matches what was
provided when the application was initially recorded. A result
of “3” indicates that the application identified it was being
provided with an unexpected file type and its execution differs,
a signal that it was potentially handling the file type correctly.
A result of “X” indicates that the execution never diverged
from the trace being replayed, and thus failed to recognize the
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presence of an unusual file type.
Findings. The data in Table II show that of the 84 cases

we tested, CrashSimulator identified 46 bugs, predicted 25
instances of correct application behavior, and made 13 errors,
the majority of which were false negatives. We discuss the
causes of these errors in Section IV-B. The frequency of
failed executions in our results indicates that many applications
assume they will only be used to process regular files. When
this assumption does not hold, execution results can be hard
to predict. In many cases a denial of service condition occurs
in the form of the application “hanging,” as it attempts to
incorrectly process the file. This is typically the result of
an application blocking forever as it waits for a read()
call to retrieve non-existent data from an empty FIFO, or an
application attempting to read in and process an “infinitely
large” file. This situation is particularly dangerous as it can
eventually fill all available memory or disk space [30].

In order to confirm the accuracy of CrashSimulator’s as-
sessment, we manually exposed the applications listed in
Table II to each of the unusual file types to get an idea of
how they would respond. This allowed us to identify cases
where CrashSimulator made errors and note this information
in Table II. Further, we include descriptions of a subset of
the applications’ behaviors in Table III. These tables serve to
document the accuracy of the tool’s evaluation of application
behavior and illustrate what misbehavior occurs when appli-
cations are actually exposed to problematic scenarios.

3) Beyond Filesystem Bugs - Poorly Configured Net-
work Timeouts: CrashSimulator is not limited to identifying
filesystem-based bugs. The third anomaly we examined in-
volves an application’s behavior when it attempts to commu-
nicate over a network with extremely long (on the order of
minutes) response times. At a low level, applications retrieve
data from a network socket by waiting for data to be available
and then reading it. However, this approach needs to be able
to handle a situation where communication takes too long and
should time out.

Method. CrashSimulator can detect whether an application
correctly times out when communications take too long by
employing the null mutator and a network timeout checker.
The latter can determine if the application makes any ef-
fort to configure its network communications with a timeout
value. This is done by examining the presence or absence
of setsockopt(), poll() and select() calls, as well
as the timeout values that may have been passed to them.
Applications that do not set the timeout are subject to the
operating system-defined protocol timeout value. CrashSimu-
lator is able to take this analysis a step further by employing
a Long Network Response Time mutator that manipulates
the results of all time-returning calls, simulating an execution
where close to the maximum timeout value occurs, without
actually spending any time waiting.

An application’s failure to time out responsibly is not just
an inconvenience. Attackers can take advantage of this flaw to
consume resources and potentially cause a denial of service
situation. This failure was exploited by the slowloris [31]

tool to enhance the ability of a small number of computers
to prevent access to vulnerable web servers by opening and
maintaining connections for extremely long periods of time.
As these servers could only handle a set number of connec-
tions due to resource constraints, legitimate traffic was easily
crowded out by the attackers. Additionally, similar attacks can
be used to indefinitely delay security updates to clients, leaving
them vulnerable to compromise [32]. We used CrashSimulator
to determine which applications and libraries from a selection
based on Debian’s ratings [15] could be vulnerable to this sort
of attack.

Findings. As Table IV shows, all of these applications
were vulnerable to this anomaly, and in some cases, timeouts
took hours to resolve. What’s more, in the vast majority of
cases, the problem occurs because the application makes no
effort to specify a timeout value. This means an attacker can
transmit one byte of data per timeout period (per Linux’s value
of 19 minutes for TCP sockets), allowing them to keep the
application alive instead of quitting.

4) Bugs Found By Participants: Because the above tests
were carried out by CrashSimulator’s developers, who neces-
sarily have a high degree of expertise in its operation, we felt
it prudent to ensure the tool was useful to outside developers
as well. To investigate this angle, we conducted a user study
with 12 undergraduate and graduate students with varying
backgrounds. Study participants found a total of 11 bugs using
CrashSimulator. Of these bugs, nine were found using the
“Unusual Filetype” mutator. Five of these bugs have since
been reported to the appropriate maintainers, and three of
these reports included patches that correct the bug built by
the reporting student.

These results are important because they confirm users,
other than the original development team, can use the tool to
find bugs in real world applications. Participants commented
that narrowing the source of a bug down to a particular
sequence of system calls was helpful in identifying the area
of code responsible for the bug – a feature that decreased the
time required to produce a fix. Though observation of study
participants showed that familiarity with operating systems
concepts made it easier to work with CrashSimulator, those
without this background were still able to identify bugs using
the built in anomalies.

On a less positive note, the study did reveal some short-
comings of the tool. First, it became clear that the tool does
not have a clear mechanism for determining which application
behaviors constitute a “bug.” For example, an application’s
developer may have intended that an application processing
an “infinitely long” file should run continuously until killed
by an outside command. Therefore, that behavior should not
be classified as a bug. Second, it demonstrated that simply
reporting that an application did or did not change its behavior
in the presence of an anomaly may not provide sufficient data
to identify a bug. The results indicating the presence of a
bug must be clear to the user. Both of these issues are being
corrected by improving the tool’s outputs. By more clearly
describing the nature of a given result, users can have a better
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Application Condition Tested Regular File Directory Character Device Block Device Named Pipe Symbolic Link Socket File
(IFREG) (IFDIR) (IFCHR) (IFBLK) (IFIFO) (IFLNK) (IFSOCK)

Aspell Dictionary File – X: FP 3: FN X X X X
Aspell File being checked – X: FP 3 X X X X
gnu-gpg secring.gpg – X X X X X X
vim File being opened – 3: FN 3: FN 3: FN 3: FN 3: FN X
nano File being opened – 3 3 3 X: FP X: FP X: FP
sed File being edited – 3 X: FP X X X X
wc File being checked – 3 X X X X X
du Directory being checked 3 – 3 3 3 3 3
install File being installed – 3 X X X 3 X
fmt File being formatted – X 3 X X X X
od File being dumped – 3 3 X X X X
ptx File being read – 3 3 3 3 3 3: FN
comm Second file being compared – 3 3 X X X X
pr File being read – 3 X X X X X
3= CrashSimulator predicts application will recognize anomaly
X = CrashSimulator predicts application will fail to recognize anomaly
– = File type expected by the application

Table II: Applications tested for their handling of unexpected file types. A result of “3” indicates that the application identified the presence of an unusual
file and responded in some fashion. A result of “X” indicates that the application failed to recognize the presence of an unusual file and attempted to
process it. Cases where CrashSimulator made an error are noted by FP (False Positive) or FN (False Negative)

Application Directory Character Device Block Device Named Pipe
(IFDIR) (IFCHR) (IFBLK) (FIFO)

wc Error: Is a Directory hangs slowly process file Hangs
install Error: Omitting Directory Fills disk slowly copies file Hangs
fmt No output hangs garbage output Hangs
od Error: read error hangs No output Hangs
ptx Error: Is a Directory fills disk garbage output Hangs
comm Error: Is a Directory hangs garbage output Hangs
pr Error: Is a Directory hangs garbage output Hangs

Table III: Responses of a sample of coreutils applications when exposed to
anomalous conditions. The character device used was the infinite-length
/dev/urandom.

Application Analysis Result
wget Overly long timeout supplied to select()
ftp No poll() or select(), no timeout set
telnet select() specifies no timeout
urllib http No poll() or select(), no timeout set
urllib ftp No poll() or select(), no timeout set
ftplib No poll() or select(), no timeout set
httplib No poll() or select(), no timeout set
requests No poll() or select(), no timeout set
urllib3 No poll() or select(), no timeout set
python-websocket-client No poll() or select(), no timeout set

Table IV: Applications tested for their handling of extremely slow response
times from the host with which they are communicating

idea if, and why, they should be concerned.

B. What Sorts of Errors does CrashSimulator Make?

Like other testing tools, CrashSimulator occasionally makes
mistakes. Any such mistakes can undermine a developer’s
confidence in a tool, and thus one of our goals is to minimize
them. In this section, we discuss situations where CrashSim-
ulator made either false positive or false negative reports. A
false positive report means the tool reports a failure when
the application actually handles an anomaly correctly. On the
opposite side, false negative reports happen when the tool
indicates an application handles an anomaly when, in reality,
it does not.

False Positives. The primary source of false positives in
CrashSimulator is an application responding to an anomaly
with a different sequence of system calls than was expected
by the checker. Once identified, CrashSimulator’s approach
allows these situations to be easily corrected. This is similar

to a situation where an application’s test suite has a test with
an over-constrained “oracle” (e.g. an oracle that ensures a
returned value is > 0 when, in reality, 0 is acceptable).

We encountered this situation when testing applications
that used GNOME’s glib file handling functions. When an
application makes use of these facilities to move a file across
storage devices, the library itself correctly performs a file
move operation. When we used CrashSimulator with checkers
that expected a call to read() and write() for a cross-
device move, we got reports stating that the application did not
perform the system calls necessary to correctly move a file. By
manually examining a system call trace, we found that, while
glib correctly performs the requested move operation, it does
so using alternative system call sequences. Rather than using
a sequence of read() and write() calls, as our checker
expected, glib creates a pipe and uses the splice() system
call to copy the contents out of the source file, through the
pipe, and into the destination file.

Fortunately, as soon as issues like this are discovered,
CrashSimulator’s checkers can be modified to include the
alternative sequence. Given the above example about moving
files, consider the mapping from high level “operation” to
the set of system calls that can implement it in Table V.
Each of the steps in the operation map to a small number
of system calls. In situations where two system call sequences
can correctly implement the same operation, CrashSimulator
simply runs two checkers in parallel and accepts the execution
if either detects the expected sequence.

False Negatives. False negatives are a fact of life in testing
because of missing test cases or under-constrained checks of
result correctness. CrashSimulator occasionally registers false
negative reports when an application changes its behavior,
but does not handle an anomaly correctly. In our evaluation
we encountered ten such reports, four occurring with one
application, wc. Because these reports were generated when
using the default checker, they can be addressed by using a
more elaborate checker that performs a detailed analysis of the
application’s post-simulation behavior. Such a checker would
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Operation Potential System calls
Examine source file stat64(), lstat64(), fstat64()
Examine destination file stat64(), lstat64(), fstat64()
Open source file open()
Read contents of source file read(), splice() with a pipe
List source file’s

extended file attributes listxattr(), llistxattr(), flistxattr()
Read contents of source file’s

extended file attributes getxattr(), lgetxattr(), fgetxattr()
Open destination file open(), optionally unlink() the file first
Write contents to destination file write(), splice() with a pipe
Apply extended file attributes to

destination file setxattr(), lsetxattr(), fsetxattr()
Apply proper timestamps to

destination file utimens(), futimens()
Apply proper permissions

to destination file chmod(), open() with a modeline specified
Close the source file close()
Close the destination file close()

Table V: Each step of a successful cross-disk file move operation mapped
to the system call or calls that can implement it

compare this behavior to a model of a correct response to that
anomaly. Creating this checker requires that a user know what
a “correct response” looks like. This “known good” behavior
can be found by looking at standards and documentation that
describe best practices for handling an anomaly in a given
environment, or by examining how applications that correctly
deal with the anomaly do so. Consider the case where a
close() system call fails. Retrying the call may not be the
correct action, depending upon the environment in question.
SEA can be used to determine if an application has handled
the failure correctly by examining post-simulation communi-
cations in detail, and taking into account the correctness of
retrying the call.

C. Can CrashSimulator execute tests efficiently?

One key attribute of successful testing tools is that they are
able to complete their tests in a timely manner. If a tool takes
too long, users will be less likely to run it. To address this
concern, we evaluated CrashSimulator’s performance in order
to determine whether or not it was able to complete its test
executions in an acceptable time frame.

Method. To answer the question of performance, we ex-
amined the completion times for executions of the specified
application in both native conditions, and under CrashSimula-
tor configured to test using the “Unusual File Types” anomaly
discussed earlier. Table VI shows these results.

Findings. Overall, the performance running an application
under CrashSimulator is around two orders of magnitude
slower than the original program executed without it. As can
be seen in Table VI, around 20% of this slow down is related to
the additional overhead of rr’s replay. An additional portion
is caused by the need to spin up Python’s interpreter before
testing can begin. In most cases this slowdown is some-
what mitigated by CrashSimulator’s ability to process tests
asynchronously. In other situations, it will be more efficient
than running the program natively, as rr’s replay does not
require actual execution of most system calls. This means that
CrashSimulator avoids the system call overheads, such as I/O.
Even without these improvements, however, CrashSimulator’s

Application Native
Execution
Time

Initial
Record-
ing Time

CrashSimulator
Replay
Time

rr Replay
Time

wc 0m0.007s 0m0.473s 0m0.668s 0m0.112s
fmt 0m0.007s 0m0.321s 0m0.707s 0m0.111s
od 0m0.036s 0m0.317s 0m0.689s 0m0.101s
ptx 0m0.008s 0m0.352s 0m0.769s 0m0.087s
comm 0m0.132s 0m0.371s 0m0.776s 0m0.141s
pr 0m0.135s 0m0.888s 0m1.017s 0m0.141s

Table VI: This table contains the times required to execute several coreutils
applications under different conditions. Native execution time is the time
required to execute the application from the command line while
CrashSimulator Replay time is the time required to execute it with the tool,
using the null mutator with no checker configured. Initial recording time is
the time required to create an initial recording with CrashSimulator. rr
replay time is the time required to replay an application using rr without
CrashSimulator and is included to demonstrate the additional overhead
added by CrashSimulator’s other components.

performance cost is more than manageable when the value
it provides is taken into account. The cumulative runtime
required to execute the tests required to produce the results
listed in Table II is around 90 seconds.

V. RELATED WORK

In constructing SEA and CrashSimulator, we examined a
number of previous studies in bug detection, data mining, the
influence of environment on application behavior, and proto-
cols for checking program responses to anomalous situations.
This section summarizes a few earlier initiatives in each of
these areas and discusses their relevance to the development
of our tool.
Static analysis. Tools based on static analysis techniques,
such as abstract interpretation, model checking, and symbolic
execution, have been successfully used to detect bugs resulting
from incorrect API usage. Examples of these tools include
SLAM [33], [34] and, more recently, CORRAL [35] for
conformance checking of Windows device drivers against the
Windows kernel API, FindBugs [36] for detecting API usage
bugs in Java programs, FiSC [37] for finding bugs in TCP
implementations, and the Explode system [38] for detecting
crash recovery bugs in file system implementations. Likewise,
INFER has found success at Facebook in analyzing units of
code as they are committed [39]. Unlike CrashSimulator, these
approaches depend on the availability of source or byte code.

Static analysis techniques have also been used to detect
portability issues related to what happens when an applica-
tion encounters different versions of the external components
on which it depends [40], [41]. Like CrashSimulator, these
techniques address the application’s interactions with its en-
vironment. However, these studies were focused on proving
that the environments behaved as expected. CrashSimulator is
only interested in the application’s response to anomalies.
API protocol mining. Extensive work has been done on
mining source code to learn API protocols and use them
to detect common usage violations, such as missing method
calls (see, e.g., [42], [43], [44], [45], [46]). These techniques
primarily target object component interactions, rather than
system calls to generate test suites. However, the techniques
explored in these works could be used to mine system call
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patterns in source code. This will enable researchers to find
checkers that identify incorrect responses to environmental
anomalies. So far, we have specified these checkers manually
for CrashSimulator. Data mining techniques could be adapted
in the years ahead to reduce the manual effort required.
Tracing and log mining. Similar to API protocol mining,
substantive work has been done using log files to detect
anomalies [47], [48], [49], [50] and to aid in program under-
standing [51], [52], [53]. For example, CheckAPI [21] and
NetCheck [17] both use system call traces to diagnose an
application’s violations of cross-platform portability. Crash-
Simulator in some ways takes these techniques a step further
by using system call traces to test responses to known envi-
ronmental anomalies. This more active approach can expose
bugs that are invisible to passive log mining.
Environmental influence and cross-platform portability.
Negotiating the influence of the environment in which an
application is deployed has been investigated from several
perspectives. One approach, referred to previously, is to build
“portable” systems that have cross-platform capabilities. Using
wrapper subroutines can enable cross-platform portability of
APIs [54] through system call delegation. These wrappers can
be automatically generated through techniques like system
call interposition [55], a technique that can also be used to
detect and prevent security violations [56], [57]. Other works
that target complementary classes of portability problems
include the detection of configuration-related bugs [58], [59],
[60], [61], [62] and cross-browser incompatibilities for web
applications [63], [40], [64], [65], [66]. Static analysis tools,
such as those mentioned earlier in this section, have also been
applied to detection of differences between versions of external
components.

Such studies have helped to define the influence of an
environment on applications and thus provide a background to
our work. Our tool applies these fundamental ideas to testing
an application’s response to anomalies.
Testing exception handling and conformance. A few re-
searchers have developed testing techniques aimed at checking
whether programs respond appropriately to anomalous situ-
ations. For example, Fu et al. introduced data flow testing
techniques that require tests from the points at which ex-
ceptions are thrown to the points at which they are handled
in Java code. The purpose is to discover whether programs
respond correctly to exceptional situations anticipated by the
programmer [67]. Koopman and DeVale developed a system to
detect bugs in error handling code related to calls to POSIX
functions [68]. Miller et al. cover the kernel as a source of
unexpected program inputs and test applications by simulating
them [69]. Other approaches to conformance checking of
POSIX operations use model based testing [70], [71].

Unlike these approaches, CrashSimulator does not exclu-
sively target error handling code or anomalies that only involve
individual system calls. Additionally, it focuses on collecting
and simulating problematic features of specific deployment
environments. That said, such testing techniques can help
identify additional anomalies to add to our repository.

Smart Fuzzing. Smart fuzzers monitor and guide execu-
tions to trigger code paths that are unlikely to be reached
otherwise [72], [73]. At this point, they make a binary decision
about whether the application correctly handled the input or
not. Typically, a determining factor will be an actual crash
by the application. This is similar to SEA’s use of checkers
to decide whether to accept or reject a given test execution,
based on whether or not it observed a specific system call
behavior. In both cases, the tools can demonstrate whether
a given code path handles a situation correctly, but cannot
prove that the code path is robust against other problematic
inputs. In the future, CrashSimulator could use smart fuzzing
path exploration techniques to generate tests that reach relevant
system calls and apply SEA at that point.

VI. CONCLUSION

As we have discussed, it is common for an application to
fail upon deployment because of unexpected interactions with
its environment. Although finding and eliminating faults in
an application is a key concern for software developers, it
is impractical to test it in every environment it will face. To
address this problem, we developed Simulating Environmental
Anomalies (SEA). SEA is beneficial for developers because
it allows the effort spent debugging failures in a given envi-
ronment to be preserved and reused programmatically to test
whether future applications will also fail. As this process is
repeated, a corpus of bug-causing aspects, known as “anoma-
lies,” along with mutators and checkers that characterize these
anomalies, can be accumulated. In doing so, developers have
an ever-increasing capability to test applications in situations
that proved problematic in the past.

We built a concrete implementation of SEA called Crash-
Simulator that implements the technique by simulating en-
vironmental anomalies extracted from the system calls an
application makes. Operating on system calls gives the tool a
“universal” way to encode and inject anomalies. Consequently,
a set of mutations can be collected from existing applications
for use in testing others. Our evaluation of CrashSimulator
has shown that this technique is effective at finding bugs in
well tested software. In total, 65 new bugs were identified
in popular applications. These bugs, if triggered in the wild,
could lead to effects ranging from simple program hangs to
security vulnerabilities and data loss.

Given that the technique has proven effective, future work
to expand its use is warranted. This work includes developing
a public repository of anomalies that can be applied to new
or existing applications. We are also exploring opportunities
to further automate the discovery process and improve the
way anomalies are specified using a domain specific language.
As this research evolves, we will focus on analyzing how an
application attempts to recover from the anomalies. This would
allow us to determine whether an application is correctly
recovering from an error, or carrying out some incorrect
response.
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