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Abstract
Virtual machines (VMs) that try to isolate untrusted

code are widely used in practice. However, it is often
possible to trigger zero-day flaws in the host Operating
System (OS) from inside of such virtualized systems. In
this paper, we propose a new security metric showing
strong correlation between “popular paths” and kernel
vulnerabilities. We verify that the OS kernel paths ac-
cessed by popular applications in everyday use contain
significantly fewer security bugs than less-used paths.
We then demonstrate that this observation is useful in
practice by building a prototype system which locks an
application into using only popular OS kernel paths. By
doing so, we demonstrate that we can prevent the trig-
gering of zero-day kernel bugs significantly better than
three other competing approaches, and argue that this is
a practical approach to secure system design.

1 Introduction
The number of attacks involving the exploitation of

zero-day vulnerabilities more than doubled from 2014 to
2015 [52]. Skilled hackers can find a security flaw in a
system and use it to hold the system’s users hostage, e.g.,
by gaining root access and compromising the host [25].
Similarly, zero-day vulnerabilities can be exploited [17]
or their presence not be acknowledged [30] by govern-
ment agencies, thus rendering millions of devices vul-
nerable.

In theory, running a program in an operating-system-
level virtual machine (OSVM) like Docker [15] or LXC
[28] should prevent bugs in the host OS kernel from trig-
gering. However, the isolation provided by such systems
is not the whole answer and faces some significant draw-
backs. To be effective, the OSVM’s software must not
contain any bugs that could allow the program to escape
the machine’s containment and interact directly with the
host OS. Unfortunately, these issues are very common
in OSVMs, with 14 CVE vulnerabilities confirmed for
Docker [14] since 2014. The large amount of complex

code needed to run such a system increases the odds that
flaws will be present, and, in turn, that tens of millions
of user machines could be at risk [25]. Furthermore, iso-
lation will not work if a malicious program can access
even a small portion of the host OS’s kernel that contains
a zero-day flaw [12]. Both of these drawbacks reveal the
key underlying weakness in designing OSVM systems –
a lack of information as to which parts of the host kernel
can be safely exported to user programs.

Several attempts have been made to find a reliable met-
ric to pinpoint where bugs are most likely to be in kernel
code. A number of previous studies have suggested that
older code may be less vulnerable than new code [32] or
that certain parts (such as device drivers) of the kernel
[10] may be more bug-prone than others. To these hy-
potheses, we add a new security metric idea, called “pop-
ular paths.” Positing that bugs in the popular paths, as-
sociated with frequently-used programs, are more likely
to be found in software testing because of the numerous
times they are executed by diverse pieces of software, we
propose that kernel code found in these paths would have
less chance of containing bugs than code in less-used
parts of the kernel. We perform a quantitative analysis
of resilience to flaws in two versions of the Linux kernel
(version 3.13.0 and version 3.14.1), and find that only
about 3% of the bugs are present in popular code paths,
despite these paths accounting for about one-third of the
total reachable kernel code. When we test our “popular
paths” metric against the two aforementioned “code age”
and “device drivers” metrics, we find our “popular paths”
metric is much more effective (Section 3.2).

This key information inspired the idea that if we could
design virtual machines that use only “popular kernel
paths,” a strategy we have dubbed Lock-in-Pop, it would
greatly increase resilience to zero-day bugs in the host
OS kernel. Yet using such a design scheme creates a few
challenges that would need to be overcome. These in-
clude:
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• It might not be possible in real-life codebases to com-
pletely avoid “unpopular paths.” If other applications,
or future versions of applications we tested, frequently
require the use of “unpopular paths,” would this make
our metric untenable? (Section 4.2)

• The exploits that adversaries use change over time.
Could our observation that “popular paths” are safer
be only an artifact of when we did our measurements,
and not be predictive of future exploits? (Section 3.2)

• Lastly, can developers make use of this observation in
a practical setting? That is, is it feasible for devel-
opers to actively try to avoid unpopular code paths?
(Section 4.3)

While we address some of these challenges in devel-
oping the Lock-in-Pop design, we want to test how well a
system could function if it forced applications to use only
popular kernel paths. To conduct these tests, we built a
prototype system, called Lind. For Lind, we pick two
key components – Google’s Native Client (NaCl) [51]
and Seattle’s Repy [8]. NaCl serves as a computational
module that isolates binaries, providing memory safety
for legacy programs running in our OSVM. It also passes
system calls invoked by the program to the operating sys-
tem interface, called SafePOSIX. SafePOSIX re-creates
the broader POSIX functionalities needed by applica-
tions, while being contained within the Repy sandbox.
An API in the sandbox only allows access to popular ker-
nel paths, while the small (8K LOC) sandbox kernel of
Repy isolates flaws in SafePOSIX to prevent them from
directly accessing the host OS kernel.

To test the effectiveness of Lind and our “popular
paths” metric, we replicated 35 kernel bugs discov-
ered in Linux kernel version 3.14.1. We attempted to
trigger those bugs in Lind and three other virtualized
environments, including Docker [15], LXC [28], and
Graphene [43]. In this study, our evaluation was fo-
cused on comparing operating-system-level virtualiza-
tion containers, such as Docker and LXC, and library
OSes, such as Graphene. We excluded bare-metal hy-
pervisors [4, 46], hardware-based virtualization [3, 22]
and full virtualization virtual machines, such as Virtual-
Box [45], VMWare Workstation [47], and QEMU [37].
While our “popular paths” metric may potentially ap-
ply to those systems, a direct comparison is not possi-
ble since they have different ways of accessing hardware
resources, and would require different measurement ap-
proaches.

Our results show that applications in Lind are substan-
tially less likely to trigger kernel bugs. By doing so, we
demonstrate that forcing an application to use only pop-
ular OS paths can be an effective and practical method
to improve system security. Armed with this knowledge,

the Lock-in-Pop principle can be adapted to incorporate
other OSVM design configurations.

In summary, the main contributions of this paper are
as follows:

• We propose a quantitative metric that evaluates secu-
rity at the line-of-code level, and verify our hypothesis
that “popular paths” have significantly fewer security
bugs than other paths.

• Based on the “popular paths” metric, we develop a
new design scheme called Lock-in-Pop that accesses
only popular code paths through a very small trusted
computing base. The need for complex functionality
is addressed by re-creating riskier system calls in a
memory-safe programming language within a secure
sandbox.

• To demonstrate the practicality of the “popular paths”
metric, we build a prototype virtual machine, Lind, us-
ing the Lock-in-Pop design, and test its effectiveness
against three other virtual machines. We find that Lind
exposes 8-12x fewer zero-day kernel bugs.

2 Goals and Threat Model
In this section, we define the scope of our efforts. We

also briefly note why this study does not evaluate a few
existing design schemes.
Goals. Ultimately, our goal is to help designers cre-
ate systems that allow untrusted programs to run on un-
patched and vulnerable host OSes without triggering vul-
nerabilities that attackers could exploit. Developing ef-
fective defenses for the host OS kernel is essential as ker-
nel code can expose privileged access to attackers that
could lead to a system takeover.

Our hypothesis is that OS kernel code paths that are
frequently used receive more attention and therefore are
less likely to contain security vulnerabilities. Our ap-
proach will be to test this hypothesis and explore the fea-
sibility of building more secure virtualization systems,
such as guest OSVMs, system call interposition mod-
ules, and library OSes, by forcing untrusted applications
to stay on popular kernel code paths.
Threat model. When an attack attempt is staged on a
host OS in a virtualization system, the exploit can be
done either directly or indirectly. In a direct exploit,
the attacker accesses a vulnerable portion of the host
OS’s kernel using crafted attack code. In an indirect ex-
ploit, the attacker first takes advantage of a vulnerability
in the virtualization system itself (for example, a buffer
overflow vulnerability) to escape the VM’s containment.
Once past the containment, the attacker can run arbitrary
code in the host OS. The secure virtualization system de-
sign we propose in Section 4 can prevent both types of
attacks effectively.
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Based on the goals mentioned above, we make the fol-
lowing assumptions about the potential threats our sys-
tem could face:

• The attacker possesses knowledge of one or more un-
patched vulnerabilities in the host OS.

• The attacker can execute any code in the secure virtu-
alization system.

• If the attack program can trigger a vulnerability in any
privileged code, whether in the host OS or the secure
virtualization system, the attacker is then considered
successful in compromising the system.

3 Developing a Quantitative Metric for
Evaluating Kernel Security

If we knew which lines of code in the kernel are likely
to contain zero-day bugs, we could try to avoid using
them in an OSVM. In this section, we formulate and test
a quantitative evaluation metric that can indicate which
lines of code are likely to contain bugs. This metric is
based on the idea that kernel paths executed by popular
applications during everyday use are less likely to con-
tain security flaws. The rationale is that these code paths
are well-tested due to their constant use, and thus fewer
bugs can go undetected. Our initial tests yielded promis-
ing results. Additionally, when tested against two earlier
strategies for predicting bug locations in the OS kernel,
our metric compared favorably.
3.1 Experimental Setup

We used two different versions of the Linux kernel in
our study. Since our findings for these versions are quan-
titatively and qualitatively similar, we report the results
for 3.13.0 in this section and use 3.14.1 in Section 5. To
trace the kernel, we used gcov [19], a standard program
profiling tool in the GCC suite. The tool indicates which
lines of kernel code are executed when an application
runs.
Popular kernel paths. To capture the popular kernel
paths, we used two strategies concurrently. First, we at-
tempted to capture the normal usage behavior of popu-
lar applications. To do this, two students used applica-
tions from the 50 most popular packages in Debian 7.0
(omitting libraries, which are automatically included by
packages that depend on them) according to the Debian
Popularity Contest [1], which tracks the usage of Debian
packages on an opt-in basis. Each student used 25 ap-
plications for their tasks (e.g., writing, spell checking,
printing in a text editor, or using an image processing
program). These tests were completed over 20 hours of
total use over 5 calendar days.

The second strategy was to capture the total range of
applications an individual computer user might regularly

Figure 1: Percentage of different kernel areas that were
reached during LTP and Trinity system call fuzzing experi-
ments, with the zero-day kernel bugs identified in each area.

access. The students used the workstation as their desk-
top machine for a one-week period. They did their home-
work, developed software, communicated with friends
and family, and so on, using this system. Software was
installed as needed. From these two strategies, we ob-
tained a profile of the lines of kernel code that defined
our popular kernel paths. We make these traces publicly
available to other researchers [24], so they may analyze
or replicate our results.
Reachable kernel paths. There are certain paths in the
kernel, such as unloaded drivers, that are unreachable
and unused. To determine which paths are unreachable,
we used two techniques. First, we performed system call
fuzzing with the Trinity system call fuzz tester [42]. Sec-
ond, we used the Linux Test Project (LTP) [26], a test
suite written with detailed kernel knowledge.
Locating bugs. Having identified the kernel paths used
in popular applications, we then investigated how bugs
are distributed among these paths. We collected a list
of severe kernel bugs from the National Vulnerability
Database [31]. For each bug, we found the patch that
fixed the problem and identified which lines of kernel
code were modified to remove it. For the purpose of this
study, a user program that can execute a line of kernel
code changed by such a patch is considered to have the
potential to exploit that flaw. Note that it is possible that,
in some situations, this will over-estimate the exploita-
tion potential because reaching the lines of kernel code
where a bug exists does not necessarily imply a reliable,
repeatable capability to exploit the bug.
3.2 Results and Analysis
Bug distribution. The experimental results from Sec-
tion 3.1 show that only one of the 40 kernel bugs tested
for was found among the popular paths, even though
these paths make up 12.4% of the kernel (Figure 1).

To test the significance of these results, we performed
a power analysis. We assume that kernel bugs appear at
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Figure 2: Bug density comparison among three metrics.

an average rate proportional to the number of lines of ker-
nel code. Therefore, consistent with prior research [29],
the rate of defect occurrence per LOC follows a Poisson
distribution [35]. The premise we tested is that bugs oc-
cur at different rates in different parts of the kernel, i.e.,
that the less popular kernel portion has more bugs.

We first divided the kernel into two sets, A and B,
where bugs occur at rates λA and λB, and λA 6= λB. In this
test, A represents the popular paths in the kernel, while
B addresses the less commonly-used paths. Given the
null hypothesis that the rate of defect occurrences is the
same in set A and B (or bugs in A and B are drawn from
the same Poisson distribution), we used the Uniformly
Most Powerful Unbiased (UMPU) test [39] to compare
unequal-sized code blocks. At a significance level of
α = 0.01, the test was significant at p= 0.0015, rejecting
the null hypothesis. The test also reported a 95% confi-
dence that λA/λB ∈ [0.002,0.525]. This indicates that the
ratio between the bug rates is well below 1. Since B has a
bug rate much larger than that of A, this result shows that
popular paths have a much lower bug rate than unpopular
ones.
Comparison with other security metrics. Ozment, et
al. [32] demonstrated that older code in the Berkeley
Software Distribution (BSD) [7] kernel tended to have
fewer bugs (metric 1). To test Ozment’s metric using our
Linux bug dataset, we separated the code into five differ-
ent age groups. Our results (Figure 2) showed a substan-
tial number of bugs located in each group, and not just
in the newer code. Therefore, buggy code in the Linux
kernel cannot be identified simply by this age-based met-
ric. In addition, this metric would seem to have limited
use for designing a secure virtualization system, as no
system could run very long exclusively on old code.

Another metric, reported by Chou, et al. [10], showed
that certain parts of the kernel, particularly device
drivers, were more vulnerable than others (metric 2). Ap-
plying this metric on our dataset, we found that the driver
code in our version of the Linux kernel accounted for
only 8.9% of the total codebase, and contained just 4 out
of the 40 bugs (Figure 2). One reason for this is that
after Chou’s study was published system designers fo-
cused efforts on improving driver code. Palix [33] found

that drivers now has a lower fault rate than other direc-
tories, such as arch and fs.

Additionally, there are other security metrics that oper-
ate at a coarser granularity, e.g., the file level. However,
when our kernel tests were run at a file granularity, we
found that even popular programs used parts of 32 files
that contained flaws. Yet, only one bug was triggered by
those programs. In addition, common programs tested
at this level also executed 36 functions that were later
patched to fix security flaws, indicating the need to lo-
calize bugs at a finer granularity.

To summarize, our results demonstrate that previously
proposed security metrics show only weak correlation
between the occurrence of bugs and the type of code
they target. In contrast, our metric (metric 3) provides
an effective and statistically significant means for pre-
dicting where in the kernel exploitable flaws will likely
be found. For the remainder of the paper, we will focus
on using our “popular paths” metric to design and build
secure virtualization systems.

4 A New Design for Secure Virtualization
Systems

In the previous section we have shown that “popular
paths” correlate in a statistically significant manner with
security. Next, we want to demonstrate that our “popular
paths” metric is useful in practice for designing secure
virtualization systems. We first briefly discuss the lim-
itations faced by existing methods, due to the lack of a
good security metric. We then discuss our new design
scheme named Lock-in-Pop, which follows our metric by
accessing only popular code paths.
4.1 Previous Attempts and Their Limitations
System call interposition (SCI). SCI systems [20, 48]
filter system calls to mediate requests from untrusted user
code instead of allowing them to go directly to the kernel.
The filter checks a predefined security policy to decide
which system calls are allowed to pass to the underlying
kernel, and which ones must be stopped.

This design is limited by its overly complicated ap-
proach to policy decisions and implementation. To make
a policy decision, the system needs to obtain and inter-
pret the OS state (e.g., permissions, user groups, register
flags) associated with the programs it is monitoring. The
complexity of OS states makes this process difficult and
can lead to inaccurate policy decisions.
Functionality re-creation. Systems such as Drawbridge
[36], Bascule [5], and Graphene [43] can provide richer
functionality and run more complex programs than most
systems built with SCI alone because they have their own
interfaces and libraries. We label such a design as “func-
tionality re-creation.”

The key to this design is to not fully rely on the under-
lying kernel for system functions, but to re-create its own
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Figure 3: Lock-in-Pop design ensures safe execution of un-
trusted user code despite existing potential zero-day bugs in the
OS kernel.

system functionality. When it has to access resources,
like memory, CPU, and disk storage, the system accesses
the kernel directly with its underlying TCB code.

Functionality re-creation provides a more realistic so-
lution to building virtualization systems than earlier ef-
forts. However, functionality re-creation has two pitfalls:
first, if the re-created functionality resides in the TCB
of the virtualization system, then vulnerabilities there
can expose the host OS to attack as well. For example,
hundreds of vulnerabilities have been reported in exist-
ing virtualization systems, such as QEMU and VMWare,
over the past ten years [31].

Second, functionality re-creation may assume that the
underlying host kernel is correct. As we have seen, this
assumption is often incorrect: host kernels may have
bugs in their implementation that leave them vulnerable
to attack. Thus, to provide the greatest assurance that the
host kernel will not be exposed to malicious user pro-
grams, a secure functionality re-creation design should
try to deliberately avoid kernel paths that are likely to
contain flaws. We discuss this approach in detail next.
4.2 Lock-in-Pop: Staying on the Beaten Path

Recall that we want to show that the “popular paths”
metric can be used in practice. We do so by devising
a design in which all code, including the complex part
of the operating system interface, accesses only popular
kernel paths through a small TCB. As it “locks” all func-
tionality requests into only the “popular paths,” we call
this design Lock-in-Pop.

At the lowest level of the design (interfacing with the
host OS) is the sandbox kernel (¬ in Figure 3). The
sandbox kernel’s main role is to ensure that only pop-

ular paths ( in Figure 3) of the host OS’s kernel can be
accessed. The sandbox kernel could thus function as a
very granular system call filter, or as the core of a pro-
gramming language sandbox. Note that the functionality
provided by the sandbox kernel is (intentionally) much
less than what an application needs. For example, an
application may store files in directories and set permis-
sions on those files. The sandbox kernel may provide a
much simpler abstraction (e.g., a block storage abstrac-
tion), so long as the strictly needed functionality (e.g.,
persistent storage) is provided.

Constructing the sandbox kernel is not dependent
on any specific technique or programming language.
Instead, the sandbox kernel follows a central design
principle to include only simple and necessary sys-
tem calls with basic flags, which can be checked
to verify that only “popular paths” are used. The
sandbox kernel should start with building-block func-
tions to first form a minimum set of system calls.
To give one example, for network programs, open-
ing a TCP connection would be considered an essen-
tial function. We can verify that the lines of ker-
nel code that correspond to opening TCP sockets, such
as lines in void tcp init sock(struct sock *sk),
are included in the “popular paths” for that system,
and so decide to include the open tcp connection()

function in the sandbox kernel. Examples of other
necessary functions are file.open, file.close,
file.read, and file.write for filesystem functions,
and create thread, create lock, lock.acquire,
and lock.release for threading functions.

In order to make security our priority, the designed
sandbox kernel should only use a subset of the “popu-
lar paths.” For systems where security is not as critical,
trade-offs can certainly be made to include some “unpop-
ular paths” to accommodate applications. Further discus-
sion of this trade-off is beyond the scope of this paper,
though we acknowledge it is an issue that should be ad-
dressed as Lock-in-Pop is deployed. While restricting the
system call interface is a big hammer for limiting access
to “popular paths” in the kernel, we believe that this is
the best choice available, given that we do not want to
require modification to the kernel, and would like to al-
low users to easily run their applications without much
extra effort.

The application is provided more complex functional-
ity via the SafePOSIX re-creation (® in Figure 3). Safe-
POSIX has the needed complexity to build more conve-
nient higher-level abstractions using the basic function-
ality provided by the sandbox kernel. The SafePOSIX
re-creation is itself isolated within a library OS sandbox,
which forces all system calls to go through the sand-
box kernel. So long as this is performed, all calls from
the SafePOSIX re-creation will only touch the permitted
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(popular) kernel paths in the underlying host OS.
Similarly, untrusted user code (¯ in Figure 3) also

must be restricted in the way in which it performs sys-
tem calls. System calls must go through the SafePOSIX
re-creation, into the sandbox kernel, and then to the host
OS. This is done because if user code could directly make
system calls, it could access any desired path in the host
OS’s kernel, and thus exploit bugs within it.

Note that it is expected that bugs will occur in many
components, including both the non-popular (risky) ker-
nel paths (° in Figure 3), and in the SafePOSIX re-
creation. Even the user program will be buggy or perhaps
explicitly malicious (created by attackers). Since the re-
maining components (¬ and  in Figure 3) are small
and can be thoroughly tested, this leads to a lower risk of
compromise.
4.3 Implementation of Lock-in-Pop

To test the practicality of the “popular paths” metric
and our Lock-in-Pop design, we implement a prototype
virtual machine called Lind.1 The purpose of building
the Lind prototype is to demonstrate that our “popular
paths” metric is practical, and that developers can build
secure systems using it. Lind is divided into a com-
putational module that enforces software fault isolation
(SFI) and a SafePOSIX module that safely re-creates the
OS functionality needed by user applications. We use a
slightly modified version of Native Client (NaCl) [51] for
the computational module; SafePOSIX is implemented
using Restricted Python (Repy) [8] and supports com-
plex user applications without exposing potentially risky
kernel paths.

In this section we provide a brief description of these
components and how they were integrated into Lind, fol-
lowed by an example of how the system works.
4.3.1 Primary Components
Native Client. We use NaCl to isolate the computation
of the user application from the kernel. NaCl allows Lind
to work on most types of legacy code. It compiles the
programs to produce a binary with software fault isola-
tion. This prevents applications from performing system
calls or executing arbitrary instructions. Instead, the ap-
plication will call into a small, privileged part of NaCl
that forwards system calls. In NaCl’s original implemen-
tation, these calls would usually be forwarded to the host
OS kernel. In Lind, we modified NaCl to instead forward
these calls to our SafePOSIX re-creation (described in
detail below).

Repy Sandbox. To build an API that can access the
safe parts of the underlying kernel while still support-
ing existing applications, we need two things. First, we
need a restricted sandbox kernel that only allows access

1Lind is an old English word for a lightweight, but still strong shield con-
structed from two layers of linden wood.

to popular kernel paths. We used Seattle’s Repy [8] sand-
box to perform this task. Second, we have to provide
complex system functions to user programs. For this task
we created SafePOSIX, which implements the widely ac-
cepted standard POSIX interface on top of Repy.

Because the sandbox kernel is the only code that will
be in direct contact with host system calls, it should be
small (to make it easy to audit), while providing primi-
tives that can be used to build more complex functional-
ity. We used Seattle’s Repy system API due to its tiny
(around 8K LOC) sandbox kernel and its minimal set of
system call APIs needed to build general computational
functionality. Repy allows access only to the popular
portions of the OS kernel through 33 basic API func-
tions, including 13 network functions, 6 file functions, 6
threading functions, and 8 miscellaneous functions (Ta-
ble 1) [8, 38].

Repy is only one possible implementation of the sand-
box kernel built for our Lock-in-Pop design. It was cho-
sen because it starts with basic building-block functions
and tries to be conservative in what underlying kernel
functionality it uses. Repy was designed and imple-
mented before our “popular paths” study, and so it was
not a perfect match, but it we experimentally verified that
it uses a subset of the “popular paths.” As reported in our
evaluation (Section 5.3), Repy accessed a subset (around
70% to 80%) of the “popular paths.”

Our current implementation does not end up using all
of the “popular paths.” It is certainly safe to use fewer
paths than are available, but it is possible that we are
missing out on some performance or compatibility gains.
As we extend our prototype, the “popular path” metric
will allow us to check whether new APIs we add expose
potentially unsafe kernel code to applications in the sand-
box.
4.3.2 Enhanced Safety in Call Handling with Safe-

POSIX Re-creation
The full kernel interface is extremely rich and hard

to protect. The Lock-in-Pop design used to build Lind
provides enhances safety protection through both isola-
tion and a POSIX interface (SafePOSIX). The latter re-
creates risky system calls to provide full-featured API for
legacy applications, with minimal impact on the kernel.

In Lind, a system call issued from user code is received
by NaCl, and then redirected to SafePOSIX. To service a
system call in NaCl, a server routine in Lind marshals its
arguments into a text string, and sends the call and the ar-
guments to SafePOSIX. The SafePOSIX re-creation ser-
vices the system call request, marshals the result, and
returns it back to NaCl. Eventually, the result is returned
as the appropriate native type to the calling program.

SafePOSIX is safe because of two design principles.
First, its re-creation only relies on a small set of ba-
sic Repy functions (Table 1). Therefore, the interac-
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Repy Function Available System Calls
Networking gethostbyname, openconnec-

tion, getmyip, socket.send,
socket.receive, socket.close,
listenforconnection, tcpserver-
socket.getconnection,
tcpserversocket.close, sendmes-
sage, listenformessage,
udpserversocket.getmessage,
and udpserversocket.close.

File System I/O
Operations

openfile(filename, create),
file.close(), file.readat(size
limit, offset), file.writeat(data,
offset), listfiles(), and remove-
file(filename).

Threading createlock, sleep, lock.acquire,
lock.release, createthread, and
getthreadname.

Miscellaneous
Functions

getruntime, randombytes, log,
exitall, createvirtualnamespace,
virtualnamespace.evaluate, ge-
tresources, and getlasterror.

Table 1: Repy sandbox kernel functions that support
Lind’s SafePOSIX re-creation.

tion with the host OS kernel is strictly controlled. Sec-
ond, the SafePOSIX re-creation is run within the Repy
programming language sandbox, which properly isolates
any bugs inside SafePOSIX itself.

5 Evaluation
To demonstrate that our “popular paths” metric is use-

ful and practical, we used our Lind prototype as a testing
tool. We compared Lind against three existing virtualiza-
tion systems – Docker, LXC, and Graphene. We chose
these three systems because they currently represent the
most widely-used VM design models for securing the OS
kernel. LXC is a well-known container designed specif-
ically for the Linux kernel. Docker is a widely-used
container that wraps an application in a self-contained
filesystem, while Graphene is an open source library OS
designed to run an application in a virtual machine en-
vironment. Lastly, we also tested Native Linux to serve
as a baseline for comparison. Our tests were designed to
answer four fundamental questions:

How does Lind compare to other virtualization sys-
tems in protecting against zero-day Linux kernel bugs?
(Section 5.1)

How much of the underlying kernel code is exposed,
and is thus vulnerable in different virtualization systems?
(Section 5.2)

If Lind’s SafePOSIX construction has bugs, how se-
vere an impact would this vulnerability have? (Sec-

tion 5.3)
In the Lind prototype, what would be the expected per-

formance overhead in real-world applications? Can de-
velopers make use of the “popular paths” metric to de-
velop practical systems? (Section 5.4)
5.1 Linux Kernel Bug Test and Evaluation
Setup. To evaluate how well each virtualization system
protects the Linux kernel against reported zero-day bugs,
we examined a list of 69 historical bugs that had been
identified and patched in versions 3.13.0 and 3.14.1 of
the Linux kernel [13]. By consulting the National Vul-
nerability Database (NVD) [31], we obtained a list of all
CVEs [11] that were known to exist in these Linux ker-
nel versions as of September 2015; we found 69 such
vulnerabilities. By analyzing security patches for those
bugs, we were able to identify the lines of code in the
kernel that correspond to each one.

In the following evaluation, we assume that a bug
is potentially triggerable if the lines of code that were
changed in the patch are reached (i.e., the same metric
described in Section 3). This measure may overestimate
potential danger posed by a system since simply reach-
ing the buggy code does not mean that guest code ac-
tually has enough control to exploit the bug. However,
this overestimate should apply equally to all of the sys-
tems we tested, which means it is still a useful method of
comparison.

Next, we sought out proof-of-concept code that could
trigger each bug. We were able to obtain or create code
to trigger nine out of the 69 bugs [16]. For the rest, we
used the Trinity system call fuzzer [42] on Linux 3.14.1
(referred to as “Native” Linux in Table 2). By comparing
the code reached during fuzzing with the lines of code
affected by security patches, we were able to identify an
additional 26 bugs that could be triggered. All together,
we identified a total of 35 bugs that we were able to trig-
ger from user space, and these formed our final dataset
for the evaluation.

We then evaluated the protection afforded by four vir-
tualization systems (including Lind) by attempting to
trigger the 35 bugs from inside each one. The host sys-
tem for each test ran a version of Linux 3.14.1 with gcov
instrumentation enabled. For the nine bugs that we could
trigger directly, we ran the proof-of-concept exploit in-
side the guest. For the other 26, we ran the Trinity fuzzer
inside the guest, exercising each system call 1,000,000
times with random inputs. Finally, we checked whether
the lines of code containing each bug were reached in the
host kernel, indicating that the guest could have triggered
the bug.
Results. We found that a substantial number of bugs
could be triggered in existing virtualization systems, as
shown in Table 2. All (100%) bugs were triggered in
Native Linux, while the other programs had lower rates:
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8/35 (22.9%) in Docker, 12/35 (34.3%) in LXC, and 8/35
(22.9%) bugs in Graphene. Only 1 out of 35 bugs (2.9%)
was triggered in Lind.

When we take a closer look at the results, we can see
that these outcomes have a lot to do with the design prin-
ciples of the virtualization systems and the way in which
they handle system call requests. Graphene [43] is a li-
brary OS that relies heavily on the Linux kernel to han-
dle system calls. Graphene’s Linux library implements
the Linux system calls using a variant of the Drawbridge
[36] ABI, which has 43 functions. Those ABI functions
are provided by the Platform Adaptation Layer (PAL),
implemented using 50 calls to the kernel. It turns out
that 8 vulnerabilities in our test were triggered by PAL’s
50 system calls. By contrast, Lind only relies on 33 sys-
tem calls, which significantly reduces risk and avoids 7
out of the 8 bugs.

Graphene supports many complex and risky system
calls, such as execve, msgsnd, and futex, that reached
the risky (unpopular) portion of the kernel and even-
tually led to kernel bugs. In addition, for many basic
and frequently-used system calls like open and read,
Graphene allows rarely-used flags and arguments to be
passed down to the kernel, which triggered bugs in the
unpopular paths. In Lind, all system calls only allow
a restricted set of simple and frequently-used flags and
arguments. One example from our test result is that
Graphene allows O TMPFILE flag to be passed to the
path openat() system call. This reached risky lines
of code inside fs/namei.c in the kernel, and eventually
triggered bug CVE-2015-5706. The same bug was trig-
gered in the same way inside Docker and LXC, but was
successfully prevented by Lind, due to its strict control
of flags and arguments. In fact, the design of Graphene
requires extensive interaction with the host kernel and,
hence, has many risks. The developers of Graphene man-
ually conducted an analysis of 291 Linux vulnerabilities
from 2011 to 2013, and found out that Graphene’s design
can not prevent 144 of those vulnerabilities.

LXC [28] is an operating-system-level virtualization
container that uses Linux kernel features to achieve con-
tainment. Docker [15] is a Linux container that runs on
top of LXC. The two containers have very similar de-
sign features that both rely directly on the Linux kernel
to handle system call requests. Since system calls in-
side Docker are passed down to LXC and then into the
kernel, we found out that all 8 kernel vulnerabilities trig-
gered inside Docker were also triggered with LXC. In
addition, LXC interacts with the kernel via its liblxc

library component, which triggered the extra 4 bugs.
It should be noted that although the design of Lind

only accesses popular paths in the kernel and implements
SafePOSIX inside of a sandbox, there are a few fun-
damental building blocks for which Lind must rely on

the kernel. For example, mmap and threads cannot be
recreated inside SafePOSIX without interaction with the
kernel, since there have to be some basic operations to
access the hardware. Therefore, Lind passes mmap and
threads directly to the kernel, and any vulnerabilities
related to them are unavoidable. CVE-2014-4171 is a
bug triggered by mmap inside Lind. It was also triggered
inside Docker, LXC, and Graphene, indicating that those
systems rely on the kernel to perform mmap operations as
well.

Our initial results suggest that bugs are usually trig-
gered by extensive interaction with the unpopular paths
in the kernel through complex system calls, or basic sys-
tem calls with complicated or rarely used flags. The
Lock-in-Pop design, and thus Lind, provides strictly con-
trolled access to the kernel, and so poses the least risk.

Vulnerability Native
Linux Docker LXC Graphene Lind

CVE-2015-5706 3 3 3 3 7
CVE-2015-0239 3 7 3 7 7
CVE-2014-9584 3 7 7 7 7
CVE-2014-9529 3 7 3 7 7
CVE-2014-9322 3 3 3 3 7
CVE-2014-9090 3 7 7 7 7
CVE-2014-8989 3 3 3 3 7
CVE-2014-8559 3 7 7 7 7
CVE-2014-8369 3 7 7 7 7
CVE-2014-8160 3 7 3 7 7
CVE-2014-8134 3 7 3 3 7
CVE-2014-8133 3 7 7 7 7
CVE-2014-8086 3 3 3 7 7
CVE-2014-7975 3 7 7 7 7
CVE-2014-7970 3 7 7 7 7
CVE-2014-7842 3 7 7 7 7
CVE-2014-7826 3 7 7 3 7
CVE-2014-7825 3 7 7 3 7
CVE-2014-7283 3 7 7 7 7
CVE-2014-5207 3 7 7 7 7
CVE-2014-5206 3 3 3 7 7
CVE-2014-5045 3 7 7 7 7
CVE-2014-4943 3 7 7 7 7
CVE-2014-4667 3 7 7 3 7
CVE-2014-4508 3 7 7 7 7
CVE-2014-4171 3 3 3 3 3
CVE-2014-4157 3 7 7 7 7
CVE-2014-4014 3 3 3 7 7
CVE-2014-3940 3 3 3 7 7
CVE-2014-3917 3 7 7 7 7
CVE-2014-3153 3 7 7 7 7
CVE-2014-3144 3 7 7 7 7
CVE-2014-3122 3 7 7 7 7
CVE-2014-2851 3 7 7 7 7
CVE-2014-0206 3 7 7 7 7
Vulnerabilities
Triggered

35/35
(100%)

8/35
(22.9%)

12/35
(34.3%)

8/35
(22.9%)

1/35
(2.9%)

Table 2: Linux kernel bugs, and vulnerabilities in different vir-
tualization systems (3: vulnerability triggered; 7: vulnerability
not triggered).

5.2 Comparison of Kernel Code Exposure in Differ-
ent Virtualization Systems

Setup. To determine how much of the underlying ker-
nel can be executed and exposed in each system, we
conducted system call fuzzing with Trinity (similar to
our approach in Section 3) to obtain kernel traces. This
helps us understand the potential risks a virtualization
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Virtualization
system

# of
Bugs

Kernel trace (LOC)
Total
coverage

In popular
paths

In risky
paths

LXC 12 127.3K 70.9K 56.4K
Docker 8 119.0K 69.5K 49.5K
Graphene 8 95.5K 62.2K 33.3K
Lind 1 70.3K 70.3K 0

Table 3: Reachable kernel trace analysis for different virtual-
ization systems.

system may pose based upon how much access it allows
to the kernel code. All experiments were conducted un-
der Linux kernel 3.14.1.
Results. We obtained the total reachable kernel trace
for each tested system, and further analyzed the com-
ponents of those traces. These results, shown in Table
3, affirm that Lind accessed the least amount of code in
the OS kernel. More importantly, all the kernel code it
did access was in the popular kernel paths, which con-
tain fewer bugs (Section 3.2). A large portion of the ker-
nel paths accessed by Lind lie in fs/ and perform file
system operations. To restrict file system calls to pop-
ular paths, Lind allows only basic calls, like open(),
close(), read(), write(), mkdir(), and rmdir(),
and permits only commonly-used flags like O CREAT,
O EXCL, O APPEND, O TRUNC, O RDONLY, O WRONLY, and
O RDWR for open().

The other virtualization systems all accessed a sub-
stantial number of code paths in the kernel, and they all
accessed a larger section from the unpopular paths. This
is because they rely on the underlying host kernel to im-
plement complex functionality. Therefore, they are more
dependent on complex system calls, and allow extensive
use of complicated flags. For example, Graphene’s sys-
tem call API supports multiple processes via fork() and
signals, and therefore accesses many risky lines of code.
For basic and frequently-used system calls like open,
Graphene allows rarely-used flags, such as O TMPFILE

and O NONBLOCK to pass down to the kernel, thus reach-
ing risky lines in the kernel that could lead to bugs. By
default, Docker and LXC do not wrap or filter system
calls made by applications running in a container. Thus,
programs have access to basically all the system calls,
and rarely used flags, such as O TMPFILE, O NONBLOCK,
and O DSYNC. Again, this means they can reach risky
lines of code in the kernel.

To summarize, our analysis suggests that Lind triggers
the fewest kernel bugs because it has better control over
the portions of the OS kernel accessed by applications.
5.3 Impact of Potential Vulnerabilities in Lind’s

SafePOSIX Re-creation
Setup. To understand the potential security risks if
Lind’s SafePOSIX re-creation has vulnerabilities, we
conducted system call fuzzing with Trinity to obtain the
reachable kernel trace in Linux kernel 3.14.1. The goal is

Virtualization
system

# of
Bugs

Kernel trace (LOC)
Total
coverage

In popular
paths

In risky
paths

Lind 1 70.3K 70.3K 0
Repy 1 74.4K 74.4K 0

Table 4: Reachable kernel trace analysis for Repy.

to see how much of the kernel is exposed to SafePOSIX.
Since our SafePOSIX runs inside the Repy sandbox ker-
nel, fuzzing it suffices to determine the portion of the
kernel reachable from inside the sandbox.
Results. The results are shown in Table 4. The trace
of Repy is slightly larger (5.8%) than that of Lind. This
larger design does not allow attackers or bugs to access
the risky paths in the OS kernel, and it leaves open only
a small number of additional popular paths. These are
added because some functions in Repy have more ca-
pabilities for message sending and network connection
than Lind’s system call interface. For example, in Repy,
the sendmessage() and openconnection() functions
could reach more lines of code when fuzzed. However,
the kernel trace of Repy still lies completely within the
popular paths that contain fewer kernel bugs. Thus, the
Repy sandbox kernel has only a very slim chance of trig-
gering OS kernel bugs.

Since it is the direct point of contact with the OS ker-
nel, in theory, the Repy sandbox kernel could be a weak-
ness in the overall security coverage provided by Lind.
Nevertheless, the results above show that, even if it has
a bug or failure, the Repy kernel should not substantially
increase the risk of triggering bugs.

5.4 Practicality Evaluation
The purpose of our practicality evaluation is to show

that the “popular paths” metric is practical in building
real-world systems. Overhead is expected. We have not
optimized our Lind prototype to try to improve perfor-
mance, since that is not our main purpose for building
the prototype.
Setup. We ran a few programs of different types to un-
derstand Lind’s performance impact. All applications
ran unaltered and correctly in Lind. To run the applica-
tions, it was sufficient to just recompile the unmodified
source code using NaCl’s compiler and Lind’s glibc to
call into SafePOSIX.

To measure Lind’s runtime performance overhead
compared to Native Linux when running real-world ap-
plications, we first compiled and ran six widely-used
legacy applications: a prime number calculator Primes
1.0, GNU Grep 2.9, GNU Wget 1.13, GNU Coreutils 8.9,
GNU Netcat 0.7.1, and K&R Cat. We also ran more ex-
tensive benchmarks on two large legacy applications, Tor
0.2.3 and Apache 2.0.64, in Lind. We used Tor’s built-in
benchmark program and Apache’s benchmarking tool ab
to perform basic testing operations and record the execu-
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Application Native Code Lind Impact
Primes 10000 ms 10600 ms 1.06x

GNU Grep 65 ms 260 ms 4.00x
GNU Wget 25 ms 96 ms 3.84x

GNU Coreutils 275 ms 920 ms 3.35x
GNU Netcat 780 ms 2180 ms 2.79x

K&R Cat 20 ms 125 ms 6.25x

Table 5: Execution time performance results for six real-world
applications: Native Linux vs. Lind.

Benchmark Native Code Lind Impact
Digest Tests:

Set 54.80 nsec/element 176.86 nsec/element 3.22x
Get 42.30 nsec/element 134.38 nsec/element 3.17x

Add 11.69 nsec/element 53.91 nsec/element 4.61x
IsIn 8.24 nsec/element 39.82 nsec/element 4.83x

AES Tests:
1 Byte 14.83 nsec/B 36.93 nsec/B 2.49x

16 Byte 7.45 nsec/B 16.95 nsec/B 2.28x
1024 Byte 6.91 nsec/B 15.42 nsec/B 2.23x
4096 Byte 6.96 nsec/B 15.35 nsec/B 2.21x
8192 Byte 6.94 nsec/B 15.47 nsec/B 2.23x
Cell Sized 6.81 nsec/B 14.71 nsec/B 2.16x

Cell Processing:
Inbound 3378.18 nsec/cell 8418.03 nsec/cell 2.49x

(per Byte) 6.64 nsec/B 16.54 nsec/B -
Outbound 3384.01 nsec/cell 8127.42 nsec/cell 2.40x
(per Byte) 6.65 nsec/B 15.97 nsec/B -

Table 6: Performance results on Tor’s built-in benchmark pro-
gram: Native Linux vs. Lind.

tion time.
Results. Table 5 shows the runtime performance for the
six real-world applications mentioned above. The Primes
application run in Lind has a 6% performance overhead.
The small amount of overhead is generated by NaCl’s in-
struction alignment at build time. We expect other CPU
bound processes to behave similarly.

The other five applications require repeated calls into
SafePOSIX, and this additional computation produced
the extra overhead.

A summary of the results for Tor is shown in Table
6. The benchmarks focus on cryptographic operations,
which are CPU intensive, but they also make system calls
like getpid and reads to /dev/urandom. The digest
operations time the access of a map of message digests.
The AES operations time includes encryptions of several
sizes and the creation of message digests. Cell process-
ing executes full packet encryption and decryption. In
our test, Lind slowed down these operations by 2.5x to
5x. We believe these slowdowns are due to the increased
code size produced by NaCl, and the increased overhead
from Lind’s SafePOSIX system call interface.

Results for the Apache benchmarking tool ab are pre-
sented in Table 7. In the set of experiments, Lind pro-
duced performance slowdowns around 2.7x. Most of the
overhead was incurred due to system call operations in-
side the SafePOSIX re-creation.

Performance overhead in Lind is reasonable, consid-
ering that we did not specifically optimize any part of
the code to improve speed. It should also be noted that

# of Requests Native Code Lind Impact
10 900 ms 2400 ms 2.67x
20 1700 ms 4700 ms 2.76x
50 4600 ms 13000 ms 2.83x

100 10000 ms 27000 ms 2.70x

Table 7: Performance results on Apache benchmarking tool
ab: Native Linux vs. Lind.

performance slowdown is common in virtualization sys-
tems. For example, Graphene [43] also shows an over-
head ranging from 1.4x to 2x when running applications
such as the Apache web server and the Unixbench suite
[44]. In many cases, Lind shares the same magnitude of
slowdown with Graphene. Lind’s ability to run a variety
of programs demonstrates the practicality of our “popu-
lar paths” metric.

6 Limitations
One of our challenges in conducting this study was de-

ciding where to place the limits of its scope. To explore
any one strategy in depth, we felt it was necessary to in-
tentionally exclude consideration of a few other valid ap-
proaches. These choices may have placed some limita-
tions on our results.

One limitation is that there are some types of bugs that
are difficult to evaluate using our metric. For example,
bugs caused by a race condition, or that involve defects
in internal kernel data structures, or that require complex
triggering conditions across multiple kernel paths, may
not be immediately identified using our metric. As we
continue to refine our metric, we will also look to evolve
our evaluation criteria to find and protect against more
complex types of bugs.

Another limitation is that our current metric concludes
that certain lines of code in the kernel were reached or
not. Though this is an important factor in exploiting a
bug, it may not be fully sufficient for all bugs. While
a stronger conclusion about bug exploitation conditions
would be ideal, it would be hard to do so using a quan-
titative metric. Instead, it would require a more compli-
cated manual process, which was outside the scope of
this study.

7 Related Work
This section summarizes a number of earlier initiatives

to ensure the safety of privileged code. The literature ref-
erenced in this section includes past efforts to design and
build virtualized systems, as well as background infor-
mation on technologies incorporated into Lind.

Lind incorporates a number of existing virtualization
techniques, which are described below.

System Call Interposition (SCI) tracks all the system
calls of processes such that each call can be modified or
denied. Goldberg, et al. developed Janus [20, 48], which
adopted a user-level “monitor” to filter system call re-
quests based on user-specified policies. Garfinkel, et al.

10    2017 USENIX Annual Technical Conference USENIX Association



proposed a delegating architecture for secure system call
interposition called Ostia [18]. Their system introduced
emulation libraries in the user space to mediate sensitive
system calls issued by the sandboxed process. SCI is
similar to the Lind isolation mechanism. However, SCI-
based tools can easily be circumvented if the implemen-
tation is not careful [41].

Software Fault Isolation (SFI) transforms a given pro-
gram so that it can be guaranteed to satisfy a security
policy. Wahbe, et al. [49] presented a software ap-
proach to implementing fault isolation within a single
address space. Yee, et al. from Google developed Na-
tive Client (NaCl) [51], an SFI system for the Chrome
browser that allows native executable code to run directly
in a browser. As discussed in Section 5, Lind adopts
NaCl as a key component to ensure secure execution of
binary code.

Language-based virtualization. Programming lan-
guages like Java, JavaScript, Lua [27], and Sil-
verlight [40] can provide safety in virtual systems by
“translating” application commands into a native lan-
guage. Though many sandboxes implement the bulk of
standard libraries in memory-safe languages like Java or
C#, flaws in this code can still pose a threat [21, 34].
Any bug or failure in a programming language virtual
machine is usually fatal. In contrast, the main compo-
nent of Lind is built using Repy, which is a programming
language with a very small TCB, minimizing the chance
of contact with kernel flaws.

OS virtualization techniques include bare-metal hard-
ware virtualization, such as VMware ESX Server,
Xen [4], and Hyper-V, container systems such as
LXC [28], BSD’s jail, and Solaris zones, and hosted
hypervisor virtualization, such as VMware Workstation,
VMware Server, VirtualPC and VirtualBox. Security
by isolation [2, 9, 23, 50] uses containment to provide
safe executing environments for multiple user-level vir-
tual environments sharing the same hardware. However,
this approach is limited due to the large attack surface
exposed by most hypervisors.

Library OSes allow applications to efficiently gain the
benefits of virtual machines by refactoring a traditional
OS kernel into an application library. Porter, et al. de-
veloped Drawbridge [36], a library OS that presents a
Windows persona for Windows applications. Similar to
Lind, it restricts access from usermode to the host OS
through operations that pass through the security mon-
itor. Baumann, et al. presented Bascule [5], an archi-
tecture for library OS extensions based on Drawbridge
that allows application behavior to be customized by ex-
tensions loaded at runtime. The same team also devel-
oped Haven [6], which uses a library OS to implement
shielded execution of unmodified server applications in
an untrusted cloud host. Tsai, et al. developed Graphene

[43], a library OS that executes both single and multi-
process applications with low performance overhead.

The key distinction between Lind and other existing
library OSes is that Lind leverages our “popular paths”
metric to verify that it only accesses the safer part of the
kernel. Existing library OSes trust the underlying host
kernel to perform many functions, and filter only cer-
tain system calls. Our work and previous library OSes
are orthogonal, but we provide useful insights with our
“popular paths” metric.

8 Conclusion
In this paper, we proposed a new security metric based

on quantitative measures of kernel code execution when
running user applications. Our metric evaluates if the
lines of kernel code executed have the potential to trig-
ger zero-day bugs. Our key discovery is that popular
kernel paths contain significantly fewer bugs than other
paths. Based on this insight, we devise a new design
for a secure virtual machine called Lock-in-Pop. As
the name implies, the design scheme locks away access
to all kernel code except that found in paths frequently
used by popular programs. We test the Lock-in-Pop
idea by implementing a prototype virtual machine called
Lind, which features a minimized TCB and prevents di-
rect access to application calls from less-used, riskier
paths. Instead, Lind supports complex system calls by
securely re-creating essential OS functionality inside a
sandbox. In tests against Docker, LXC, and Graphene,
Lind emerged as the most effective system in preventing
zero-day Linux kernel bugs.

So that other researchers may replicate our results, we
make all of the kernel trace data, benchmark data, and
source code for this paper available [24].
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